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Abstract. Today, the whole world is fighting against a dreadful pandemic COVID-19 with no substantial vaccina-

tion invented till now. Researchers, scientists are struggling hard to develop different vaccination strategies which

can be of help to society. It’s a novel idea to pursue multiple strategies and platforms because we really don’t know

what will work best. Keeping this in mind, in this paper we have developed a Susceptible-Infected-Removed(SIR)

model of corona-virus with constant as well as pulse vaccination strategy in individuals to show that how vacci-

nation strategy can also play an important role to control infection and block the virus production. The model

is formulated for both constant vaccination and pulse vaccination by taking discrete and distributive delays and

analysed the potency of vaccination along with delay. In the latter case, pulse Vaccination of the susceptible pop-

ulation takes place at periodic intervals. The system is studied for a special infection free case and is solved for

a T-periodic solution. In both the systems, disease free equilibrium point is locally as well as globally attractive

if the basic reproduction number(R0 < 1) is less then 1 and the endemic point is stable provided R0 > 1. Further,

we have compared the efficacy of constant and pulse vaccination plan and obtained an interesting result that pulse

vaccination strategy has come up as a better strategy as it can lower the reproduction number comparatively and

should followed frequently. In addition to it, if we extend the time period, it would be difficult to control the

infection. Finally, all the theoretical results are verified with numerical simulation using MATLAB.
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permanence.
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1. INTRODUCTION

The corona virus infection (COVID-19) represents a significant world wide danger. Corona

is a vast group of enveloped RNA viruses, causes respiratory infection as SARS, MERS and

COVID-19. Generally COVID-19 can be partitioned among three levels. Level I is the incu-

bation time, where symptoms are shown or not. Level II is the not serious indicative brooding

interval in which infection is visible. Level III is the extreme respiratory symptomatic with the

maximum virus load[4]. Neither all individual residing in corona affected area are contaminated

nor every single infected patient create serious respiratory ailment. So, it totally depends on in-

dividual’s immunity which is developed by adaptive immune response to eradicate the virus and

to prevent the disease to reaches up to severe stages[21]. Also, innate immunity plays a vital

role in the detection of viral infection with the help of pattern recognition receptors(PRRs)[5].

Therefore, it is required to upgrade immune response. In addition to this for the improvement

of internal immune response at the incubation period and severe stages, the individual ought

to be healthy and a proper hereditary contrasts are notable for singular reaction to pathogens.

When a defensive insusceptible reaction is weakened, virus will propagate and affect many tis-

sues. A few control measures are being done to limit the spread of this infectious sickness like

social separating, isolation, homely quarantine etc. Lock down is the best strategy but can’t

be incorporated at numerous stages[1]. [8] assumed that inoculation of BCG may provide de-

fence against corona virus infection(COVID-19) as it helps to improve immune system. All

these safety measurements can control the infection but can’t eradicate it from roots as it is

seen that after discharge from hospital some persons can again get infected where as some fully

recovered. These situations happen only due to immunity. Vaccination is the only technique

to control the infection as virus can never removes from our body. We can only make them

weak by developing immunity against it. The infection will continue contaminating until a

huge population creates in-susceptibility against it. According to WHO, people aged above 60

years, children below 10 years and people underlying with medical condition are at high risk of

corona infection due to weaker immune response and current statistical data showed people of



EFFICACY OF PULSE VACCINATION OVER CONSTANT VACCINATION IN COVID-19 3

aged 31−40 years are highly infected due to frequent contact with people. So, it is required to

vaccinate people either continuously at definite time interval with different dosage or vaccinate

with a single dosage to boost up immunity against this dreadful disease. A vaccine BNT-162

has been developed by the joint effort of BioNTech and Pfizer for COVID-19 and the trial is

going on whether it is effective with monotonous immunization with multiple dosage at dif-

ferent time interval or by constant vaccination with a single dosage for the age group 18−55.

NIAID(National Institute of Allergic and Infectious Diseases) has developed a vaccine named

as mRNA-1273 and trial is going on. According to Dr. Anthony Fauci, it has two injections,

second will be applied after 28 days of first injection with three dosage and should follow for

one year. These results motivate us to think about pulse vaccination. It has always been a very

important strategy which has eradicated several infectious diseases and as per current scenario,

it should be done on continuous basis depending upon the nature of epidemic and environment

of a region. For example: In May 1980, WHO announced the global eradication of small-

pox. This dreadful disease was cured by pulse vaccination strategy which extended all over

the world. Polio is also almost eradicated by PVS. Now, we have many vaccines which are

efficient in preventing viral infection such as rabies, yellow fever, hepatitis B, measles etc. To

begin with, various generalized mathematical models have been proposed till now to capture

the dynamics of disease using compartment modelling approach. A mathematical model was

developed in 20th century by [12] known as the SIR epidemic model. Some more important

models were developed by many authors [3, 16]. [19] compared the effectiveness and cost

between the pulse vaccination and concluded that pulse vaccination leads to epidemic eradi-

cation at low cost. [26, 20] discussed that duration of pulsing and rate of PVS is responsible

for permanence of infection. [25] showed the effectiveness of vaccination doze and gap over

the reproduction number and virus growth. Many authors suggested that PVS is a blessing in

the explosion of viral diseases and should be done at a high rate as compared to continuous

vaccination by using SIR model, SIRS model, SIS model, SEIRS model and it is observed that

SIRS model is complicated then any other under PVS [2, 30, 6, 7]. [10] studied the complexity

of SIRS epidemic with non linear incidence rate. [27, 28] discussed that PVS done at large rate

will be helpful in eradication of disease by using SEIRS and SIRVS model. [13] presented the
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application of PVS with horizontally and vertically communication and compared the effective-

ness of constant and PVS strategy. [24] suggested that PVS and quarantine technique is helpful

in eradication of disease with discrete delayed SEIQR model. [23] studied the SEIR epidemic

with pulse vaccination at a non linear incidence rate and two time delays and found eradication

condition. [22] studied SIR epidemic model with PVS and age structured. [17] studied SVEIR

epidemic model under adaptive impulsive vaccination. Mathematical modelling has been play-

ing a very important role in understanding the dynamics of diseases and helps to control them.

Till now many mathematical model has been developed which focused about the treatment of

disease and controlling of disease with the help of continuous vaccination but many theoretical

results shows that dynamical behaviour of continuous vaccination is questionable but a planned

pulse vaccination strategy, unites our framework to stable periodic solution with zero infective.

To understand biologically, corona usually takes time to develop in the host as there is a spe-

cific time period of minimum 4−5 days and maximum of 10−14 days approximately between

the time of contact with the infection and the first time when the symptoms are seen which is

commonly known as the ‘Incubation Period’ and it is varied according to immunity level. This

period is responsible for a time-lag in the infectious models. Therefore we are taking a typical

example of a generalized S-I-R outbreak model along with distributed lag given as[15].

(1)


˙S(t) =−β I(t)

∫ t
−∞

G(t− τ)S(τ)dτ−bS(t)+b,

˙I(t) = β I(t)
∫ t
−∞

G(t− τ)x(τ)dτ−βS(t)I(t)−bI(t),

˙R(t) = βS(t)I(t)−bR(t),

G(t) = ae−at , a > 0,
∫

∞

0 G(τ)dτ = 1. Here, β and b are positive constants, where b is the

recruitment rate of susceptible as well as the death rate of all the three populations and β is the

contact rate.

A typical example of S-I-R outbreak model along with discrete lag is given as[14],
˙S(t) = µ−βS(t)I(t)−µS(t),

˙I(t) = βS(t)I(t)−βe−bτS(t− τ)I(t− τ)−µI(t),

˙R(t) = βe−bτS(t− τ)I(t− τ)−µR(t),



EFFICACY OF PULSE VACCINATION OVER CONSTANT VACCINATION IN COVID-19 5

where, τ refers to the convalescence period (infectious period). The above system is formulated

using the assumptions that new comers as soon as they are born are transferred to ‘susceptible’

class (S). Individuals who have lived through the infectious period τ are transferred to the ‘re-

moved’ class (R), the death rate during that period is also considered which is represented by

‘βe−bτS(t− τ)I(t− τ)’ term.

Keeping in mind the above literature review, we have formed an SIR model with both distribu-

tive and discrete delay and discussed the effect of two vaccination strategies on it which are as

follows:

1. Pulse vaccination strategy : PVS can be characterized as the replicated utilization of vaccine

over an age go. Expect that immunize a portion(say) µ of the whole affected community in

only one pulse and is employed after T month.

2. Constant vaccination strategy : It is defined as the infants or any susceptible, vaccinated

once to control the infection and lessen the death rate of susceptible with an extent(say) µ of

those immunized effectively. The paper is organized in the following manner: In section 2, we

have constructed SIR model with pvs along with the lemmas to establish the boundedness of

the system. We have discussed the global attractivity of disease free case and permanence of the

system. In section 3, S-I-R model with constant vaccination strategy is proposed and local and

global stability of the steady state solutions are discussed. In section 4, we have compared the

reproduction no. of cases without vaccination, with constant vaccination and pulse vaccination.

Finally, theoretical results are verified using numerical simulations and we have given justifica-

tion the significance of the results that we have obtained throughout our study in the conclusion.
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2. S-I-R MODEL WITH PULSE VACCINATION STRATEGY

In this section, model with pulse vaccination is proposed.

(2)




˙S(t) =−β I(t)

∫ t
−∞

G(t− τ)S(τ)dτ−bS(t)+b(S(t)+ I(t)+R(t))

˙I(t) = β I(t)
∫ t
−∞

G(t− τ)S(τ)dτ−βe−bτS(t− τ)I(t− τ)−bI(t), t 6= nT

˙R(t) = βe−bτS(t− τ)I(t− τ)−bR(t)
S(t+) = (1−µ)S(t),

I(t+) = I(t), t = nT

R(t+) = R(t)+µS(t)

where T , denotes the time when impulsive effect takes place, n = 1,2,3, .... and following

variables and parameters have been used throughout the process of model development.

Variables/Parameters Relevance

S Susceptible Class

I Infected Class

R Removed Class

τ Infection period

b > 0 Recruitment rate of susceptible class

β > 0 Contact rate

0 < µ < 1 Vaccination rate

Also, N(t) = S(t)+ I(t)+R(t) = 1. Mathematical model is shown by the following diagram

Since, the third class in system (2) does not appear in first two equations, our main focus is on

first two equations only.

So, we use the chain transformation Z(t) =
∫ t
−∞

G(t − τ)S(τ)dτ . Since,
∫ t
−∞

G(t − τ)dτ =

limA→−∞

∫ t
A ae−a(t−τ)dτ = 1 and

∫ t
−∞

G(t − τ)S(τ)dτ is convergent, then ∆Z(t) =
∫ t+
−∞

G(t −

τ)S(τ)dτ−
∫ t
−∞

G(t− τ)S(τ)dτ = 0.
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(A) a

FIGURE 1. Flowchart

So, reducing system (2) and introducing the transformation gives rise to following framework:

(3)




˙S(t) =−β I(t)Z(t)−bS(t)+b,

˙I(t) = β I(t)Z(t)−βe−bτS(t− τ)I(t− τ)−bI(t), t 6= nT

˙Z(t) = a(S(t)−Z(t))


S(t+) = (1−µ)S(t),

I(t+) = I(t), t = nT

Z(t+) = Z(t)

The applications of (3) to population dynamics motivate us to assume that solution of the (3) sat-

isfies the initial conditions φ ∈Ch
+, and φ(0)≥ 0 which lies in Ch

+= [φ =(φ1(s),φ2(s),φ3(s))∈

Ch
+ : φi(0)≥ 0(i = 1,2,3)], where φ(s)> 0, continuous and bounded function for s ∈ [0,∞).

2.1. Preliminaries. In this section, we will define a few definitions, lemmas which would be

required in the paper.

Definition 2.1[15] Let V : R+×R3
+, then V ∈V0, if:

(1) V is continuous in (nτ,(n+ l)τ]×R3
+ and ((n+ l)τ,(n+1)τ]×R3

+, for each z∈ R3
+, n∈ Z+,
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V (nτ+,z) = lim(t,y)→(nτ+,z)V (t,y),V ((n+ l)τ+,z) = lim(t,y)→((n+l)τ+,y)V (t,y) exist.

(2) V is Locally Lipschitzian in z.

lemma 2.2[29]Let V : R+×R3
+→ R+ and V ∈V0. Assume that


D+V (t,x)≤ g(t,V (t,x)), t 6= nτ

V (t,x(t+)) 6= ψn(V (t,x)), t = nτ

where g(t,u) : R+×R3
+→ R+ is continuous in (nτ,(n+ 1+ τ]×R3

+ and quasi-monotone non

decreasing in u, for v ∈ R3
+, lim(t,u)→(nτ+,v) g(t,u) = g(nτ+,v) exists, and ψn : R+→ R+ is non

decreasing. Let r(t) be the maximal solution of the following vector impulsive differential sys-

tem :


du
dt = g(t,u), t 6= nT

u(t+) = ψn(u(t)),u(t+0 ) = u0 ≥ 0, t = nT

existing on [t0,∞). then

V (t+0 ,x0)≤ r(t), t ≥ t0,

lemma 2.3 Given,

(4)




˙p(t) = b(1− p(t)),

˙q(t) = a(p(t)−q(t)), t 6= nT


p(t+) = (1−µ)p(t),

q(t+) = q(t), t = nT.
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then (4) has unique T-periodic solution (p∗(t),q∗(t)) given by

(5)



p∗(t) = 1− µe−b(t−nT )

1−(1−µ)e−bT ,

q∗(t) = 1+aµ
e−a(t−nT )(1−e−bT )−e−b(t−nT )(1−e−aT )

(a−b)(1−e−aT )(1−(1−µ)e−bT )
,

p∗(0+) = 1− µ

1−(1−µ)e−bT ,

q∗(0+) = 1−aµ
(e−bT−e−aT )

(a−b)(1−e−aT )(1−(1−µ)e−bT )
,

and for each solution, p(t)→ p∗(t), q(t)→ q∗(t) as t→ ∞.

Proof. Solving first equation of (4) yields,

(6) p(t) = e−b(t−nT )(p(nT+)−1)+1, nT < t ≤ (n+1)T.

Solving second equation of (4) yields,

(7)

q(t) = q(nT+)e−a(t−nT )+
a

a−b
(p(nT+)−1)(e−b(t−nT )−e−a(t−nT ))+1−e−a(t−nT ), nT < t ≤ (n+1)T.

The stroboscopic map of difference equation, gives

p((n+1)T+) = (1−µ)p((n+1)T ) = (1−µ)p(nT+)e−bT +(1−µ)(1− e−bT ),

q((n+1)T+) = q((n+1)T ) = q(nT+)e−aT +
a

a−b
(p(nT+)−1)(e−bT − e−aT )+1− e−aT .

The fixed points are,

p∗ = 1− µ

1− (1−µ)e−bT ,

q∗ = 1−aµ
(e−bT − e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
.

Hence, the T-periodic solution (p∗(t),q∗(t)) comes out to be:

p∗(t) = 1− µe−b(t−nT )

1− (1−µ)e−bT , nT < t ≤ (n+1)T,
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q∗(t) = 1+aµ
e−a(t−nT )(1− e−bT )− e−b(t−nT )(1− e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
, nT < t ≤ (n+1)T.

Now, we show that the solution is attractive.

Let (p(t),q(t)) be the solution of (4). Then, for t ∈ (nT,(n+1)T ], we have,

p(t) = p∗(t)+(p(nT+)− p∗)e−b(t−nT ),

q(t) = q∗(t)+(q(nT+)−q∗)e−a(t−nT )+
a

a−b
(p(nT+)− p∗)(e−b(t−nT )− e−a(t−nT )).

by the recursion formula we have,

p((n+1)T+) = (1−µ)p(nT+)e−bT +(1−µ)(1− e−bT ).

therefore,

p(nT+) = (1−µ)ne−nbt p(0+)+ [1+(1−µ)e−bT + ...+(1−µ)n−1e−(n−1)bt ]× (1−µ)(1− e−bT )

= (1−µ)ne−nbt p(0+)+(1−µ)(1− e−bT )
1− (1−µ)ne−nbt

1− (1−µ)e−bT

→ p∗(n→ ∞),

Thus, we have p(t)→ p∗(t) when n→ ∞.

Also,

q((n+1)T+) = q((n+1)T ) = q(nT+)e−aT +
a

a−b
(p(nT+)−1)(e−bT − e−aT )+1− e−aT ,

and limn→∞ x(nT+) = x∗, for n large enough we have the following recursion formula:

∴ for any l ∈ N+ we have,

q((l +N)T+) = q(nT+)e−lat +[1+ e−aT + ....+ e−(l−1)at ]× (
aµ(e−bT − e−aT )

(a−b)(1− (1−µ)e−bT )
+(1− e−aT ))



EFFICACY OF PULSE VACCINATION OVER CONSTANT VACCINATION IN COVID-19 11

= q(nT+)e−lat + 1−e−lat

1−e−aT × ( aµ(e−bT−e−aT )
(a−b)(1−(1−µ)e−bT )

+(1− e−aT ))→ aµ(e−bT−e−aT )
(a−b)(1−(1−µ)e−bT )

+(1− e−aT )q(t)→ q∗(t)

as (l→ ∞).

This completes the proof. �

2.2. Local Stability : Infection Free Case

Our aim is to establish the conditions responsible for local stability and global attractivity of

the infection free case. After neglecting all the terms which include infection, our system is

reduced to the following:

(8)




˙S(t) =−bS(t)+b,

˙Z(t) = a(S(t)−Z(t)), t 6= nT,


S(t+) = (1−µ)S(t),

Z(t+) = Z(t), t = nT

By Lemma (2.3), above system has a positive T-periodic solution. i.e. unique (S∗(t),Z∗(t)) is

specified as,

(9)



S∗(t) = 1− µe−b(t−nT )

1−(1−µ)e−bT ,

Z∗(t) = 1+aµ
e−a(t−nT )(1−e−bT )−e−b(t−nT )(1−e−aT )

(a−b)(1−e−aT )(1−(1−µ)e−bT )
,

S∗(0+) = 1− µ

1−(1−µ)e−bT ,

Z∗(0+) = 1−aµ
(e−bT−e−aT )

(a−b)(1−e−aT )(1−(1−µ)e−bT )
,

and S(t) approaches S∗(t) and Z(t) approaches Z∗(t) as t approaches ∞.
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Theorem 2.4 [18] If R=
β (1−e−bτ )[T− µ(1−e−bT )

b(1−(1−µ)e−bT )
]

bT < 1, then (3) has a solution (S∗(t),0,Z∗(t))

which is locally stable.

Proof. We can verify that the solution of infection free system exists from the lemma (2.3),

We will use method of small amplitude perturbations of the solution to show that the system

is locally stable. Define S(t) = S∗(t)+ u(t), I(t) = v(t), Z(t) = Z∗(t)+w(t), where u,v,w are

small perturbations, then equations of (3) can be expanded to a Taylor series and after neglecting

the higher order terms we get following:

(10)




˙u(t) =−βv(t)Z∗(t)−b(S∗(t)+u(t))+b,

˙v(t) = [β (Z∗(t)− e−bτS∗(t))−b]v(t), t 6= nT

˙w(t) = a(S∗(t)+u(t)−Z∗(t)−w(t)),


u(t+) = (1−µ)u(t),

v(t+) = v(t), t = nT

w(t+) = w(t),

If φ(t) is the fundamental matrix of (10), then it must satisfy

dφ(t)
dt

= Aφ(t)

where

A(t) =


−b −βZ∗(t) 0

0 β (Z∗(t)− e−bτS∗(t))−b 0

a 0 −a


The forth, fifth and sixth equations can be linearized as:

u(t+)

v(t+)

w(t+)

=


1−µ 0 0

0 1 0

0 0 1




u(t)

v(t)

w(t)
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The stability of the periodic solution of (S∗,0,Z∗) is determined by the eigenvalues of

N =


1−µ 0 0

0 1 0

0 0 1

φ(t)

where, φ(t) = φ(0)exp(
∫ t

0 A(s)ds)≈ φ(0)exp(Ã), Ã =
∫ t

0 A(s)ds and

φ(0) =


1−µ 0 0

0 1 0

0 0 1


If λ1, λ2, λ3 are characteristic roots then λ1 = (1−µ)e−bT < 1, λ2 = e

∫ t
0(β (Z

∗(t)−e−bτ S∗(t))−b)d <

1, λ3 = e−aT < 1.

According to Floquet’s theory [18] of impulsive differential equation the solution (S∗(t),0,Z∗(t))

is locally stable when mod λ2 < 1.

Denote

R =
β (1− e−bτ)[T − µ(1−e−bT )

b(1−(1−µ)e−bT )
]

bT

For R < 1,we have

e
∫ t

0(β (Z
∗(t)−e−bτ S∗(t))−b)d < 0 which leads to λ2 < 1. Thus, (S∗(t),0,Z∗(t))is locally stable. �

Theorem 2.5 If (S(t), I(t),Z(t)) is any solution of (3), then if R < 1, the infection free peri-

odic solution (S∗(t),0,Z∗(t)) is globally asymptotically stable. Here,R=
β (1−e−bτ )[T− µ(1−e−bT )

b(1−(1−µ)e−bT )
]

bT .

Proof. Since, R < 1, we have

β (1− e−bτ)[T − µ(1− e−bT )

b(1− (1−µ)e−bT )
]−bT < 0.

we choose an ε > 0 small enough such that, thatψ = β (1−e−bτ)[T (1+2ε)− µ(1−e−bT )
b(1−(1−µ)e−bT )

]−

bT < 0
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Note that, ˙S(t)≤ b(1−S(t)), then by impulsive differential inequalities we have, S(t)< S∗(t)+

ε for all t large enough.

Hence, from third equation of (3) we have,

(11)


˙Z(t)≤ a(S∗(t)+ ε−Z(t)), t 6= nT

Z(t+) = Z(t), t = nT

Again by impulsive differential inequalities we have,

Z(t)< Q∗(t)+ ε,

Where Q∗(t) is the periodic solution of the following

(12)


˙Q(t) = a(S∗(t)+ ε−Q(t)), t 6= nT,

Q(t+) = Q(t), t = nT.

Q∗(t) = 1+aµ
e−a(t−nT )(1− e−bT )− e−b(t−nT )(1− e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
+ ε,nT < t ≤ (n+1)T.

Again from second and fifth equation of (3), we have,

(13)


˙I(t)≤ β I(t)(Q∗(t)− e−bτS∗(t)+ ε)−bI(t), t 6= nT,

I(t+) = I(t), t = nT.

thus,

I((n+1)T )≤ I(nT+)exp(
∫ (n+1)T

nT
(β (Q∗(t)− e−bτS∗(t)+ ε)−b)dt)

= I(nT )exp(
∫ (n+1)T

nT
(β (Q∗(t)− e−bτS∗(t)+ ε)−b)dt)

= I(nT )eψ
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Hence I(nT ) ≤ I(0)enψ and I(nT )→ 0 as n→ ∞. Therefore, I(t)→ 0 as t → ∞, since I(t) ≤

I(nT ) for nT ≤ t ≤ (n+1)T .

So, I(t)→ 0 as n→ ∞.

Now, we show that S(t) approaches S∗(t), Z(t) approaches Z∗(t) as t→ ∞. For all ε > 0, there

must exist a Ta > 0 such that 0≤ I(t)< ε for t > Ta. Without loss of generality, we assume that

0≤ I(t)< ε ∀ t ≥ 0, then from (3) we have b(1−S(t))−βε ≤ ˙S(t)≤ b(1−S(t). We can also

rewrite this as x(t)≤ ˙S(t)≤ S∗(t)+ ε1. and x(t)→ x∗(t) as t→ ∞, where x(t) is the solution of

(14)



˙x(t) = b(1− x(t))−βε, t 6= nT,

x(t+) = (1−µ)x(t), t = nT,

x(0+) = S(0+),

x∗(t) = (b−βε)
b [1− µe−b(t−nT )

1−(1−µ)e−bT ], nT < t ≤ (n+1)T.

Thus, for any ε1 > 0, ∃ a Tb > 0 s.that x∗(t)− ε1 < S(t) < S∗(t) + ε1. Let ε → 0; we have

S∗(t)− ε1 < S(t)< S∗(t)+ ε1 for large t. Hence, S(t)→ S∗(t) as t→ ∞.

Similarly, we can prove Z(t)→ Z∗(t) as t→ ∞. This completes the proof. �

2.3. Permanence. In this section, we will settled permanence of the system (3).

Theorem 2.6 The system (3) is permanent if R > 1, i.e ∃ m1, m2, m3 such that S(t) ≥ m1,

I(t)≥ m2, Z(t)≥ m3 for t large enough.

Proof. We start by assuming (S(t), I(t),Z(t)) to be any solution of (2.2). The second equation

of (3) can be rewritten as:

˙I(t) = [β (Z(t)− e−bτS(t))−b]I(t)+βe−bτ d
dt

∫ t

t−τ

S(θ)I(θ)dθ .

Define,

(15) K(t) = I(t)−βe−bτ d
dt

∫ t

t−τ

S(θ)I(θ)dθ ,
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Where,

(16) ˙K(t) = b[
β (Z(t)− e−bτS(t))

b
−1]I(t)

We set,

m∗ = [t− µ(1− e−bT )

b(1− (1−µ)e−bT )
]− bT

β (1− e−bτ)

m∗ > 0 follows from the fact that R > 1, thus there exists ε1 > 0 such that

β (ξ − e−bτρ)

b
> 1

Where,

ρ = 1− µ

1− (1−µ)e−bT + ε1

ξ =
b−m∗β

b
+

b−m∗β
b

[aµ
e−aT (1− e−bT )− e−bT (1− e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
]− ε1

CLAIM: I(t)< m∗ cannot hold for t ≥ t0, for any positive constant t0. Proof is by contradiction

.i.e. let there exists a t0 such that I(t)< m∗ for t ≥ t0. Considering the first equation of (3)

(17)


˙S(t)≥ b−m∗β −bS(t), t 6= nT

S(t+) = (1−µ)S(t), t = nT.

∴ S(t)≥ g(t) and g(t)→ g∗(t), t→ ∞, where g(t) is solution of

(18)


˙g(t) = b−m∗β −bg(t), t 6= nT

g(t+) = g(t), t = nT

S(0+) = g(0+).

where, g∗(t) = b−m∗β
b [1− µe−b(t−nT )

1−(1−µ)e−bT ], nT < t ≤ (n+1)T.

which is a unique globally asymptotically positive periodic solution.
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Therefore, ∃ Ta ≥ t0 + τ, for t ≥ Ta such that,

(19) S(t)≥ g∗(t)− ε1 ≥ g∗(0+)− ε1

where,

(20) g∗(0+)− ε1 =
b−m∗β

b
[1− µe−bT

1− (1−µ)e−bT ]− ε1 = η

∴ we have,

(21) S(t)> η .

Now, from (19) and third equation of (3) we have,

(22)


˙Z(t)≥ a(g∗(t)− ε1−Z(t)), t 6= nT

Z(t+) = Z(t), t = nT

and Z(t)> h∗(t)− ε1, here

h∗(t) =
b−m∗β

b
+

b−m∗β
b

[aµ
e−a(t−nT )(1− e−bT )− e−b(t−nT )(1− e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
]− ε1

Also,

(23) Z(t)≥ h∗(t)− ε1 ≥ h∗(0+)− ε1,

and

h∗(0+)− ε1 =
b−m∗β

b
+

b−m∗β
b

[aµ
e−aT (1− e−bT )− e−bT (1− e−aT )

(a−b)(1− e−aT )(1− (1−µ)e−bT )
]− ε1 = ξ

thus,

(24) Z(t)> ξ
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Again from first equation of (3), we have

(25)


˙S(t)≤ b(1−S(t)), t 6= nT

S(t+) = (1−µ)S(t), t = nT

So S(t)≤ l(t) where,

(26)


˙l(t) = b(1− l(t)), t 6= nT,

l(t+) = (1−µ)l(t), t = nT

S(0+) = l(0+).

then by lemma (2.2),

(27) S(t)≤ l∗(t)− ε1 ≤ l∗(0+)+ ε1

where,

(28) S(t)< l∗(0+)+ ε1 = 1− µ

1− (1−µ)e−bT + ε1 = ρ

From (16), (24) and (28), we have,

(29) ˙I(t)> b[
β (ξ − e−bτρ)

b
−1]I(t), t ≥ Ta

Suppose

(30) Im = min
t∈[Ta,Ta+τ]

I(t).

CLAIM : I(t)≥ Im ∀ t ≥ Ta.

If not then ∃ Tb > 0 such that I(t) ≥ Im for t ∈ [Ta,Ta + τ +Tb] and I(Ta + τ +Tb) = Im. Now

from (29) we have,

I(Ta + τ +Tb)>
β (ξ − e−bτρ)

b
Im > Im,

hence, a contradiction. Thus we get I(t)≥ Im > 0 ∀ t ≥ Ta. From (29), we have

˙I(t)> b[
β (ξ − e−bτρ)

b
−1]Im > 0.
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then ∃ T ∗a ≥ Ta s.that t(t)> 0 ∀ t ≥ T ∗a . By (29) and the definition of K(t), we obtain for t ≥ T ∗a ,

˙K(t)> b[
β (ξ − e−bτρ)

b
−1]K(t),

therefore, K(t)→∞ as t→∞, hence a contradiction. Therefore, for any t0 > 0, I(t)<m∗ cannot

hold for t ≥ t0.

If I(t) ≥ m∗ ∀ t very large, we are done. Otherwise it is oscillatory about m∗ .i.e. there exist

constants t̂, α such that

I(t̂) = I(t̂ +α) = m∗

and

I(t)< m∗, t̂ < t ≤ t̂ +α.

S(t) > η holds true for t̂ large enough and also for t̂ < t ≤ t̂ +α . the positive solutions of (3)

are bounded and I(t) not being affected by impulses, I(t) is uniformly continuous.

∴ ∃ a constant Tc independent of t̂ and lying in (0,τ) such that I(t) > m∗
2 ∀ t̂ < t ≤ t̂ +Tc. If

α ≤ Tc, we are done. If Tc < α ≤ τ , for t̂ +Tc < t ≤ t̂ +α,

I(t)≥ β

∫ t

t−τ

(Z(θ)+ e−b(t−θ)S(θ))dθ

≥ β

∫ t̂+Tc

t̂
(Z(θ)+ e−b(t−θ)S(θ))dθ

>
β (ξ + e−bτη)Tcm∗

2
= m∗1.

Set

m1 = min{m∗

2
,m∗1}

So, I(t) > m1 ∀ t̂ < t ≤ t̂ +α . If α > τ , we can again have I(t) > m1 for t̂ < t ≤ t̂ + τ . then,

following same approach as above, we can have I(t)> m1 for t̂ + τ < t ≤ t̂ +α . ∵ this type of
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interval [t̂, t̂+α] is selected in a way which is arbitrary when t̂ is large enough, we can conclude

that I(t)> m1 for large t.

From first and fourth equation of (3) we have,

(31)


˙S(t)l ≥ b−bS(t)−β , t 6= nT

S(t+) = (1−µ)S(t), t = nT

So, S(t)≥ g1(t) where,

(32)


˙g1(t) = b−bg1(t)−β , t 6= nT,

g1(t+) = (1−µ)g1(t), t = nT

S(0+) = g1(0+).

Suppose g∗1(t) is unique globally attractive positive solution of (32), then for ε > 0 and t large

enough S(t)≥ g∗1(t)− ε1 ≥ g∗1(0
+)− ε = m2 > 0.

From third and sixth equation of (3), we have

(33)


˙Z(t)> a(m2−Z(t)), t 6= nT

Z(t+) = Z(t), t = nT

Consider

(34)


˙h1(t) = a(m2−h1(t)), t 6= nT

h1(t+) = h1(t), t = nT

Clearly, h1(t)→ m2 as t→ ∞, ∃ ε > 0 such that

Z(t)→ m2− ε = m3 > 0.

�
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3. SIR MODEL WITH CONSTANT VACCINATION STRATEGY

The system (3), in case of constant vaccination with constant infectious rate under the as-

sumption that death and birth rate are same can be written as:

(35)


˙S(t) =−β I(t)Z(t)−bS(t)+b−µS(t)

˙I(t) = β I(t)Z(t)−βe−bτS(t− τ)I(t− τ)−bI(t)

˙Z(t) = a(S(t)−Z(t))

3.1. Existence of equilibrium points. The system has two equilibrium points: disease free

and endemic equilibrium.

• The disease free equilibrium E0(
b

(b+µ
,0, b

(b+µ
).

• Endemic equilibrium E∗( b
(b+µ)R0

, b+µ

β
(R0−1), b

(b+µ)R0
), exist when R0 > 1.

where, R0 =
β (1−e−bτ )

b+µ
.

3.2. Local Stability of equilibrium points.

• The jacobian of system (35) at E0 is

J(E0) =


−b−µ −β 0

0 β − e−bτ −b 0

a 0 −a


E0 is locally asymptotically stable if β −βe−bτ−b−µ < 0, i.e. β (1−e−bτ )

b+µ
< 1 or stable

if R0 < 1 and unstable if R0 > 1.

Where, R0 =
β (1−e−bτ )

b+µ
is the basic reproduction number.

• Jacobian of the system (35) at E∗( b
(b+µ)R0

, 1
R0
(R0−1), b

(b+µ)R0
) is

J(E∗) =


−b−µ−λ −βZ∗ −β I∗

−βe−bτ I∗ βZ∗− e−bτS∗−b−λ β I∗

a 0 −a−λ
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The characteristic equation is λ 3 +a0λ 2 +a1λ +a2 = 0.

where, a0 = a+2b+µ−β z∗+βe−bτS∗+a = a+b+µ > 0,

a1 = 2ab + µ(a + b) + b2 + aβ I∗ + β 2e−bτS∗ + β 2e−bτ µS∗ − β 2e−bτ I∗Z∗ − aβS∗ −

bβS∗−µβS∗

= ab+aµ + β (R0−1
R0

[a− (a+b)e−bτ ]> 0, if R0 > 1 and a > (a+b)e−bτ

a2 =+aµb+abβ I∗+abβe−bτS∗+ab2 +aβe−bτ µS∗−abβZ∗−aµβZ∗

= ab(b+µ)(R0−1)> 0, if R0 > 1.

3.3. Global Stability of equilibrium points. In this section, by using Lyapunov function

global stability is established.

Theorem 3.1 If R0 ≤ 1, then the disease free equilibrium point of the system is globally asymp-

totically stable on ω .

Proof. For disease-free equilibrium points Let us consider the Lyapunov function V : ω →

R,V (S, I) = I(t).
dV
dt = dI

dt

dV
dt = β IZ−βe−bτSI−bI

From the third equation of the system (35), Z(t) = S(t)
dV
dt = bI[β (1−e−bτ )

b S−1] = bI(R0(b+µ)S
b −1) = bI(R0−1)

dV
dt < 0, if R0 < 1.

Hence, if R0 < 1 then dV
dt < 0↔ I(t) = 0 and if R0 = 1 then dV

dt = 0↔ S(t) = 1.

Hence by Lassale invariance principle, the disease free equilibrium is globally asymptotically

stable on ω . �

Theorem 3.2 The endemic equilibrium point E∗(S∗, I∗,Z∗) of the system is globally asymp-

totically stable on ω+.

Proof. We construct a Lyapunov function L : ω+→R where, ω+= S(t), I(t) ∈ ω,S(t)> 0, I(t)> 0

given by

L(S, I) = w1(S−S∗)2 +w2[I− I∗ln( I
I∗ )]

Where, w1 and w2 are positive constants to be chosen later.
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Then the time derivative of the Lyapunov function is given by
dL
dt = 2w1(S−S∗)dS

dt +w2
(I−I∗)

I
dI
dt

From the third equation of the system (35), Z∗ = S∗

dL
dt = −[(2+ µ)w1(S− S∗)2 + 2w1β (I− I∗)+ 2w1(β I∗+ bS∗+ µS∗− b)(S− S∗)−w2R0(b+

µ)(I− I∗)(S−S∗)]

Taking, w1 =
1
2 ,w2 =

1
R0(b+µ) ,a1 = (S−S∗) and a2 = (I− I∗)

dL
dt = −[(a1− a2)

2 + (
√

µa1 + a2)(
√

µa1− a2) + ba1(S∗− 1) + β z2 + β I∗a1 + µa1S∗] Thus,
dL
dt < 0 in ω+, if S∗ > 1 and

√
µa1 > a2, also dL

dt = 0 at S = S∗.

Hence by Lassale invariance principle, endemic equilibrium is globally asymptotically stable

on ω+. �

4. COMPARISON BETWEEN THE REPRODUCTION NUMBERS

Reproduction number in pulse vaccination is least and reproduction number. of without vac-

cination strategy is maximum which can be visible from the following: In the case of without

vaccination, reproduction number. is R1 =
β (1−e−bτ )

b .

In case of constant vaccination, reproduction number is R0 =
β (1−e−bτ )

b+µ
= bR1

b+µ
< R1.

In case of pulse vaccination, reproduction no. is R =
β (1−e−bτ )[T− µ(1−e−bT )

b(1−(1−µ)e−bT )
]

bT

= R1− µβ (1−e−bT )(1−e−bτ )
b2T (1−(1−µ)e−bT )

= (b+µ)R0
b − µβ (1−e−bT )(1−e−bτ )

b2T (1−(1−µ)e−bT )
.

So, we get R < R0 < R1. Thus, we have proved it analytically that the reproduction number

in the case of pulse vaccination would give less number of infective than constant vaccination.

5. NUMERICAL SIMULATION

In this section, we have plotted three sets of figures by taking Recruitment rate of susceptible

class (b) and contact rate (β ), same for all to verify our results. We consider the hypothetical

set of parameters.

Case I: Without Vaccination

We obtained disease free system for the following set of parameters b = 1.7, β = 2.8, a =
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FIGURE 2. Behaviour of disease free system without vaccination at τ = 0.5
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FIGURE 3. Behaviour of disease free system without vaccination at b= 1.7,β =

2.8,a = 0.3,τ = 0.1, gives R1 = 0.25

3.0, τ = 0.5 and (S0, I0,Z0) = (0.6;0.3;0.3) (Figure 2a) . Further, it is stable provided R1 =

β (1−e−bτ )
b = 0.94< 1. for the same initial condition, as we increase delay to τ = 0.6, keeping the

rest parameters same, we obtained endemic equilibrium point (Figure 3a) with R1 =
β (1−e−bτ )

b =

1.05 > 1.

Case II: With constant vaccination strategy

As we introduced constant vaccination, we obtained disease free system with the parameters

b = 1.7, β = 2.8, a = 3.0, τ = 0.9 and µ = 0.6 for same initial condition (Figure 6a)with

R0 = 0.95< 1 but as soon we reduced the rate of vaccination to µ = 0.4, endemicity exists in the
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FIGURE 4. Behaviour of the endemic system without vaccination at τ = 0.6
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FIGURE 5. Behaviour of the endemic system without vaccination at b = 1.7,

β = 2.8, a = 3.0 and τ = 2.0, gives R1 = 1.59 > 1.

system (Figure 8a)with R0 =
β (1−e−bτ )

b+µ
= 1.04 > 1. Interestingly, as we introduced vaccination,

for higher value of delay also we are able to control disease and obtain the disease free case.

Case III: With pulse vaccination strategy

As pulse vaccination approach is applied and proportion of susceptible population are vacci-

nated periodically after equal intervals, we observed that for b = 1.7, β = 2.8, a = 3, τ =

1.1,T = 1,µ = 0.8 and at same initial conditions, R =
β (1−e−bτ )[T− µ(1−e−bT )

b(1−(1−µ)e−bT )
]

bT = 0.72 < 1 for

disease free equilibrium and for the same set of parameters and with τ = 2, T = 1 and µ = 0.2,
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FIGURE 6. Behaviour of disease free system with constant vaccination at τ =

0.9
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FIGURE 7. Behaviour of disease free system with constant vaccination at b =

1.7,β = 2.8,a = 3,µ = 0.8,τ = 1.1, gives R0 = 0.94 < 1

we obtained R = 1.1 > 1 which confirms the endemicity of the system. This results conclude

that although for increased delay also we are able to achieve the disease free state, but the vac-

cination rate has to be increased and the periodic interval of vaccination should be less because

as soon we increase this interval, it would be difficult to control the infection. This result is very

much in lines with all the presumed vaccinations in progress across world for corona virus till

now.
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FIGURE 8. Behaviour of endemic system with constant vaccination at τ = 0.9
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FIGURE 9. Behaviour of endemic system with constant vaccination at b = 1.7,

β = 2.8, τ = 2.0, a = 3.0, µ = 0.2, gives R0 = 1.36 > 1

.

TABLE 1. Without Vaccination

τ 0.1 0.5 0.6 1.1 2.2

R1 0.25 0.94 1.05 1.39 1.59

TABLE 2. With Constant Vacci-

nation

τ 0.9 0.9 1.1 0.9 2.0

µ 0.6 0.8 0.8 0.4 0.2

R0 0.95 0.87 0.94 1.04 1.36
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FIGURE 10. Behaviour of the disease free system with PVS
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FIGURE 11. Behaviour of the endemic equilibrium system with pvs

TABLE 3. With Pulse Vaccina-

tion at T = 1

τ 0.9 0.9 1.1 2.0

µ 0.6 0.8 0.8 0.2

R 0.88 0.15 0.72 1.1

TABLE 4. With Pulse Vaccina-

tion at T = 2

τ 0.9 0.9 1.1 2.0

µ 0.6 0.8 0.8 0.2

R 1.06 1.54 1.07 1.49
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5.1. Result analysis.

• it is seen that low vaccination rate and large infection span is accountable for infection

permanence in both constant and pulse (Figure 6a, 7a, 8a, 9a, 10a, 11a).

• Comparative study of Case I and Case II : From Table 1, it is concluded that disease free

situation can be obtained at τ ≤ 0.5 when no vaccination is given to an individual which

means that if the infectious period is less, only then we can control the infection without

vaccination. From Table 2, we observed that, we get a disease free situation at τ ≤ 0.6.

But, in this case vaccination dosage has also equal importance like τ . Further, even if we

increase τ = 0.9 which is higher than the case when no vaccination is applied, we can

still manage to obtain a disease free state due to vaccination. However, if we decrease

the dosage than it would be difficult to control.

• Comparative study of Case II and Case III : From Table 2 and Table 3, we have noticed

that disease free state is attained at a low vaccination dosage (µ = 0.6) in both the case

of constant and pulse vaccination but the reproduction number is comparatively less in

pulse vaccination and if at the same delay(0.9), µ is increased, reproduction number.

becomes 83% less while in constant, it is only 8%. It is also seen that on same set of

parametric values, in case of disease free case, number of susceptible are more in the

case of pulse vaccination (Figure 7a, 10a) and furthermore in endemic state, susceptible

individuals are more and infective individuals are less in pulse vaccination as contrast

with constant vaccination (Figure 9a, 10a).

• From Table 2, Table 3 and Table 4, we have also observed that, when pulse interval is

less (T = 1), than the pulse vaccination is performing better but if the interval is large

due to any reason like production etc, it would be hard to control infection.
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6. CONCLUSION

In this paper, we have analyzed the effect of time-delay with constant vaccination as well as

pulse vaccination strategy on a corona-epidemic model and obtained the conditions for control-

ling as well as permanence of the infection. Our model has an upper edge over the reviewed

models as, it inculcates both the delays i.e discrete as well as distributive and their effects on

the model. Central idea behind these delays are to lift up the problem to a more pragmatic plat-

form as the distributive delay is used to showcase the dependency of infectious class on the full

history of susceptible. The local and global stability of disease free and endemic equilibrium

point has been discussed for both the cases and also numerically validated with an example.

Our analysis shows that reduction in vaccination dosage and increment in delay τ , result in-

fection persistence in the environment in both the cases : pulse as well as constant vaccination

strategy. Another significant finding is the relation between recovery period/infectious period

and the vaccination strategy. A small infectious period requires constant vaccination whereas

long period of infection needs pulse vaccination which is also in lines with the current scenarios

of patients as susceptible having better immunity can resist the virus and will require a less

dosage but people who are already suffering with other diseases like diabetes, cancer, flu etc,

pulse vaccination strategy is a better approach. To further explain, as we know that the endemic

SARS (Severe Acute Respiratory Syndrome) happened in China in 2003, MERS (Middle East

Respiratory Syndrome) happened in Saudi Arebia in 2012 and pandemic COVID-19, all these

infectious disease belong to same virus i.e. corona virus. So, vaccination is the only technique

to fight against this infection. Under the states of constant vaccination, it would be helpful

for people with strong immunity but as by recent evidences [9] mutation can revive the virus

to overcome corona promoting stress, if we go towards pulse vaccination strategy by apply-

ing some boosters, chances of infection would be controlled and also this strategy would be

cost effective and easy to manage as compare to constant vaccination, if pulse interval is small.

Since this crown infection is extremely infectious and has immediately spread all around and

furthermore cross species hindrance. Hence present scenario of COVID-19 and the research has

been done till now shows, the helpful methodology to manage this pandemic is pvs, enforced

at regular and short interval to control the contamination. Numerically, we also attained the
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interval of pulsing (T = 1), which is fundamental for applying immunization system effectively

and suggests that pvs would be simpler to be control this pandemic.

This paper may help the government to make new policies to control this dangerous infectious

sickness around the globe.
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