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Abstract. Tuberculosis (TB) is a major public health concern in many developing countries. Mycobacterium

tuberculosis is a major cause of morbidity and mortality in Africa. Tuberculosis infection is curable but in the

cases of incomplete treatment, the remains of Mycobacterium tuberculosis in the human body usually results in

the bacterium developing resistant to antibiotics. In this study we developed a model that explains the dynamics

of tuberculosis infection in the presence of drug resistance. The basic reproduction number of the model was

computed using the next generation matrix approach. The disease free equilibrium and endemic equilibrium were

obtained and their stability analysis were carried out. It revealed that they were locally and globally asymptoti-

cally stable whenever the reproductive number was less than unity. Numerical simulation of the TB model was

conducted and the result revealed that contact rate can reduce or eliminate the sensitive strain and reduce drug

resistant of tuberculosis.
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1. INTRODUCTION

Tuberculosis infection has been in existence since time immemorial. The organism responsi-

ble for tuberculosis infection is Myco-bacterium tuberculosis (MTB) [1]. This disease has been

found in relics from ancient China, Egypt and India. During the 8th century in Western Europe,

the disease has reached its peak with prevalence as high as 900 deaths per 100,000.

In most instances, Poor ventilation, overcrowding, poor sanitation and other risk factors can

lead to the spread of Tuberculosis infection. Moreover, with development of advanced screen-

ing, diagnostic and treatment methods for tuberculosis infection, a larger population have been

exposed to the disease [2, 3].

It has been estimated that, approximately 8.8 Million cases of the disease occurred globally

in 2010. Africa and Asia are mostly at risk of Tuberculosis. According to the World Health

Organisation Report in 2011, it was estimated that approximately 1.4 million people died of

Tuberculosis (TB) infection [2, 3].

A study conducted by [4, 5] revealed that Tuberculosis affects the lungs and other parts of the

body including the brain, lymph nodes, urinary tract and the joints. The infection easily spread

via droplet when people with pulmonary TB expel the germ through coughing, talking and

sneexing. In the absence of treatment, children, people with immune disorders, diabetics and

pregnant women are mostly at risk of infections.

Generally, tuberculosis symptoms depends on the part of the body infected. Moreover, latent

tuberculosis is symptomless. Active tuberculosis symptoms includes the following, coughing

with mucus or blood, fatigue, loss of weight, fever, night sweatd and loss of appetite. The oc-

curence of tuberculosis outside the lungs has varying symptoms. Tuberculosis can as well be

spread to other parts of the body via blood stream [6, 7].

In a study conducted by [2, 4], tuberculosis is curable provided early diagnosis is conducted

and the infected adheres to treatment regulations which usually takes up to six months or one

year. An emerging ofrm of tuberclosis which is commonly called multi drug resistant (MDR)

tuberculosis is the most effective antibiotic for active tuberculosis.

Ethiopia ranks seventh in the world’s twenty two high risk countries with tuberculosis infection
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and has an estimated incidence and prevalence of 300 to 470 per 100,000 populations respec-

tively. Moreover, case detection was 50% for all forms of tuberculosis (TB) [8]. In all new TB

cases 35% were smear positive, 30% smear negative, 34% extra pulmonary and ,< 1% smear

unknown cases. Moreover, in the 2017 WHO data on tuberculosis deaths, Ethiopia has reached

24240 or 3.81% deaths and adjusted death rate was 45.57 per 100,000 population [8].

In a quaterly report by the Health office in North Shoa Zone Oromiya region, annual achieve-

ment of tuberculosis of any form in Shoa Zone was 290 in the year 2017. Out of the 290 cases,

102 cases were pulmonary negative positive, 90 were negative and 98 were extra pulmonary.

Moeover, 88 out of the 90 pulmonary negative cases successfully completed treatment and two

died as indicated in Table (1). However, fatality rate was 312 per 100,000 per population.

Year Population

infected

Population

resistant to

drugs

Population

recovered

Population

who died from

infection

2013 1259 8 1248 3

2014 1288 12 1275 2

2015 1575 17 1554 4

2016 1645 17 1621 7

2016 1326 22 1294 10

2017 1848 25 1809 14
TABLE 1. Total population infected by TB and drug resistant from 2013 to 2017

(Source: Oromiya Region North Showa Zone Health Office, Ethiopia.)

Figure (1) shows the population dynamics of people who died from Tuberculosis infection

between 2013 to 2018 in Oromiya Region North Showa Zone, Ethiopia.
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FIGURE 1. Population death due to TB Infection

Epidemic models generally explain the spread mechanism of diseases, determine the best op-

timal control mechanism and the most effective cost to be employed in combating the infections

[9, 10, 11, 12, 13].

A real world phenomenon is translated by a disease model for optimal cost control and employ

sensitivity analysis to determine the best control measure [14, 15, 16, 17]

The five basic hypothesis proposed by Danny Pascal Moualeu-gangue as follows:

• Tuberculosis is transmissible from human to human (for simplicity, we neglect the

bovine tuberculosis);

• Only few among the infected become a source of infection (and among them, for sim-

plicity only those who are coughing and have bacilli impute are considered);

• there is no vertical transmission (all new births are susceptible);

• ill infected individuals remain infected throughout their lives; this is still a simplifica-

tion, since it seems that in the absence of re-infection, the initial infection eventually

fades after a number of years not yet well defined;

• The vaccination of susceptible does not prevent infection. It prevents a proportion (vari-

able with time) of infected to become infectious and contagious.
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These hypothesis usually accounts for the structural differences in a number of tuberculosis

models. These could be as a result of the disease history, the ordinary differential equations

approach and the spatially structured models.

2. MODEL FORMULATION

2.1. Description of the Model. Human population is classified into five groups such as Sus-

ceptible (S), Exposed (E), Infected (I), Resistance to treatment (RES) and Recovered (R). We

assumed that a fraction of the infected have been recovered before the disease outbreak at the

rate of k. A fraction of the resistant population to first line treatment at a rate (1− k).

Total human population is given by the relation; N = S+E + I+RES +R. Recruitment into the

susceptible population is at a rate Θ and human poplation increases due to partial immunty in R

after loss of immunity at a rate ρ .

Human population decreases due to natural death at a rate µ and tuberculosis induced death.

The rate of force of infection is given by β and the exposed class is further decreased by natural

deaths (µ) and the proportion who move to the infected class after developing active tuberculo-

sis.

FIGURE 2. Flow diagram of the model

The infected compartment, I natural death and disease induced death rate are (µ) and (α)

repectively. Rate of recovery is given by k and the probabilty of resistance is given by 1− k.
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Both the infected and resistance compartments gain partial immunity at rates γ and δ respec-

tively.

RES class is reduced by natural death rate (µ) and disease induced death rate (α1). Recovered

class is reduced by natural deaths µ and those who lose their partial immunity at the rate ρ .

The above model description in Figure (2) gave rise to the following systems of differential

equations.

(1)



dS(t)
dt = Θ−βSI−µS+ρR

dE(t)
dt = βSI− (µ + ε)E

dI(t)
dt = εE− (µS+α + γ)I

dRES
dt = (1− k)γI− (µ +α1 +δ )RES

dR
dt = kγI− (µ−ρ)R+δRES

Where, N(t) = S(t)+E(t)+ I(t)+RES(t)+R(t) refers to total population at any given time t

and with initial condition S(0) = S00,E(0) = E0, I(0) = I0,RES(0) = RES(0),R(0) = R0.

2.2. Qualitative Model Analysis. In this section, we dwell on invariant region, positivity of

the solution disease free equilibrium and the basic reproduction number.

2.2.1. Invariant Region. This refers to a region in which solutions of the model’s system of

equation is uniformly bounded. The solutions of our TB model must be a proper subset Ω⊂Rs
+.

Theorem 2.1. The system of equation describes a deterministic model that all solutions are

uniformly bounded on Ω⊂ Rs
+

Proof. We obtained the invariant region, in which the model solution is bounded. This is done

by first considering the total human population (N), where

(2) N = S+E + I +RES +R

By differentiating both sides with respect to t;

(3)
dN
dt

=
dS
dt

+
dE
dt

+
dI
dt

+
dRES

dt
+

dR
dt
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Substituting the differential equation (2) in (3);

(4)
dN
dt

= Θ−µ(S+E + I +RES)−αI−α1RES

This yields;

(5)
dN
dt

= Θ−µN−αI−α1RES

In the absence of mortality due to TB infection; (α = α1 = 0), and (5) becomes;

(6)
dN
dt
≤Θ−µN =⇒ dN

Θ−µN
≤ dt

By integrating; (6),

(7)
∫ dN

Θ−µN
≤
∫

dt =⇒ − 1
µ

ln(Θ−µN)≤ t + c =⇒ ln(Θ−µN)≥−µt−µc

Multiplying both sides by −µ:

ln(Θ−µN) ≥ −µt−µc

eln(Θ−µN) = e−µt−µc

(8)

By simplification;

(9) Θ−µN =Ce−µt

Where C is constant. As t→ ∞ in (9), Ce−µt → 0, then;

(10) Θ−µN ≤ 0

and from (10), we have the population size ;

(11) N ≤ Θ

µ
=⇒ 0≤ N ≤ Θ

µ
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Hence, feasible solution set of the system enters and remains in the region:

(12)
{
(S,E, I,RES) ∈ Rs

+ : N ≤ Θ

µ

}
Hence, model is well posed epidemiologically and mathematically. Sufficient evidence to

study the dynamics of the model in Ω [18, 19, 20]. �

2.2.2. Positivity of the Solution. For the model system (2) to be epidemiologically meaning-

ful, all solution of the model with positive initial data ought to remain positive for all t > 0.

Deriving the positivity solution for our system.

Theorem 2.2. Each solution (S(t),E(t), I(t),RES(t),R(t)) of model (2) with the non negative

initial condition is non-negative for all t > 0.

Proof. Checking the positivity;

dS
dt

= Θ− (β I +µ)S+ρR(13)

dS
dt
≥ (β I +µ)S

dS
S
≥ −(β I +µ)dt

lnS ≥ −
∫
(β I +µ)S

S(t) ≥ S0 exp(−(β I +µ)t)≥ 0(14)

Similarly we obtained

E(t) ≥ E0 exp(−(µ + ε)t)≥ 0(15)

I(t) ≥ I0 exp(−(µ +α + γ)t)≥ 0(16)

RES ≥ I0 exp(−(µ +α1 +δ )t)≥ 0(17)

R(t) = R0 exp(−(µ +ρ)t)≥ 0(18)

Thus; S(t),E(t), I(t),RES(t) and R(t)) are positive ∀t ≥ 0 �



NONLINEAR DYNAMICS OF COVID-19 SEIR INFECTION MODEL 9

2.2.3. The disease free Equilibrium, DFE. The DFE is an equilibrium point at which the

epidemic is eradicated from the population. In determining DFE, we equate the right hand side

of model(2) to zero, evaluating at E = I = RES = 0.

First equation of model (2)Θ− βSI− µS+ ρR = 0, since E = I = RES = R = 0 Therefore;

DFEt = 0

(19) Θ−µS = 0 from this S =
Θ

µ
and DFE =

(
Θ

µ
,0,0,0,0

)
2.2.4. Basic Reproductive number, R0. This number, (R0) defines the average number of

secondary infections or cases arising from an average primary case in an entirely susceptible

population [2, 21, 22].

Considering the system in (2);

(20)



dE
dt

= βSI− (µ + ε)E

dI
dt

= εSI− (µ +α + γ)I

dE
dt

= (1− k)γI− (µ +α1 +δ )RES

Let X = (E, I,RES) then the above system can be represented in matrix form as shown below

where F is the Jacobian of the matrix of infection rates and V is the Jacobian of transition rates

at
(

Θ

µ
,0,0,0,0

)
.

dX
dt

=F(X)−V (X) where F(X)=


βSI

0

0

 where V (X)=


(µ + ε)E

−εE +(µ +α + γ)I

−(1− k)γI +(µ +α1 +δ )RES


Jacobian matrix of F(X) and V (X) at DFE, X0:

DF(X0) =

F 0

0 0

 , V (X) =

V 0

0 0


respectively where

(21) F =


0 β

Θ

µ
0

0 0 0

0 0 0

 , V =


µ + ε 0 0

−ε µ +α + γ 0

0 −(1− k)γ (µ +α1 +δ )
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The spectral radius FV−1,ρ , defined as the largest eigenvalue of FV−1. Where;

(22) FV−1 =


0 β

Θ

µ
0

0 0 0

0 0 0




1
µ+ε

0 0
ε

(µ+α+γ)(µ+ε)
1

µ+α+γ
0

(1−k)εγ

(µ+α+γ))(µ+ε)(µ+γ)
−γ(1−k)

(µ+α+γ)(µ+α1+γ)
1

(µ+α1+δ )


Computing eigenvalue of matrix (22) to R0 defined as spectral radius (dominant eigenvalue)

of the matrix.

This is computed by |A− Iλ |= 0 where A is matrix (22) and I is a 3×3 identity matrix. Hence,

matrix (22);

(23)


βΘε

µ(µ+α+γ)(µ+ε) −λ
βΘ

µ(µ+α+γ) 0

0 0−λ 0

0 0 0−λ

= 0

From matrix (23), eigenvalues are given by;

(24) λ =
βΘε

µ(µ +α + γ)(µ + ε)
or λ = 0

The eigenvalue FV−1 are;{
βΘε

µ(µ+α+γ)(µ+ε) ,0
}

. Clearly,

λ = βΘε

µ(µ+α+γ)(µ+ε) is the dominant eigenvalue and hence;

(25) R0 =
βΘε

µ(µ +α + γ)(µ + ε)

2.3. Stability Analysis of Disease-Free Equilibrium.

2.3.1. Local Stability of DFE. We analyse the stability of the DFE points. By linearising

the system of differential equation (2) by obtaining its Jacobian at the disease free equilibrium(
Θ

µ
,0,0,0,0

)
Theorem 2.3. The disease-free equilibrium

(
Θ

µ
,0,0,0,0

)
is locally asymptotically stable if R0
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Proof. The Jacobin matrix of (2) is

(26) j =



−β I−µ 0 −βS 0 ρ

β I −(µ + ε) βS 0 0

0 ε −(µ +α + γ) 0 0

0 0 (1− k)γ −(µ +α1 +δ ) 0

0 0 kγ δ −(µ +ρ)



(27) J DFE =



−µ 0 −β
Θ

µ
0 ρ

0 −(µ + ε) β
Θ

µ
0 0

0 ε −(µ +α + γ) 0 0

0 0 (1− k)γ −(µ +α1 +δ ) 0

0 0 kγ δ −(µ +ρ)


Let;

k1 =−(µ + ε), k2 =−(µ +α + γ), k3 =−(µ +α1 +δ ), k4 =−(µ +ρ). Then

(28) (−µ−λ )

∣∣∣∣∣∣∣∣∣∣∣∣

k1−λ β
Θ

µ
0 0

ε k2−λ 0 0

0 (1− k)γ k3−λ 0

0 kγ δ k4−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 =⇒ λ =−µ < 0

and ∣∣∣∣∣∣∣∣∣∣∣∣

k1−λ β
Θ

µ
0 0

ε k2−λ 0 0

0 (1− k)γ k3−λ 0

0 kγ δ k4−λ

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 =⇒(29)

(k4−λ )

∣∣∣∣∣∣∣∣∣
k1−λ β

Θ

µ
0

ε k2−λ 0

0 (1− k)γ k3−λ

∣∣∣∣∣∣∣∣∣ = 0 =⇒ λ = k4 =−(µ +ρ)< 0(30)
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and

∣∣∣∣∣∣∣∣∣
k1−λ β

Θ

µ
0

ε k2−λ 0

0 (1− k)γ k3−λ

∣∣∣∣∣∣∣∣∣ = 0(31)

(k3−λ )

∣∣∣∣∣∣k1−λ β
Θ

µ

ε k2−λ

∣∣∣∣∣∣ = 0 then(32)

(k3−λ ) = 0 and

∣∣∣∣∣∣k1−λ β
Θ

µ

ε k2−λ

∣∣∣∣∣∣ = 0(33)

λ = k3 =−(µ +α1 +δ ) < 0(34)

and

∣∣∣∣∣∣k1−λ β
Θ

µ

ε k2−λ

∣∣∣∣∣∣ = 0(35)

(k1−λ )(k2−λ )− εβΘ

µ
= 0(36)

By Routh-Hurwitz Criteria;

λ 2−λ (k1 + k2)+ k1k2− εβΘ

µ
> 0

By ultiplying both sides by negative;

−λ
2−λ (k1 + k2)+ k1k2−

εβΘ

µ
> 0

−λ
2−λ (2µ + ε +α + γ)+

εβΘ

µ
− (µ + ε)(µ +α + γ) < 0

−λ
2−λ (2µ + ε +α + γ)+(µ + ε)(µ +α + γ)

(
εβΘ

µ(µ + ε)(µ +α + γ)

)
< 0

−λ
2−λ (2µ + ε +α + γ)+(µ + ε)(µ +α + γ)(R0−1) < 0

If R0−1 < 0 then R0 <−1. Therefore the disease free equilibrium is locally asymptotically

stable. �

2.3.2. Global Stability of the disease free Equilibrium.

Theorem 2.4. If R0 ≤ 1, then the disease-free equilibrium (E, I,RES) = (0,0,0) of the system

is globally asymptotically stable on Ω.
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Proof. Constructing the following Lasalle-Lyapunov function V (E, I,RES) on the positively in-

variant compact set Ω.

Thus on Ω, V (E, I,RES) is continuous and non negative. We define V (E, I,RES) = εE+(µ +

ε)I. The system of ordinary differential equations given by Equation (21) can be written as;

(37)


E

I

RES

=


−(µ + ε) βΘ

µ
0

ε −(µ +α + γ) 0

0 (1− k)γ −(µ +α1 +δ )




E

I

RES


This can also be written as;

(38) I = A(I) where A =


−(µ + ε) βΘ

µ
0

ε −(µ +α + γ) 0

0 (1− k)γ −(µ +α1 +δ )

 and I =


E

I

RES


Let,

V ′ = [ε,µ + ε,0]

It’s derivative along the trajectories is given by V ′ =V ′A(I) as;

|V ′A(I) = [ε,µ + ε,0]


−(µ + ε) βΘ

µ
0

ε −(µ +α + γ) 0

0 (1− k)γ −(µ +α1 +δ )

(39)

=
[
0 βΘε

µ
− (µ + ε)(µ +α + γ) 0)

]
(40)

=
[
0 (µ + ε)(µ +α + γ)

(
βΘε

µ(µ+ε)(µ+α+γ) −1
)

0)
]

(41)

=
[
0 (µ + ε)(µ +α + γ)(R0−1) 0

]
(42)

This is strictly decreasing when R0 thus V ′le(µ + ε)(µ +α + γ)(R0−1).

Define the set EE = (E, I,RES) ∈ Ω|V (E, I,RES) = 0). The largest invariant set is contained

in the set E for which E = 0 or I = 0 or RES = 0. Thus V < 0 when R0. If I = 0 or R0 = 1,

then V = 0. Thus by LaSalle’s invariance principle the disease free equilibrium is globally

asymptotically stable Ω [23, 24] �
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2.4. Endemic Equilibrium.

Definition 2.1. The endemic equilibrium is denoted by a Φ defined as steady-state solutions for

the model (2).This can occur when there is a persistence of the disease. It can be obtained by

equating the system of Equation (2) to zero.

Considering the second and third equations of model (2) and combining;

(43) S∗ =
(µ + ε)(µ +α + γ)

βE

Equating equation 2 of model (2) to zero;

(44) E∗ =
βS∗I∗

(µ + ε)

Equating equation 4 of model (2) to zero;

(45) I∗ =
(µ +α1 +δ )

(1− k)(µ +ρ)
R∗ES

Substituting (45) in equation 5 of model (2);

(46) R∗ =
(µ +α1 +δ )+(1− k)γ

(1− k)(µ +ρ)
R∗ES

Substituting (44), (45) and (46), in equation 1 of model (2);

Θ−β

(
(µ + ε)(µ +α + γ)

βε

)(
(µ +α1 +δ )

(1− k)γ
R∗ES

)
−µ

(
(µ + ε)(µ +α + γ)

βε

)
+ρ

(
(µ +α1 +δ )(1− k)γ

(1− k)(µ +ρ)
R∗ES

)
= 0

ρ

(
(µ +α1 +δ )(1− k)γ

(1− k)(µ +ρ)
R∗ES

)
−β

(
(µ + ε)(µ +α + γ)

βε

)(
(µ +α1 +δ )

(1− k)γ
R∗ES

)
= µ

(
(µ + ε)(µ +α + γ)

βε

)
− Θ

R∗ES

[
ρ

(
(µ +α1 +δ )(1− k)γ

(1− k)(µ +ρ)

)
−β

(
(µ + ε)(µ +α + γ)

βε

)(
(µ +α1 +δ )

(1− k)γ

)]
= µ

(
(µ + ε)(µ +α + γ)

βε

)
− Θ

µ

(
(µ+ε)(µ+α+γ)

βε

)
−Θ[

ρ

(
(µ+α1+δ )(1−k)γ

(1−k)(µ+ρ)

)
−β

(
(µ+ε)(µ+α+γ)

βε

)(
(µ+α1+δ )
(1−k)γ

)] = R∗ES

Θ−µx
βQ−ρP

= R∗ES

By backward substitution;

R∗ =
ρΘ−µx
βQ−ρP

, E∗ =
βxQ(Θ−µx)

(µ + ε)(βQ−ρP)
. I∗ =

µ +α1 +δ

(1− k)γ
Θ−µx

βQ−ρP
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where

x = S∗, Q =
µ +α1 +δ

(1− k)γ
, P =

(µ +α1 +δ )(1− k)
(1− k)(µ +ρ)

2.4.1. Stability Analysis of Endemic Equilibrium.

2.4.2. Global stability of the endemic equilibrium.

Theorem 2.5. If R0 > 1, the endemic equilibrium Φ of model (2) is globally asymptotically

stable.

Proof. Using the Lyapunov function approach;

Define;

L(S∗,E∗, I∗,R∗ES,R
∗) = (S−S∗−S∗ ln S

S∗ )+(E−E∗−E∗ ln E
E∗ )+(I− I∗− I∗− ln I

I∗ )+(RES−
R∗ES−R∗ES ln RES

R∗ES
)+(R−R∗−R∗ ln R

R∗ )

Computing the derivative of L along the solution of (2);

dL
dt

=

(
S−S∗

S

)
dS
dt

+

(
E−E∗

E

)
dE
dt

+

(
I− I∗

I

)
dI
dt

+

(
RES−R∗ES

RES

)
dR∗ES

dt
+

(
R−R∗

R

)
dR
dt

dL
dt

=

(
S−S∗

S

)
(Θ−βSI−µS+ρR)+

(
E−E∗

E

)
(βSI− (µ + ε)E)+

(
I− I∗

I

)
(εE− (µ +α + γ)I)

+

(
RES−R∗ES

RES

)
[(1− k)γI− (µ +α1 +δ )RES)]+

(
R−R∗

R

)
[γI− (µ +ρ)R+δRES]

dL
dt

=

(
1− S∗

S

)
(Θ−βSI−µS+ρR)+

(
1− E∗

E

)
(βSI− (µ + ε)E)+

(
1− I∗

I

)
(εE− (µ +α + γ)I)

+

(
1−

R∗ES
RES

)
[(1− k)γI− (µ +α1 +δ )RES)]+

(
1− R∗

R

)
[γI− (µ +ρ)R+δRES]

dL
dt

= Θ−βSI−µS+ρR+−Θ
S∗

S
+βS∗I +µS∗−ρR

S∗

S
+βSI− (µ + ε)E−βSI

E∗

E
+µE∗

+εE− (βSI− (µ + ε)E)+
(

1− I∗

I

)
(εE− (µ +α + γ)I)+

(
1−

R∗ES
RES

)
[(1− k)γI

−(µ +α1 +δ )RES)]+

(
1− R∗

R

)
[γI− (µ +ρ)R+δRES]

Considering positive terms and negative terms separately from above leads to;

dL
dt

= M−T
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where

M = Θ+βS∗I +µS∗+µE∗+ εE∗+µI∗+αI∗+ γI∗+
R∗ESkγI

RES
+µR∗ES

+α1R∗ES +δR∗ES +µR∗+ρR∗ and

T = µS+
ΘS∗

S
+

ρRS∗

S
+µE +

E∗βSI
E

+µI +αI +
εI∗E

t
I + kγ +µRES

+α1RES +
R∗ESγI
RES

+µR+
R∗γI

R
+

R∗δRES

R

Thus if

M < T , then dL
dt < 0;

Noting that dL
dt = 0 if and only if

S = S∗,E = E∗, I = I∗,RES = R∗ES,R = R∗

largest compact invariant set is the singleton set Φ which is the EE. By LaSalle Invariance

principle Φ is globally asymptotically stable if M < T [25]

�

2.5. Sensitivity Analysis of Model parameter. In determining how best to reduce human

mortality and morbidity due to TB, we compute the sensitivity indices of paramters in R0 using

approach [7, 26, 21, 27].

Sensitivity index of R0 with respect to some parameter, say ρ is given by:

Λ
R0
ρ =

∂R0

∂ρ

ρ

R0
, Pβ =

∂R0

∂β

β

R0
,

∂R0

∂β
=

Θε

(µ +α + γ)(µ + ε)

Pβ =
Θε

µ(µ +α + γ)(µ + ε)

β µ(µ +α + γ)(µ + ε)

βΘε
= 1 > 0

PΘ =
∂R0

∂Θ

Θ

R0
,

∂R0

∂Θ
=

βε

µ(µ +α + γ)(µ + ε)

Pε =
∂R0

∂ε

ε

R0
and

∂R0

∂ε

βΘ

m(µ +α + γ)(µ + ε)2

PΘ =
βε

µ(µ +α + γ)(µ + ε)

Θµ(µ +α + γ)(µ + ε)

βΘε
= 1 > 0

PΘ =
βΘ

µ(µ +α + γ)(µ + ε)

Θµ(µ +α + γ)(µ + ε)

βΘε
= 1 > 0
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Hence the sensitive indices for all parameters;

TABLE 2. parameter and sensitivity indices.

Parameters Expressions Sensitivity Value

θ Recruitement rate +

β Transmission rate +

ε Infection rate +

α Induced death rate -

µ Natural death rate -

γ Recovery rate due to prompt treatment -

From Table (2), the parameters θ , β and ε have positive sensitivity indices. They have a high

impact on the transmission dynamics and prevalence of TB.

However, the parameters α , µ and γ have negative sensitivity indices. Hence, they have high

influence on controlling and eradicating TB infections from the community.

2.6. Parameter Estimation. We estimated the model parameters with respect to the inci-

dence data of Tuberculosis as follows;

• Mortality rate: Estimated by the inverse of life expectancy at birth, µ(t) = 1/τ(t) [5].

The WHO data published in 2018, Ethiopia’s life expectancy was 63.7 for male, 67.3

for female and total life expectancy was 65.5.

Hence µ = 1
65.5 = 0.015

• The recruitment rate, θ : Taking into account the population of North Shoa Zone. Pop-

ulation Projection of Oromiya Region by Zone from 2007 to 2018, the average recruit-

ment in population during the last twelve year is θ = 35055 per year.

• TB-induced mortality rate, α: This varies from country to country. It is 0.193 per year in

developed countries, but could be as high as 0.45 per year in some African countries. An

intermediate value of 0.193 per year can be applied to most developed and developing

countries [5].
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• Transmission rate, β : Estimated as β = effective contact
total contact = Number of smear posetive

Total case β = 35%
100% =

0.35 or β = 102
290 = 0.35 [5]

• Recovery rate due to prompt treatment, γ: Estimated by

γ = minimum recovery time + maximum recovery time
2 = 0.5+1

2 = 0.75yr

For numerical simulation purposes, some data values were collected for the parameters from

TB cases in North Shoa Zone, Oromiya Regional State. These parameters were used for simu-

lation purposes as listed in Table (3).

TABLE 3. parameter values.

Parameters Expressions value Source

θ Recruitment rae 35055/yr Estimated

β Transmission rate 0.35 Estimated

ε Infection rate 0.2 Assumed

α Induced death rate 0.19 [5]

µ Natural death rate 0.015 Estimaed

ρ Rate of lose of Immunity 0.008 [28]

γ Recovery rate due to prompt treamtent 0.75 Estimated

α1 Disease induced deaths 0.004 Assumed

δ Recovery rate after second line treatment 0.012 Assumed

3. NUMERICAL SIMULATION

In this section, we explore the behaviour of TB infections quantitatively by applying the

numerical approach. We lay emphasis on infected and resistant classes by checking their be-

haviour when their related parameters changes with time.

Our model uses a yearly time step and was solved by a Maple 18 software. Our simulation runs

between intervals of 6 years to obtaining solution for the system. We start by defining the values

of the parameters in Table (3).

Taking parameters of the system as: θ = 1,β = 0.35,ε = 0.2,α = 0.19,µ = 0.015,ρ =

0.008,α1 = 0.004,δ = 0.012,η = 0.75,k = 0.7.



NONLINEAR DYNAMICS OF COVID-19 SEIR INFECTION MODEL 19

Then Θ(S∗,E∗, I∗,R∗ES,R
∗) = (1.56,5.77,53.68,10.56,4.23) and R0 = 23.8 > 1. If the initial

values of susceptible, exposed, infected, resistant of first line treatment and recovered popu-

lation are 1, 2, 1, 1 and 1 respectively therefore by theorem(2.5), the endemic equilibrium is

global asymptotically stable as shown in Figure (3).

FIGURE 3. R0 = 0.071 < 1

Taking parameters of the system as: θ = 1,β = 0.35,ε = 0.2,α = 0.19,µ = 0.015,ρ =

0.008,α1 = 0.004,δ = 0.012,η = 0.75,k = 0.7.

Then Θ(S∗,E∗, I∗,R∗ES,R
∗) = (1.56,5.77,53.68,10.56,4.23) and R0 = 23.8 > 1. If the initial

values of susceptible, exposed, infected, resistant of first line treatment and recovered popu-

lation are 1, 2, 1, 1 and 1 respectively therefore by theorem(2.5), the endemic equilibrium is

global asymptotically stable as shown in Figure (4).
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FIGURE 4. R0 = 23.8 > 1

3.1. Effects of Contact Rate, β on TB Exposed Population. From the diagram in Figure

(5), it can be observed that an increase in contact rate, β increases the population of exposed

individuals to TB infections.

The epidemiological implication is that, contact rate, β is a determiner of TB infections and

hence should be kept on checks.

FIGURE 5. individuals of TB Exposed population with different contact rate β
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3.2. Effect of Contact rate, ε on TB Infected Population. An increase in value of the con-

tact rate, ε increases the number of infected population as shown in Figure (6).

Biologically, it implies that the contact rate, ε should be kept under control as it determines the

population dynamics of TB infections.

FIGURE 6. Individuals of TB infectious population with different infection rate ε

3.3. Effects of Resistance of 1st line treatment on TB Resistance Population. Considering

all parameters fixed except for resistance rate of first line of treatments, population increases as

resistance rate of first line of treatment increases as shown in Figure (7).

Epidemiologically, infected population moves to resistant population of the first line of treat-

ment as resistant rate increases.

FIGURE 7. Changes the resistant population with respect to resistance rate of

the first line of treatment, keeping all the other parameters fixed
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3.4. Effects of Recovery Rates, δ and η on TB Recovered Population. By the assumption

that all parameters are fixed except for recovery rates δ and η the infected population decreases

as the recovery rates δ and η increases as shown in Figure (8).

As a result of these phenomenon, infected population and resistant population move to recov-

ered population respectively.

FIGURE 8. Changes the recovered population with respect to recovery rate of δ

and η , keeping all other parameters is fixed.

4. CONCLUSION

We formulated and analysed a Tuberculosis model qualitatively and quantitatively using a

data from the Health office in North Shoa Zone Oromiya region, Ethiopia.

The qualitative analysis of the TB model revealed that the disease free and disease endemic

equilibrium points were found to be locally and globally asymptotically stable whenever the

basic reproduction number was less than unity, R0 < 1 and unstable whenever R0 > 1.

Sensitivity analysis was conducted to determine the contribution of each parameter to the basic

reproduction number. The results showed that the parameters θ , β and ε have positive sensi-

tivity indices. This imply a high impact on TB transmission. However, the parameters α , µ

and γ have negative sensitivity indices. Hence, they have high influence on TB control and

eradication.
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An analysis of the TB model was conducted quantitatively using a maple 18 software by plotting

the graphs numerically. These revealed the following;

• An increase in contact rate, β increases the population of exposed individuals to TB

infections.

• An increase in value of the contact rate, ε increases the number of infected population.

• The infected population decreases as the recovery rates δ and η increases

TB infected population may be large and treatment of such a number might pose a challenge

economically for developing countries. Hence treatment of such a great number may led to

an increase in number of TB drugs. Therefore, focus should be on education, sensitisation

and awareness creation programs that will reduce transmission of TB bacteria from infected to

susceptible population.
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