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Abstract: Mathematical model of the transmission of tuberculosis infection was widely studied to capture the transient 

behavior of the disease transmission. In this study we model the dynamic of the disease by considering an 

epidemiological model called SEIIR model to capture the deterministic behavior of the disease. We also applied a 

continuous-time Markov chain model to take into consideration the randomness of the system. In the deterministic 

model, a disease-free equilibrium point and a basic reproduction number of the model are found which are mainly 

influenced by the contact rate of susceptible individuals with infective individuals. Other parameters such as 

progression rate of the latent individuals to be infectious individuals and the treatment rate of latent individuals also 

influence not only the deterministic model but also the stochastic sample paths. For a certain critical value of the 

treatment rate of latent class, deterministic and stochastic solutions show different behavior at the final time of 

observation. A high degree of randomness is observed in the latent and infected class (hospitalize or not-hospitalized). 

While in the susceptible class, effect of randomness is almost not observed. This suggests the robustness of 

deterministic model of susceptible class to the stochastic perturbations.  
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transition probability. 
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1. INTRODUCTION 

Tuberculosis is a contagious disease caused by infection with the bacteria Mycobacterium 

tuberculosis (Mtb). Some of the factors that trigger infection are an unhealthy lifestyle and low 

human immunity since the bacteria can spread from one person to another through tiny droplets 

released into the air through coughing and sneezing of people with acute infection. When the 

human body contains bacteria, the immune system can usually prevent it from getting sick. People 

with this condition are called latent TB where the bacteria in their bodies are inactive and cause 

no symptoms. However, without treatment, latent TB can turn into active TB. If not handled 

immediately, active tuberculosis can be dangerous. Therefore, treatment is needed for people with 

latent TB and to help control the spread of TB [1], [2]. Furthermore, in order to clear the infection 

and prevent the development of antibiotic resistance, people with active TB have to take several 

types of drugs for months. Without drug treatment, Infectious tuberculosis has the potential to 

become a serious disease because it attacks the lungs and also affects other parts of human body, 

including kidneys, spine or brain. According to the WHO data, the deadliest infectious killer in the 

world is still caused by this TB disease. More than 4,000 people lose their lives every day due to 

the infection of TB. Nearly 30,000 people fall ill from this preventable and curable disease. 

However, global efforts to fight the TB infection have saved an estimated 58 million lives since 

2000 [2].  

Due to the population growth, tuberculosis remains a major global health problem in the world 

[1], [3]. Some diagnostics and novel therapies have been developed to bring great potential to 

reduce TB burden and mortality. However, limitations on the resources of TB endemic settings 

remain exist. A theoretical approach is needed to estimate the impact of various interventions on 

the outcome of interest. An intensive research will also provide an area for developing diagnostic 
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tests and treatment regimens for TB. One of theoretical approaches that can present a useful insight 

is mathematical modelling. Mathematical epidemiology modelling provides useful insights by 

explaining the types of interventions that might maximize impact at the population level and 

highlighting gaps in the current knowledge that are most important for making such judgments [4-

9]. Epidemiological models focus on reviewing the impact of TB control interventions by 

designing the transmission models to assess or understand the population-level (epidemiological) 

[9]. Various mathematical models have been developed to model the transmission of TB and to 

highlight the major contribution of TB transmission models in general such as the slow and fast 

dynamic of TB transmission [10-12], reinfection and drug-resistant strains [13-18], prevention of 

TB [19-24]. Most of them used compartmental model which described the transmission of 

infectious disease using the flow rate between compartments based on the characteristic of the 

infectious disease [25-27]. Nevertheless, other types of models were also developed to model the 

specific transmission dynamic of TB such as [28-30]. The use of mathematical approach and 

simulation gained more attention due to a convenient summary in predicting future outbreak as the 

infection progresses. It also provided better understanding regarding the transmission of the 

infection disease and decisions for the control of the underlying disease. In this study, we also 

develop a compartmental model to improve understanding of the behaviour of TB transmission 

based on the epidemiological understanding. We formulate the model deterministically using 

systems of ordinary differential equations and stochastically via continuous-time Markov chains. 

The deterministic model provides a framework for formulating the stochastic model with taking 

into consideration the stochastic perturbations. We believe that this study will provide a better 

understanding regarding the dynamic of TB infection to design an appropriate treatment strategy 

to reduce the infection probability of the pathogen. 

 

2. MATERIAL AND METHODS 

2.1. SEIIR Deterministic Model of Tuberculosis Epidemic 
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In order to capture the key relevant complexities in the study of transmission dynamics of 

Tuberculosis (TB), SEIIR epidemiology model is used to model the dynamic of Susceptible 

individuals (𝑆), Exposed individuals (𝐸), Infected individuals but not hospitalized (𝐼), Infected 

individuals and hospitalized (𝐼ℎ), and Recovered individuals (𝑅). Our model follows the line of 

Zhang et al. [11] with some improvements. The connection and interaction between the five classes 

are depicted in Figure 1. 

 

 

Figure 1. The transfer diagram of SEIIR model. 

 

In this SEIIR model, individuals are recruited into the susceptible class first with rate constant Λ. 

The uninfected individuals move into the latent class E after getting the infection from the active 

TB with contact rate 𝛽1. The latent individuals are then progressed to active TB with a fractional 

𝑝 which stands for the proportion of which active TB is hospitalized or not. There is no directly 

recovery for the non-hospitalized active TB. Self-treatment for active TB produces self-recovered 

that is not totally eliminate the virus such that it will be moved into the latent class again with self-

recovery rate 𝛿. After getting some treatments, the latent individuals can move into the recovery 

class with successfully treatment rate for latent individual 𝑟1. While the hospitalized active TB 
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may recover and move to the R class with successfully treatment rate 𝑟2. We assume that, after 

recovering individuals can experience a relapse. Recurrence of tuberculosis infection can occur 

due to a new infection from the interaction of active TB with contact rate 𝛽2. We assume that 

𝛽1 > 𝛽2 meaning the possibility of recovered individuals for recurrence of tuberculosis infection 

is lower than the susceptible individuals. Natural mortality is the removal state for all 

compartments with constant rate μ. While mortality due to infection is employed for active TB 

compartments with mortality rate 𝑑1 for non-hospitalized individuals and 𝑑2 for hospitalized 

individuals. Using the above assumptions leads to the following non-linear system of equations 

for the transmission dynamic of TB: 

𝑑𝑆

𝑑𝑡
  = Λ −

𝛽1𝑆(𝐼+𝐼ℎ)

𝑁
− 𝜇𝑆, 

𝑑𝐸

𝑑𝑡
 = 

𝛽1𝑆(𝐼+𝐼ℎ)

𝑁
− (𝜇 + 𝛼 + 𝑟1)𝐸 + 𝛿𝐼 +

𝛽2𝑅(𝐼+𝐼ℎ)

𝑁
,  

𝑑𝐼

𝑑𝑡
 = 𝛼(1 − 𝑝)𝐸 − (𝜇 + 𝑑2 + 𝛿)𝐼, (1) 

𝑑𝐼ℎ

𝑑𝑡
 = 𝛼𝑝𝐸 − (𝜇 + 𝑑1 + 𝑟2)𝐼ℎ,  

𝑑𝑅

𝑑𝑡
 = 𝑟1𝐸 + 𝑟2𝐼ℎ − 𝜇𝑅 − 

𝛽2𝑅(𝐼+𝐼ℎ)

𝑁
. 

We set total population, 𝑁 = 𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅. By adding the equations of the system (1), we 

have 

Λ − 𝜇(𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅) − (𝑑2𝐼 + 𝑑1𝐼ℎ) ≤ Λ − 𝜇𝑁. 

Hence, 

lim
𝑡→∞

𝑠𝑢𝑝 (𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅) ≤
Λ

𝜇
. 

Therefore, the considered region for the system (1) is 

Γ = {(𝑆, 𝐸, 𝐼, 𝐼ℎ, 𝑅): (𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅) ≤
Λ

𝜇
, 𝑆 > 0, 𝐸 ≥ 0, 𝐼 ≥ 0, 𝐼ℎ ≥ 0, 𝑅 ≥ 0}, 

with positively invariant Γ meaning that the vector field points into the interior of Γ on the part 

of the boundary when (𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅) =
Λ

𝜇
 such that  

(𝑆 + 𝐸 + 𝐼 + 𝐼ℎ + 𝑅) <
Λ

𝜇
, for 𝑡 > 0. 
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2.2. SEIIR Stochastic Model of Tuberculosis Epidemic 

Let 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝐼ℎ(𝑡), and 𝑅(𝑡) are random variables which refer to the susceptible class, 

latent or exposed class, infectious not-hospitalized class, infectious hospitalized class, and 

recovered class, respectively. Let ∆𝑡 refers to the small-time interval such that at the time interval 

(𝑡, 𝑡 + ∆𝑡) , there exists at most one event occurs. Based on the assumptions applied in the 

deterministic model, the events that may occur at the time interval ∆𝑡 are described as follows: 

1. Event for one susceptible gets infection at the time interval (𝑡, 𝑡 + ∆𝑡)  has the transition 

probability  

𝛽1𝑆(𝐼 + 𝐼ℎ)

𝑁
∆𝑡 + 𝑜(∆𝑡), 

with transition 𝑆 → 𝑆 − 1 and  𝐸 → 𝐸 + 1. 

2. Event for one latent is moving into the infection stage and not-hospitalized at the time interval 

(𝑡, 𝑡 + ∆𝑡) has the transition probability  

𝛼(1 − 𝑝)𝐸∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐸 → 𝐸 − 1 and  𝐼 → 𝐼 + 1. 

3. Event for one latent is naturally die at the time interval (𝑡, 𝑡 + ∆𝑡)  has the transition 

probability  

𝜇𝐸∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐸 → 𝐸 − 1. 

4. Event for one latent becomes infectious and hospitalized at the time interval (𝑡, 𝑡 + ∆𝑡) has 

the transition probability  

𝛼𝑝𝐸∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐸 → 𝐸 − 1 and  𝐼ℎ → 𝐼ℎ + 1. 

5. Event for one infected not-hospitalized becomes latent again at the time interval (𝑡, 𝑡 + ∆𝑡) 

has the transition probability  

𝛿𝐼∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐼 → 𝐼 − 1 and  𝐸 → 𝐸 + 1. 
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6. Event for one infected not-hospitalized is naturally die or due to the disease at the time interval 

(𝑡, 𝑡 + ∆𝑡) has the transition probability  

(𝜇 + 𝑑2)𝐼∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐼 → 𝐼 − 1. 

7. Event for one infected hospitalized and not-hospitalized is naturally die or due to the disease 

at the time interval (𝑡, 𝑡 + ∆𝑡), respectively, have the transition probability  

(𝜇 + 𝑑2)𝐼∆𝑡 + 𝑜(∆𝑡), 

(𝜇 + 𝑑1)𝐼ℎ∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐼 → 𝐼 − 1, 𝐼ℎ → 𝐼ℎ − 1. 

8. Event for one latent is recover from infection at the time interval (𝑡, 𝑡 + ∆𝑡) has the transition 

probability  

𝑟1𝐸∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐸 → 𝐸 − 1 and  𝑅 → 𝑅 + 1. 

9. Event for one infected hospitalized is recover from infection at the time interval (𝑡, 𝑡 + ∆𝑡) 

has the transition probability  

𝑟2𝐼ℎ∆𝑡 + 𝑜(∆𝑡), 

with transition 𝐼ℎ → 𝐼ℎ − 1 and  𝑅 → 𝑅 + 1. 

10. Event for one recovered becomes latent again at the time interval (𝑡, 𝑡 + ∆𝑡) has the transition 

probability  

𝛽2𝑅(𝐼 + 𝐼ℎ)

𝑁
 ∆𝑡 + 𝑜(∆𝑡), 

with transition 𝑅 → 𝑅 − 1 and  𝐸 → 𝐸 + 1. 

11. Event for one recovered is naturally die at the time interval (𝑡, 𝑡 + ∆𝑡)  has the transition 

probability  

𝜇𝑅∆𝑡 + 𝑜(∆𝑡), 

with transition 𝑅 → 𝑅 − 1. 

12. Event for no changes occur in the system at the time interval (𝑡, 𝑡 + ∆𝑡) has the transition 

probability  
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1 − [
𝛽1𝑆(𝐼 + 𝐼ℎ)

𝑁
+ 𝛼(1 − 𝑝) + 𝜇𝐸 + 𝛼𝑝𝐸 + 𝛿𝐼 + (𝜇 + 𝑑2)𝐼 + (𝜇 + 𝑑1)𝐼ℎ + 𝑟1𝐸 + 𝑟2𝐼ℎ

+
𝛽2𝑅(𝐼 + 𝐼ℎ)

𝑁
+ 𝜇𝑇] ∆𝑡 + 𝑜(∆𝑡), 

with transition 𝑆 → 𝑆, 𝐸 → 𝐸, 𝐼 → 𝐼, 𝐼ℎ → 𝐼ℎ, and 𝑅 → 𝑅. 

Let the changes in the random variables 𝑆 , 𝐸 , 𝐼 , 𝐼ℎ , 𝑅  at the time interval (𝑡, 𝑡 + ∆𝑡)  are 

respectively defined as ∆𝑆 , ∆𝐸 , ∆𝐼 , ∆𝐽 , and ∆𝑅 , with ∆𝑆 = 𝑆(𝑡 + ∆𝑡) − 𝑆(𝑡) , ∆𝐸 = 𝐸(𝑡 +

∆𝑡) − 𝐸(𝑡), ∆𝐼 = 𝐼(𝑡 + ∆𝑡) − 𝐼(𝑡), ∆𝐼ℎ = 𝐼ℎ(𝑡 + ∆𝑡) − 𝐼ℎ(𝑡), and ∆𝑅 = 𝑅(𝑡 + ∆𝑡) − 𝑅(𝑡). If 

we set 𝑆(𝑡) = 𝑁(𝑡) − 𝐸(𝑡) − 𝐼(𝑡) − 𝐼ℎ(𝑡) − 𝑅(𝑡)  then we have the probability of an 

infinitesimal transition explaining the multivariate Markov chain as follows: 

𝑝𝑟𝑜𝑏{(∆𝐸, ∆𝐼, ∆𝐼ℎ ∆𝑅) = (𝑖, 𝑗, 𝑘, 𝑙, )|(𝐸, 𝐼, 𝐼ℎ, 𝑅)} 

=

{
 
 
 
 
 
 

 
 
 
 
 
 

𝛽1𝑆(𝐼+𝐼ℎ)

𝑁
∆𝑡 + 𝑜(∆𝑡)

𝛼(1 − 𝑝)𝐸∆𝑡 + 𝑜(∆𝑡)
𝜇𝐸∆𝑡 + 𝑜(∆𝑡)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(1,0,0,0)
(−1,1,0,0)
(−1,0,0,0)

𝛼𝑝𝐸∆𝑡 + 𝑜(∆𝑡)
𝛿𝐼∆𝑡 + 𝑜(∆𝑡)

(𝜇 + 𝑑2)𝐼∆𝑡 + 𝑜(∆𝑡)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(−1,0,1,0)
(1, −1,0,0)
(0, −1,0,0)

(𝜇 + 𝑑1)𝐼ℎ∆𝑡 + 𝑜(∆𝑡)
𝑟1𝐸∆𝑡 + 𝑜(∆𝑡)
𝑟2𝐼ℎ∆𝑡 + 𝑜(∆𝑡)

𝛽2𝑅(𝐼+𝐼ℎ)

𝑁
∆𝑡 + 𝑜(∆𝑡)

𝜇𝑅∆𝑡 + 𝑜(∆𝑡)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(𝑖, 𝑗, 𝑘, 𝑙)

(0,0, −1,0)
(−1,0,0,1)
(0,0, −1,1)
(1,0,0, −1)
(0,0,0, −1)

 (2) 

Probability of no changes in a population is given by  

𝑏{(  ∆𝐸 , ∆𝐼 , ∆𝐼ℎ , ∆𝑅) = ( 0, 0, 0, 0)|( 𝐸 , 𝐼 , 𝐼ℎ , 𝑅)}  =1 − [
𝛽1𝑆(𝐼+𝐼ℎ)

𝑁
+ 𝛼(1 − 𝑝)𝑒 + 𝜇𝐸 +

𝛼𝑝𝐸 + 𝛿𝐼 + (𝜇 + 𝑑2)𝐼 + (𝜇 + 𝑑1)𝐼ℎ + 𝑟1𝐸 + 𝑟2𝐼ℎ +
𝛽2𝑅(𝐼+𝐼ℎ)

𝑁
+ 𝜇𝑇] ∆𝑡 + 𝑜(∆𝑡).  

The probability of other events is equal to 𝑜(∆𝑡).  

Let 𝑠, 𝑒, 𝑖, 𝑗 , 𝑟 , respectively, define the value of random variables 𝑆 ,  𝐸 , 𝐼 , 𝐼ℎ , 𝑅  and 

𝑃𝑒𝑖𝑗𝑟(𝑡)  is the joint probability mass function (joint p.m.f.), i.e. 𝑃𝑒𝑖𝑗𝑟(𝑡) = 𝑃𝑟𝑜𝑏{𝐸(𝑡) =

𝑒, 𝐼(𝑡) = 𝑖, 𝐼ℎ(𝑡) = 𝑗, 𝑅(𝑡) = 𝑟}. Then we have 𝑃𝑒𝑖𝑗𝑟(𝑡 + ∆𝑡) as follows, 
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𝑃𝑒,𝑖,𝑗,𝑟(𝑡 + ∆𝑡) = 𝑃𝑒−1,𝑖,𝑗,𝑟(𝑡)
𝛽1(𝑠 + 1)(𝑖 + 𝑗)

𝑁
∆𝑡 + 𝑃𝑒+1,𝑖−1,𝑗1,𝑟(𝑡)𝛼(1 − 𝑝)(𝑒 + 1)∆𝑡

+ 𝑃𝑒+1,𝑖,𝑗,𝑟(𝑡)𝜇(𝑒 + 1)∆𝑡 + 𝑃𝑒+1,𝑖,𝑗−1,𝑟(𝑡)𝛼𝑝(𝑒 + 1)∆𝑡

+ 𝑃𝑒−1,𝑖+1,𝑗,𝑟(𝑡)𝛿(𝑖 + 1)∆𝑡 + 𝑃𝑒,𝑖+1,𝑗,𝑟(𝑡)(𝜇 + 𝑑2)(𝑖 + 1)∆𝑡

+ 𝑃𝑒,𝑖,𝑗+1,𝑟(𝑡)(𝜇 + 𝑑1)(𝑗 + 1)∆𝑡 + 𝑃𝑒+1,𝑖,𝑗,𝑟−1(𝑡)𝑟1(𝑒 + 1)∆𝑡

+ 𝑃𝑒,𝑖,𝑗+1,𝑟−1(𝑡)𝑟2(𝑗 + 1)∆𝑡 + 𝑃𝑒−1,𝑖,𝑗,𝑟+1  (𝑡)
𝛽2(𝑟 + 1)(𝑖 + 𝑗)

𝑁
 ∆𝑡

+ 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)∆𝑡 + 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)∆𝑡

− 𝑃𝑒,𝑖,𝑗,𝑟(𝑡) [
𝛽1𝑠(𝑖 + 𝑗)

𝑁
+ 𝛼(1 − 𝑝) + 𝜇𝑒 + 𝛼𝑝𝑒 + 𝛿𝑖 + (𝜇 + 𝑑2)𝑖 + (𝜇 + 𝑑1)𝑗

+ 𝑟1𝑒 + 𝑟2𝑗 +
𝛽2𝑟(𝑖 + 𝑗)

𝑁
+ 𝜇𝑟]∆𝑡 + 𝑃𝑒,𝑖,𝑗,𝑟(𝑡) + 𝑜(∆𝑡), 

  (3) 

or  

𝑃𝑒,𝑖,𝑗,𝑟(𝑡 + ∆𝑡) − 𝑃𝑒,𝑖,𝑗,𝑟(𝑡)

∆𝑡

= 𝑃𝑒−1,𝑖,𝑗,𝑟(𝑡)
𝛽1(𝑠 + 1)(𝑖 + 𝑗)

𝑁
+ 𝑃𝑒+1,𝑖−1,𝑗1,𝑟(𝑡)𝛼(1 − 𝑝)(𝑒 + 1)

+ 𝑃𝑒+1,𝑖,𝑗,𝑟(𝑡)𝜇(𝑒 + 1) + 𝑃𝑒+1,𝑖,𝑗−1,𝑟(𝑡)𝛼𝑝(𝑒 + 1) + 𝑃𝑒−1,𝑖+1,𝑗,𝑟(𝑡)𝛿(𝑖 + 1)

+ 𝑃𝑒,𝑖+1,𝑗,𝑟(𝑡)(𝜇 + 𝑑2)(𝑖 + 1) + 𝑃𝑒,𝑖,𝑗+1,𝑟(𝑡)(𝜇 + 𝑑1)(𝑗 + 1)

+ 𝑃𝑒+1,𝑖,𝑗,𝑟−1(𝑡)𝑟1(𝑒 + 1) + 𝑃𝑒,𝑖,𝑗+1,𝑟−1(𝑡)𝑟2(𝑗 + 1)

+ 𝑃𝑒−1,𝑖,𝑗,𝑟+1  (𝑡)
𝛽2(𝑟 + 1)(𝑖 + 𝑗)

𝑁
 + 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)

+ 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)

− 𝑃𝑒,𝑖,𝑗,𝑟(𝑡) [
𝛽1𝑠(𝑖 + 𝑗)

𝑁
+ 𝛼(1 − 𝑝)𝑒 + 𝜇𝑒 + 𝛼𝑝𝑒 + 𝛿𝑖 + (𝜇 + 𝑑2)𝑖 + (𝜇 + 𝑑1)𝑗

+ 𝑟1𝑒 + 𝑟2𝑗 +
𝛽2𝑟(𝑖 + 𝑗)

𝑁
+ 𝜇𝑟] +

𝑜(∆𝑡)

∆𝑡
. 

  (4) 
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By taking the limit of (4) as ∆𝑡 → 0 leads to the forward Kolmogorov differential equation for 

the bivariate process, 

𝑑𝑃𝑒,𝑖,𝑗,𝑟(𝑡)

𝑑𝑡
= 𝑃𝑒−1,𝑖,𝑗,𝑟(𝑡)

𝛽1(𝑠 + 1)(𝑖 + 𝑗)

𝑁
+ 𝑃𝑒+1,𝑖−1,𝑗1,𝑟(𝑡)𝛼(1 − 𝑝)(𝑒 + 1)

+ 𝑃𝑒+1,𝑖,𝑗,𝑟(𝑡)𝜇(𝑒 + 1) + 𝑃𝑒+1,𝑖,𝑗−1,𝑟(𝑡)𝛼𝑝(𝑒 + 1) + 𝑃𝑒−1,𝑖+1,𝑗,𝑟(𝑡)𝛿(𝑖 + 1)

+ 𝑃𝑒,𝑖+1,𝑗,𝑟(𝑡)(𝜇 + 𝑑2)(𝑖 + 1) + 𝑃𝑒,𝑖,𝑗+1,𝑟(𝑡)(𝜇 + 𝑑1)(𝑗 + 1)

+ 𝑃𝑒+1,𝑖,𝑗,𝑟−1(𝑡)𝑟1(𝑒 + 1) + 𝑃𝑒,𝑖,𝑗+1,𝑟−1(𝑡)𝑟2(𝑗 + 1)

+ 𝑃𝑒−1,𝑖,𝑗,𝑟+1  (𝑡)
𝛽2(𝑟 + 1)(𝑖 + 𝑗)

𝑁
 + 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)

+ 𝑃𝑒,𝑖,𝑗,𝑟+1  (𝑡)𝜇(𝑟 + 1)

− 𝑃𝑒,𝑖,𝑗,𝑟(𝑡) [
𝛽1𝑠(𝑖 + 𝑗)

𝑁
+ 𝛼(1 − 𝑝) + 𝜇𝑒 + 𝛼𝑝𝑒 + 𝛿𝑖 + (𝜇 + 𝑑2)𝑖 + (𝜇 + 𝑑1)𝑗

+ 𝑟1𝑒 + 𝑟2𝑗 +
𝛽2𝑟(𝑖 + 𝑗)

𝑁
+ 𝜇𝑟]. 

 (5)  

The moment generator technique can be applied to solve the differential equation (5). However, 

the technique will generate a partial differential equation with five independent variables which is 

difficult to solve analytically. Therefore, in the next section, numerical technique will be applied 

to approximate the solution of (5). For the free-disease case, 𝐸 = 0, 𝐼 = 0, and 𝐼ℎ = 0, we get 

the differential equation for the expectation of R, i.e. 

𝑑�̃�(𝑅(𝑡))

𝑑𝑡
= −𝜇�̃�(𝑅(𝑡)) (6) 

with �̃�(𝑆(𝑡)) = 𝑁 − �̃�(𝑅(𝑡)) and 𝑅(0) = �̃�(𝑅(0)).  

 

 

 



11 

A MATHEMATICAL STUDY OF TUBERCULOSIS INFECTIONS 

3. RESULTS AND DISCUSSIONS 

3.1. Qualitative Analysis of the Deterministic Model 

3.1.1. Disease-free equilibrium and local stability 

Setting the left-hand side of equations in (1) to zero and solving for the equilibrium values we 

find a disease-free equilibrium,  

�̂� = (
Λ

𝜇
 ,0,0,0,0). (7) 

Evaluating the Jacobian matrix of system (1) at the disease-free equilibrium (7) gives, 

𝐽(�̂�)  =

[
 
 
 
 
−𝜇
0
0
0
0

0
−(𝜇 + 𝛼 + 𝑟1)

𝛼(1 − 𝑝)
𝛼𝑝
𝑟1

0
𝛿

−(𝜇 + 𝑑2 + 𝛿)
0
0

0
0
0

−(𝜇 + 𝑑1 + 𝑟2)
𝑟2

0
0
0
0
−𝜇]
 
 
 
 

.  

The characteristic polynomial of the Jacobian matrix 𝐽(�̂�) is given by 

|𝜆𝐼 − 𝐽(�̂�)| = |
|

𝜆 + 𝜇
0
0
0
0

0
𝜆 + (𝜇 + 𝛼 + 𝑟1)

−𝛼(1 − 𝑝)
−𝛼𝑝
−𝑟1

0
−𝛿

𝜆 + (𝜇 + 𝑑2 + 𝛿)
0
0

0
0
0

𝜆 + (𝜇 + 𝑑1 + 𝑟2)
−𝑟2

0
0
0
0

𝜆 + 𝜇

|
| = 0. 

Solving the characteristic polynomial of the Jacobian matrix 𝐽(�̂�) gives the eigenvalues  

𝜆1,2 = −𝜇, 𝜆3 = −(𝜇 + 𝑑1 + 𝑟2), 

and a quadratic polynomial, 

𝜆2 + 𝑎𝜆 + 𝑏 = 0, (8) 

with  

𝑎 = (𝜇 + 𝛼 + 𝑟1) + (𝜇 + 𝑑2 + 𝛿), 

𝑏 = (𝜇 + 𝛼 + 𝑟1)(𝜇 + 𝑑2 + 𝛿) − 𝛼𝛿(1 − 𝑝). 

Since all parameters are assumed positive, 𝜆𝑖 < 0, 𝑖 = 1, … ,3. The other two eigenvalues are the 

roots of (8). Since 𝑎 > 0, equation (8) has the roots with 𝑅𝑒(𝜆) < 0 if 𝑏 > 0, i.e. 

𝛼𝛿(1−𝑝)

(𝜇+𝛼+𝑟1)(𝜇+𝑑2+𝛿)
< 1. (9) 
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Therefore, the disease-free equilibrium �̂� is locally asymptotically stable when the condition (9) 

is fulfilled. 

3.1.2. The basic reproduction number (R0) 

The basic reproduction number is defined as the expected number of new cases of infection or 

secondary cases produced by a single (typical) infected individual in a completely susceptible 

population. It can be calculated by distinguish new infections from all other changes in population. 

Consider the infected compartments, 𝐸, 𝐼,  and 𝐼ℎ . Let ℱ  be the rate of appearance of new 

infections in compartment i and 𝒱 be the rate of transfer of individuals into and out compartment 

i by all other means. From system (1) we have 

ℱ = (

𝛽1𝑆(𝐼+𝐼ℎ)

𝑁
+
𝛽2𝑅(𝐼+𝐼ℎ)

𝑁

0
0

)   and   𝒱 = (

(𝜇 + 𝛼 + 𝑟1)𝐸 − 𝛿𝐼

−𝛼(1 − 𝑝)𝐸 + (𝜇 + 𝑑2 + 𝛿)𝐼

−𝛼𝑝𝐸 + (𝜇 + 𝑑1 + 𝑟2)𝐼ℎ

). 

By differentiating ℱ and 𝒱 with respect to 𝐸, 𝐼, and 𝐼ℎ and evaluating at �̂� with 𝑁 =
Λ

𝜇
, we 

get  

𝐹(�̂�) = [
0 𝛽1 𝛽1
0 0 0
0 0 0

], 

and 

𝕍(�̂�) = [

(𝜇 + 𝛼 + 𝑟1) −𝛿 0

−𝛼(1 − 𝑝) (𝜇 + 𝑑2 + 𝛿) 0

−𝛼𝑝 0 (𝜇 + 𝑑1 + 𝑟2)
]. 

Since 𝕍(�̂�) is a non-singular matrix, we have 

𝕍−1(�̂�) =
1

𝜙1𝜙2−𝛼𝛿(1−𝑝)
[

𝜙2 𝛿 0
𝛼(1 − 𝑝) 𝜙1 0
𝛼𝑝𝜙2

𝜙3

𝛼𝛿𝑝

𝜙3

𝜙1𝜙2−𝛼𝛿(1−𝑝)

𝜙3

], 

where 𝜙1 = (𝜇 + 𝛼 + 𝑟1) , 𝜙2 = (𝜇 + 𝑑2 + 𝛿) , and 𝜙3 = (𝜇 + 𝑑1 + 𝑟2). Therefore, we have 

the next generation matrix of system (1),  
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𝐹𝕍−1 =
1

𝜙1𝜙2−𝛼𝛿(1−𝑝)
[
𝛽1𝛼(1 − 𝑝) +

𝛽1𝛼𝑝𝜙2

𝜙3
𝛽1𝜙1 +

𝛽1𝛼𝛿𝑝

𝜙3

𝛽1𝜙1𝜙2−𝛼𝛿(1−𝑝)

𝜙3

0 0 0
0 0 0

]. 

Since the basic reproduction number is the spectral radius of 𝐹𝕍−1, we get  

𝑅0 =
𝛽1

𝜙3
(
𝛼(1−𝑝)𝜙3+𝛼𝑝𝜙2

𝜙1𝜙2−𝛼𝛿(1−𝑝)
), (10) 

where 𝜙1 = (𝜇 + 𝛼 + 𝑟1), 𝜙2 = (𝜇 + 𝑑2 + 𝛿), and 𝜙3 = (𝜇 + 𝑑1 + 𝑟2). It can be observed that 

the value of 𝑅0 is directly proportional to the infection contact rate 𝛽1. It is not affected by the 

infection contact rate 𝛽2  which comes from the recovered class meaning that the endemic 

condition is controlled by the infection that comes from the susceptible class not from the 

recovered class who has TB recurred. 

3.2. Numerical results 

This section deals with numerical simulations for the deterministic and stochastic model. Several 

control scenarios are designed to study the dynamical behavior of all individual classes. Adjusting 

parameters are chosen to study the behavior of the system such as the rate of the progression to 

infectious (𝛼), the treatment rate of the latent individuals (𝑟1), the treatment rate of hospitalized 

individuals (𝑟2), and proportion of the infectious to hospitalized  (𝑝). One parameter is variated 

and other parameters are fixed (the values of parameter are shown in Table 1). The initial 

conditions are chosen as (𝑆(0), 𝐸(0), 𝐼(0), 𝐼ℎ(0), 𝑅(0)) = (896, 4, 100, 0,0),  with total 

population 𝑁 = 1000. 

In the first simulation, we investigate the percentage of change of the number of individuals 

in each class by variated the chosen adjusted parameter. The percentage of change for the 

deterministic solutions is quantified as follows, 

∆=
𝑥𝑎𝑑𝑗𝑠𝑡(𝑇)−𝑥𝑓𝑖𝑥(𝑇)

𝑥𝑓𝑖𝑥(𝑇)
, 
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where 𝑥𝑎𝑑𝑗𝑠𝑡(𝑇) refers to the solution of (1) at the final time 𝑇 when one parameter is variated 

and others are fixed, while 𝑥𝑓𝑖𝑥(𝑇)  refers to the solution of (1) at the final time 𝑇  using 

parameter values in Table 1 with final time 𝑇 = 50 months. Figure 2 shows the percentage of 

changes of all classes when the rate of the progression of latent to the infectious class (𝛼) is variated. 

Table 1. Definition and Parameter values [11]. 

Parameter Definition Value 

Λ Recruitment rate 1 

𝛼 The rate of the progression to infectious 0.03 

𝛽1 Incidence rate of susceptible individuals 0.9875 

𝛽2 Incidence rate of recovered individuals 0.2476 

𝑝 Proportion of infectious to hospitalized class 0.53 

𝑟1 The treatment rate of latent individuals 0.2365 

𝑟2 The treatment rate of hospitalized individuals 0.8608 

𝛿 Self-recovered rate of not hospitalized infectious 0.0001 

𝑑1 Disease-induced rate of infectious and 

hospitalized 

12 𝑥 10−6 

𝑑2 Disease-induced rate of infectious not 

hospitalized 

0.025 

𝜇 Natural death rate 3.91 𝑥 10−5 
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As 𝛼 is increased, the number of latent is also increased. There exists a certain 𝛼, says 𝛼∗, in 

which the value of ∆ reaches the maximum and then decreases as the number of susceptible also 

decreases (see top picture in Figure 2). The range in which the system should be controlled from 

high infectious is when the value of 𝛼 is defined in interval (𝛼∗, 𝛼∗∗). In that interval, the value 

of 𝛼  generates high number of latent and infected even though the infected individuals are 

hospitalized (see the bottom picture in Figure 2). To prevent the high number of infection class, 

the progression rate to the latent class should be controlled below 𝛼∗. It implies that an early 

treatment is needed to prevent the high infection rate. 

In the next simulation (see Figure 3), we variate the value of treatment rate of the latent 

class and the treatment rate of the infectious-hospitalized class by changing the value of 𝑟1 and 

𝑟2 along the interval(0,1). In the left picture of Figure 3 we can observe that there exists a certain 

treatment rate for the latent class which can reduce the number of infectious and increase the 

number of susceptible. The similar results are found for the variation of the treatment rate of the 

infected-hospitalized class. However, it only affects to the reduction of the number of infected-

hospitalized while the infected-non hospitalized is still high enough. On the other hand, the 

treatment applied in the latent class can reduce not only those who are hospitalized but also those 

who are not hospitalized. These results have the same implications as the previous simulation 

results that suggest applying treatment earlier, particularly in the latent individuals. Furthermore, 

when 𝑝% of infected individuals is hospitalized, it also affects the increasing of susceptible and 

the decreasing of latent and infected-not hospitalized. There exists a certain hospitalized portion, 

says 𝑝∗, such that the number of infected is saturated (see Figure 4).
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 1 

Figure 2. Percentage of changes of susceptible and exposed classes (top) and infected and 2 

recovered classes (bottom) when the rate of the progression of latent to the infectious class is 3 

variated, 𝛼 ∈ (0,1]. 4 

 5 

Figure 3. Percentage of changes of all individual classes when the treatment rate of the latent 6 

individual (left) and infected-hospitalized individual (right) is variated, 𝑟1, 𝑟2 ∈ (0,1].  7 
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 8 

Figure 4. Percentage of changes of all individual classes when the proportion of the infectious to 9 

hospitalized is variated,  𝑝 ∈ (0,1]. 10 

We next simulate the numerical solution of the stochastic model. We investigate the sample 11 

paths of the stochastic model to study the random process in the tuberculosis infection. The random 12 

process will change the state according to the random variable, and then move to the different state 13 

as specified by the probabilities of the stochastic matrix. Figure 5 shows how the sample path of 14 

each compartment changes in time. Using the parameters in Table 1, we found that randomness in 15 

the infected population was clearly observed. While the randomness does not affect to the 16 

susceptible population. The highest randomness observes in the infected-hospitalized population 17 

with high amplitude. Different behavior observed when we decrease the treatment rate of latent 18 

individuals. In the latent class, deterministic solution shows a decreasing rate of the latent 19 

individual at the final time of observation while the stochastic solution shows reverse behavior. 20 

Sample path of the latent class increases at the final time of observation. It affects the increasing 21 

in the infected-hospitalized individuals. These phenomena were not observed by the deterministic 22 

solution. In the deterministic solution, number of infected-hospitalized decreasing at the final time 23 
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of observation. These results imply that some parameters are sensitive to the change of sample 24 

path and the deterministic solution.  25 

 26 

Figure 5. The comparison of the deterministic solution with the sample path of stochastic 27 

solution using parameter values in Table 1. 28 

 29 

Figure 6. Deterministic solution vs sample path of stochastic solution when the treatment rate of 30 

latent individuals is decreased to 𝑟1 = 0.01. 31 
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4. CONCLUSIONS 32 

In this paper we have studied mathematically transmission of tuberculosis infection from 33 

susceptible compartment, infected compartment (latent class and infectious class), and recover 34 

compartment using an epidemiology model called SEIIR model. We analytically found the basic 35 

reproduction number of the model which showed the multiplication rate of new cases of infectious 36 

tuberculosis. Some parameters were investigated their sensitivity to the percentage of change of 37 

each class. We found there exists a critical parameter value that affected the decreasing of 38 

infectious class and increasing the susceptible class. For a certain treatment rate of latent individual, 39 

the stochastic model captured different behavior at the final time which was different with the 40 

deterministic solution. Furthermore, effects of randomness were observed clearly in the infected 41 

class but not for the susceptible class. It implied that the infected class should be closely watched 42 

compared with the susceptible class due to its high of randomness factor. 43 
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