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Abstract. Kaplan developed the early deterministic mathematical model of the spread of HIV spread amongst

IDUs (injecting drug users). This was followed by Greenhalgh and Hay, who extended the Kaplan model by

considering some realistic assumptions. The models detailed the dynamic of probability of exposure to HIV of

an IDU after they had used contaminated needles, and the dynamic of the IDU fraction subject to HIV infection.

The model from Greenhalgh and Hay has two equilibria (fixed points), namely the HIV-free equilibrium and the

HIV-endemic equilibrium. Greenhalgh and Hay demonstrated the global stability of the fixed points for some

specific conditions. If the specific condition was not satisfied, Greenhalgh and Hay left it as an open problem.

In this paper, we show that the dynamics of HIV spread among injecting drug users completely results from the

basic reproduction number by constructing suitable Lyapunov functions, which resolves the open problem. We

also apply the model to describe HIV/AIDS spread in a real case. The predicted result agrees with the data.
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1. INTRODUCTION

The retrovirus HIV (Human Immunodeficiency Virus) causes AIDS (Acquired Immune De-

ficiency Syndrome), a disease caused by damage to the immune system. HIV only lives in
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cells or live media. HIV is found in bodily fluids which contain white blood cells, e.g. blood,

placental fluid, semen, spinal fluid, vaginal fluid, breast milk, and cerebrospinal fluid. HIV is

transmitted when bodily fluids which contain HIV mix, for instance during sexual intercourse

with someone with the infection, if contaminated needles and piercing tools are shared (for

example those used for tattoos, piercings, and shaving), or through blood products containing

HIV, i.e. transfusions. Pregnant women living with HIV could transmit the virus to her fetus

or baby. According to the UNAIDS report, there were 37.9 million (32.7-44.0 million) people

living with HIV worldwide at the end of 2018 [1].

There are a number of mathematical models which describe the spread of HIV, including HIV

transmission in NSW prison [2], HIV spread because of heterosexual contact [3, 4], and HIV

spread amongst injecting drug users [5, 6, 9]. Kaplan constructed an early HIV mathematical

model amongst IDUs [5, 6]. Kaplan made the assumption that populations in which HIV/AIDS

spread consisted of constant people. Kaplan assumed that the IDU populations were homo-

geneous and only injected drugs in places such as “shooting galleries”. A shooting gallery

is where drug users can gather to inject and share drug injection equipment. Kaplan’s model

is deterministic. The model consisted of two ordinary differential equations. The differential

equation described the fraction of injecting drug user population with HIV infection at time t

(the prevalence of HIV infection) and the probability that an injecting drug user will be exposed

to HIV as a result of using contaminated equipment. This probability could be considered as

the proportion of infected (contaminated) needles.

Using some assumptions, Kaplan suggested the following mathematical model [5, 6]:

dx
dt

= λγy−λγx [1− (1− y)(1−θ)] ,(1)

dy
dt

= λαx(1− y)−µy.(2)

Here x(t) and y(t) are the proportion of infected (contaminated) needles and the fraction of

infected, injecting drug users at time t, respectively. In eq. (1) and eq. (2), γ is the gallery ratio

(ratio between a number of IDU and number of shooting galleries), λ is the injecting rate of

IDU, θ is the probability of a contaminated needle becoming an uncontaminated needle after

use by an uninfected IDU. In this model, α is the probability of an uninfected addict becoming
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infected because of using a contaminated needle. The ’birth’ rate and the ’death’ rate of IDUs

were assumed to have the same value µ .

In 1997, Greenhalgh and Hay altered the Kaplan model by adding some more realistic assump-

tions. Greenhalgh and Hay suggested the following mathematical model [6]:

dx
dt

= (σ − τx)y−ρx(1− y),(3)

dy
dt

= υx(1− y)−µy,(4)

where (x,y)∈Ω= [0,1]× [0,1] . All parameters σ , τ , ρ , ν , µ are positive and σ ≤ τ . Two equi-

libria form the model: the HIV-free equilibrium E1 = (0,0) and the HIV-endemic equilibrium

E2 = (x2, y2) where x2 and y2 were given by

(5) x2 =
συ−ρµ

τυ
, y2 =

συ−ρµ

συ−ρµ + τµ
.

The HIV-endemic equilibrium E2 exists when the basic reproduction number R0 := συ

ρµ
> 1. A

dynamical model’s basic reproduction number can be determined by a Next-Generation Oper-

ator [7, 8]. Greenhalgh and Hay found that the HIV-free equilibrium E1 was asymptotically,

locally stable whenever R0 < 1 and it was unstable whenever R0 > 1. Also, the HIV-endemic

equilibrium E2 was asymptotically, locally stable whenever R0 > 1. Moreover, Greenhalgh and

Hay proved that the HIV-free equilibrium E1 and the endemic equilibrium E2 are asymptoti-

cally, globally stable for specific conditions. The following theorem came from Greenhalgh

and Hay [6].

Theorem 1.1. The HIV-free equilibrium E1 is globally asymptotically stable if (a) R0 < 1, or

(b) R0 = 1 and τ > ρ .

Theorem 1.2. The endemic equilibrium E2 is globally asymptotically stable if R0 > 1 and τ > ρ .

For ρ ≥ τ , Greenhalgh and Hay left it as an open problem. Case ρ > τ could occur when the

proportion of those infected who were aware of their infection (p) is higher than the probability

of a contaminated needle becoming an uncontaminated needle after use by an infected addict

(θ ). In this paper, we demonstrated that Greenhalgh & Hay’s HIV-free equilibrium model is

asymptotically, globally stable whenever R0 ≤ 1 and τ ≤ ρ . We also demonstrate that the
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endemic equilibrium is asymptotically, globally stable whenever R0 > 1 (no matter whether

either τ > ρ or τ ≤ ρ).

This rest of this article is organized thus: Section 2 presents Greenhalgh and Hay’s model of

global stability of the HIV-free equilibrium by using a suitable Lyapunov function. Next, the

global stability of the HIV-endemic equilibrium of Greenhalgh and Hay model is presented in

Section 3. Applying the Greenhalgh and Hay model to HIV/AIDS spread data is shown in

Section 4. Finally, the last section features the conclusion.

2. GLOBAL STABILITY OF THE HIV-FREE EQUILIBRIUM

Here we shall show the global stability of the disease-free equilibrium for the case R0 ≤ 1. We

start by presenting the following Lemma.

Lemma 2.1. Suppose R0 ≤ 1. Then the following statements hold:

(a) xẋ =− [ρ (1− y)+ τy]x2 +σxy.

(b) yẏ =− [υx+µ]y2 +υxy.

(c) ẋ+ σ

µ
ẏ =−ρ (1−R0)x(1− y)− τxy.

Proof:

(a) By performing algebraic manipulation for ẋ , we found that

ẋ =− [ρ (1− y)+ τy]x+σy.

This yields

xẋ =− [ρ (1− y)+ τy]x2 +σxy.

(b) By performing algebraic manipulation for ẏ , we found that

ẏ =−(νx+µ)y+νx.

Hence we find

yẏ =− [υx+µ]y2 +υxy.

(c) Suppose R0 ≤ 1. Then

ẋ+
σ

µ
ẏ = σy+(ρx− τx)y−ρx− σ

µ
(υx(1− y)−µy)
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= −
(

ρ− συ

µ

)
x+
(

ρ− συ

µ

)
xy− τxy

= −ρ (1−R0)x(1− y)− τxy.

The disease-free equilibrium E1 global stability is shown in the following theorem.

Theorem 2.2. Suppose R0 ≤ 1. Thus, the HIV-free equilibrium E1 = (0,0) is asymptotically,

globally stable in Ω.

Proof: We have defined a Lyapunov function U : Ω→ R by

U (x,y) =
τ

4σ
x2 +

τ

4ν
y2 + x+

σ

µ
y.

Then U is in the C∞ class function on the domain Ω. The HIV-free equilibrium (E1) is the

global minimum of U . Moreover, U is a definite positive function around E1 where for every

(x,y) ∈ Ω\{E1}, U (x,y) > U (E1) = 0. The time derivative of U computed alongside the

mathematical model solutions in (3)-(4), is given by the following expression

dU
dt

=
τ

2σ
xẋ+

τ

2ν
yẏ+ ẋ+

σ

µ
ẏ.

By using Lemma 2.1, we found that

dU
dt

=− τ

2σ
[ρ (1− y)+ τy]x2− τ

2ν
(υx+µ)y2−ρ (1−R0)x(1− y) .

Since all model parameters are positive, and every variable is non-negative, therefore dU
dt ≤ 0

for R0 ≤ 1. Also, dU
dt = 0 if and only if (x,y) = E1. Thus, the greatest compact invariant set in{

(x,y) ∈Ω : dU
dt = 0

}
is the singleton {E1} . By LaSalle’s invariance principle [10] then implies

that the disease free equilibrium E1 is asymptotically, globally stable in Ω. �

Remarks: Any functions U (x,y) = mx2+ny2+x+ σ

µ
y where m≥ 0, n≥ 0, mσ +nυ = τ are

also Lyapunov functions for proving the disease’s global stability of free equilibrium E1.

3. GLOBAL STABILITY OF ENDEMIC EQUILIBRIUM

Here, we demonstrate endemic equilibrium’s global stability for the case R0 > 1 using Dulac

criterion and a Lyapunov function.
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Theorem 3.1. If R0 > 1 then the endemic equilibrium E2 is globally asymptotically stable in

Ω\{E1} .

Proof: Suppose f (x,y) = ẋ and g(x,y) = ẏ. We found that

(6)
∂ f
∂x

+
∂g
∂y

=− [ρ (1− y)+ τy]− (νx+µ)< 0.

Therefore, the mathematical model in equations (3)-(4) does not have any periodic solution in

Ω [11, 12, 13]. Since E2 is asymptotically, locally stable whenever R0 > 1, then by applying the

classical Poincare-Bendixson theorem, the endemic equilibrium E2 is asymptotically, globally

stable in Ω\{E1}. �

Now, we show the endemic equilibrium’s global stability whenever it exists by using a Lya-

punov function. We present the following lemma.

Lemma 3.2. Suppose R0 > 1. Then the following statement are hold:

(a) ẋ =− [ρ (1− y)+ τy] (x− x2)+ρ
x2
y2
(y− y2) .

(b) ẋ =−σ
y2
x2
(x− x2)+(σ − τx+ρx)(y− y2) .

(c) ẏ = µ
y2
x2
(x− x2)− (νx+µ)(y− y2) .

(d) ẏ = ν (1− y)(x− x2)−ν
x2
y2
(y− y2) .

(e) Let F =
[
x− x2 +

σ

µ
(y− y2)

](
ẋ+ σ

µ
ẏ
)

. Then

F =− [−ρ (R0−1)(1− y)+ τy] (x− x2)
2− σ

µ
[ρ (R0−1)x+ τx] (y− y2)

2

−ρ (R0−1) x2
y2
(x− x2)(y− y2) .

Proof: Let R0 > 1. Then, the endemic equilibrium E2 given in (5) is exist. Moreover suppose

f (x,y) = ẋ and g(x,y) = ẏ.

(a) By using Taylor theorem, ẋ = f (x,y) could be represented as

f (x,y) = fx (x− x2)+ fy (y− y2)+
1
2

fxx(x− x2)
2 + fxy (x− x2)(y− y2)+

1
2

fyy(y− y2)
2,

where all partial derivatives of are evaluated at E2. By direct calculation, we found that

fx =− [ρ (1− y)+ τy] , fy = σ − τx+ρx, fxx = 0, fxy = ρ− τ, fyy = 0.
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Hence ẋ could be represented as

ẋ =− [ρ (1− y2)+ τy2] (x− x2)+(σ − τx2 +ρx2)(y− y2)+(ρ− τ)(x− x2)(y− y2) .

From equilibrium condition, σ − τx2 +ρx2 = ρ
x2
y2
. Hence we found

ẋ =− [ρ (1− y)+ τy] (x− x2)+ρ
x2

y2
(y− y2) .

(b) From Lemma 3.2.(a), we found that

ẋ =− [ρ (1− y2)+ τy2] (x− x2)+(σ − τx2 +ρx2)(y− y2)+(ρ− τ)(x− x2)(y− y2)

=− [ρ (1− y2)+ τy2] (x− x2)+(σ − τx+ρx)(y− y2) .

From equilibrium condition, ρ (1− y2)+ τy2 = σ
y2
x2
. Hence we found

ẋ =−σ
y2

x2
(x− x2)+(σ − τx+ρx)(y− y2) .

(c) By using Taylor theorem, ẏ = g(x,y) could be represented as

g(x,y) = gx (x− x2)+gy (y− y2)+
1
2

gxx(x− x2)
2 +gxy (x− x2)(y− y2)+

1
2

gyy(y− y2)
2,

where all partial derivatives of are evaluated at E2. By direct calculation, we found that

gx = ν(1− y), gy =−(νx+µ),gxx = 0, gxy =−ν ,gyy = 0.

Hence ẏ could be represented as

ẏ = ν(1− y2)(x− x2)− (νx2 +µ)(y− y2)−ν (x− x2)(y− y2) .

From equilibrium condition, ν(1− y2) = µ
y2
x2
. Hence we found

ẏ = µ
y2

x2
(x− x2)− (νx+µ)(y− y2) .

(d) From Lemma 3.2.(c), we found that

ẏ = ν(1− y2)(x− x2)− (νx2 +µ)(y− y2)−ν (x− x2)(y− y2)

= ν(1− y)(x− x2)− (νx2 +µ)(y− y2) .

From equilibrium condition, νx2 +µ = ν
x2
y2
. Hence we found

ẏ = ν (1− y)(x− x2)−ν
x2

y2
(y− y2) .
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(e) F could be decomposed as F = F1 +F2 +F3 +F4 where

F1 = (x− x2) ẋ, F2 =
σ

µ
(x− x2) ẏ,F3 =

σ

µ
(y− y2) ẋ, F4 =

σ2

µ2 (y− y2) ẏ.

From Lemma 3.2(a)-(d), we found that

F1 =− [ρ (1− y)+ τy] (x− x2)
2 +ρ

x2

y2
(x− x2)(y− y2) ,

F2 =
σν

µ
(1− y)(x− x2)

2− σν

µ

x2

y2
(x− x2)(y− y2) ,

F3 =−
σ2

µ

y2

x2
(x− x2)(y− y2)+

σ

µ
(σ − τx+ρx)(y− y2)

2,

F4 =
σ2

µ

y2

x2
(x− x2)(y− y2)−

σ2

µ2 (νx+µ)(y− y2)
2.

After cancelling identical terms with opposite signs, we found that

F = −
[(

ρ− σν

µ

)
(1− y)+ τy

]
(x− x2)

2− σ

µ

(
σν

µ
x−ρx+ τx

)
(y− y2)

2

−
(

σν

µ
−ρ

)
x2

y2
(x− x2)(y− y2) .

Hence

F = − [−ρ (R0−1)(1− y)+ τy] (x− x2)
2− σ

µ
[ρ (R0−1)x+ τx] (y− y2)

2

−ρ (R0−1)
x2

y2
(x− x2)(y− y2) .�

In the following theory, the endemic equilibrium E2 global stability is shown by building a

suitable Lyapunov function.

Theorem 3.3. Assume that R0 > 1. Thus, the endemic equilibrium E2 = (x2,y2) is asymptoti-

cally, globally stable in Ω\{E1}.

Proof: We have defined the Lyapunov function V : Ω→ R by

V(x,y)=
1
2
(R0−1)(x− x2)

2 +
1
2

[
x− x2 +

σ

µ
(y− y2)

]2

.

Then V is a member of C∞ function set on the domain Ω. In addition, the endemic equilibrium

E2 is the global minimum of V on Ω. Moreover, V is definite positive function around E2 where
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for every (x,y) ∈Ω\E2, V (x,y)> 0. The time derivative of V computed along solutions of the

mathematical model in (3)-(4), is given by the expression

dV
dt

= (R0−1)(x− x2) ẋ+
[
(x− x2)+

σ

µ
(y− y2)

](
ẋ+

σ

µ
ẏ
)
.

By using Lemma 3.2, we found that

dV
dt

= −(R0−1) [ρ (1− y)+ τy] (x− x2)
2 +(R0−1)ρ

x2

y2
(x− x2)(y− y2)

+[(R0−1)ρ (1− y)− τy] (x− x2)
2− σ

µ
[ρ (R0−1)x+ τx] (y− y2)

2

−ρ (R0−1)
x2

y2
(x− x2)(y− y2) .

Hence we found

dV
dt

=−R0τy(x− x2)
2− σ

µ
x(ρ (R0−1)+ τ)(y− y2)

2.

Since every parameter in the model is positive and every variable is non-negative, then dV
dt ≤ 0

for R0 > 1. Moreover, dV
dt = 0 if and only if (x,y) = (0,0) = E1 or (x,y) = (x2,y2) = E2.

Thus, the greatest compact invariant set in
{
(x,y) ∈Ω\{E1} : dV

dt = 0
}

is the singleton {E2}.

By LaSalle’s invariance principle [10] then the implication is that endemic equilibrium E2 is

asymptotically, globally stable in Ω\{E1}. �

4. APPLICATION OF THE MODEL

Here we applied the Greenhalgh and Hay mathematical model in eq. (3)-(4) for describing

the spread of HIV/AIDS in Jawa Timur (East Java) province, Indonesia. To apply the model,

HIV/AIDS spread in Jawa Timur province adheres to the following assumption:

(1) Number of injecting drug user is assumed to be constant.

(2) Number of the needle is assumed to be constant.

(3) HIV/AIDS spread could only be transmitted by sharing needles amongst injecting drug

users.

The amount of cumulative HIV/AIDS case (z) at time t in Jawa Timur province is presented in

Table 1, the data of which was compiled from the Health Profile of Jawa Timur 2011-2018 [14].



10 WINDARTO, ERIDANI

TABLE 1. Cumulative HIV/AIDS (z(t)) in Jawa Timur province

Year 2011 2012 2013 2014 2015 2016 2017 2018

t 0 1 2 3 4 5 6 7

z(t) 11585 15681 20030 26433 32646 36881 44949 53641

Here, our objective is to predict the basic reproductive ratio R0 from the Table 1 data. Therefore,

every parameter (σ ,τ,ρ,ν ,µ) in the Greenhalgh and Hay model in eq. (3)-(4) is estimated from

the data. Unfortunately, the number of the injecting drug users (N) and dynamics of the needle

are unknown. By defining y(t) = z(t)
N , then number of cumulative HIV/AIDS case in the Table

1 could be transformed into dimensionless variable y(t). The parameters σ , τ , ρ , ν , µ and the

initial values x(0), y(0) are estimated such that the mean average percentage error (MAPE)

MAPE =
1
8

7

∑
i=0

∣∣∣∣∣zi (t)−Nŷi(t)
zi(t)

∣∣∣∣∣∗100%

is minimum. Here ŷi(t) is the proportion of HIV-infected IDUs (injecting drug users) at time

i predicted from the model.

Because the mathematical models in eq. (3)-(4) are nonlinear differential equations, the mod-

els’ analytical solutions cannot be obtained. As such, a heuristic method, for example a genetic

algorithm method can be used for estimating parameter values from the non-linear model dif-

ferential equations. Here, we used continuous genetic algorithm, because the algorithm has a

larger suitable mutation rate than the binary genetic algorithm [15, 16]. Table 2 shows the esti-

mation results of parameters in the Greenhalgh and Hay mathematical model in Eq. (3)-(4) for

various mutation rate (m) using a continuous genetic algorithm .

The Table 2 results are the best values from seven times implementation of continuous genetic

algorithm. It can be seen from the table that the minimum value of normalized residual sum

of square is attained when the mutation rate is 0.5. Therefore, we obtain the parameter values

of the mathematical model in equations. (3)-(4) are x(0) = 0.088779, y(0) = 0.073013, σ =

3.2430, τ = 8.8956, ρ = 4.0158, ν = 0.4332 and µ = 0.0125. Hence, we found that the basic

reproductive ratio of HIV/AIDS spread in Jawa Timur province predicted from the model is

R0 = σν

ρµ
= 27.985. In addition, by assuming that number of injecting drug users (IDUs) is
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constant, we could predict the number of the injecting drug users (N). Here we found that

N = z(0)
ŷ(0) = 158671 IDUs.

TABLE 2. Predicted parameter values

m x(0) y(0) σ τ ρ υ µ MAPE

0.1 0.118593 0.086516 2.3790 4.7432 1.2892 0.2773 0.0193 1.764 %

0.2 0.119980 0.079262 3.4187 6.0882 3.3441 0.3379 0.0141 1.723 %

0.3 0.123532 0.071872 4.4768 8.7402 4.4420 0.3310 0.0125 1.738 %

0.4 0.091608 0.101401 2.5473 5.9607 3.9028 0.5549 0.0127 1.768 %

0.5 0.088779 0.073013 3.2430 8.8956 4.0158 0.4332 0.0125 1.722 %

Figure 1 presents the dynamic of infected IDUs predicted from the model. As previously pre-

dicted by the analytical result, the dynamic of infected IDUs tends towards the endemic equilib-

rium when the basic reproductive ratio is more than one. From a practical point of view, harm

reduction programs e.g. methadone therapy or needle exchange programs should be used to

control and reduce the spread of HIV/AIDS among injecting drug users.

FIGURE 1. The dynamics of infected IDUs predicted from the model
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5. CONCLUSION

We have proved the global stability of equilibria in a mathematical model of the spread of HIV

spread amongst injecting drug users. We have shown that the mathematical model’s global

stability was completely determined by the basic reproduction number, which is either equal

or less than one, the disease-free equilibrium is asymptotically, globally stable in the feasible

region. The proof is completed by constructing a suitable Lyapunov function. Furthermore, if

the basic reproduction number is more than one, then the endemic equilibrium is asymptotically,

globally stable in the feasible region, provided that the initial value is not located at the disease-

free equilibrium. This was proved by the construction of a suitable Lyapunov function and

combination of Dulac function and Poincare-Bendixon theorem. We also applied the model to

describe HIV/AIDS spread in a real case. The predicted model result agrees with the data.
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