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Abstract: Wind speed forecasting is an exciting study because it covers the fields of climate and energy disciplines, 

where the most widely used research focus is forecasting. During the last decade, the use of wind speed forecasting 

analysis techniques has seen a significant change from the traditional statistical method to machine learning. in this 

article discusses publication trends from 1945 to the end of 2020 using co-occurences. 
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1. INTRODUCTION 

The application of big data and machine learning is massive that it has been used in the last decade 

including cases of climatology[1][2], energy modeling[3][4], engineering big data solutions[5], 

and other disciplines including of its opportunities and future trends[6][7]. The application of this 
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technique can also be used for forecasting case studies including regression[8], neural 

network[9][10][11][12]. Meanwhile, Classification following Decision tree[13], Support Vector 

Machine[14][15], Naive Bayes[16]. Then, Clustering includes Hierarchical[17][18], 

partitioning[19], co-occurences[20], scalable[21], and high dimensional[22]. Association analysis 

also includes Apriori[23], rapid association rule mining[24], and also estimates using metaheursitic 

techniques such as local search versus global search[25], Single-solution versus population-

based[26], Hybridization and memetic algorithms[27], Parallel metaheuristics[28], Nature-

inspired and metaphor-based metaheuristics[29], and Ancient- inspired metaheuristic[30].Then, 

this paper will conduct a study on meta-analysis of papers that have been published in the Scopus 

database using the keyword "wind speed forecasting" . 

 

2. MATERIALS AND METHODS 

Data collection 

In this study, publication data was taken from Scopus sources using the keyword "wind speed 

forecasting" starting 1945 to 2020, in short for 75 years. 

Data analysis 

Information in text form is important information and can be obtained from various sources such 

as books, newspapers, websites, or e-mail messages. Text is an expanse of language, both in speech 

or in writing, which has meaning, is practical and useful for the public and relates to the real world 

[31]. To analyze frequently occurring keywords, the step most crucial is to measure how often 

words appear together relative either how often they appear separately [32] [33] [34]. Besides, the 

correlation between words. Regarding text, correlation between words is measured in binary form 

- words appear together or not. The common measure for such binary correlation is the coefficient 

𝛼 in Table 1 and Eq(1). 

Table 1: Co-Appearing Words [32] [33] 

 Has Word A No Word A Total 

Has Word A 𝑎11 𝑎10 𝑎1. 

No Word A 𝑎01 𝑎00 𝑎0. 

Total 𝑎.1 𝑎.0 𝑎𝑇𝑜𝑡𝑎𝑙  
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𝛼 =
𝑎11𝑎00 − 𝑎10𝑎01

√𝑎1.𝑎0.𝑎.0𝑎.1
 

(1) 

In the selection of Chi Square features based on statistical theory,  Eq(2) represents of two events 

of which are, the emergence of features and the emergence of categories, where each term value 

is ordered from the highest based on the following calculation 

𝑋2(𝐷, 𝑡, 𝑐) = ∑ ∑ (
𝑁𝑒𝑡𝑒𝑐 − 𝐸𝑒𝑡𝑒𝑐

𝐸𝑒𝑡𝑒𝑐
)

𝑒𝑐∈{0,1}𝑒𝑡∈{0,1}

2

 

(2) 

The chi Square feature selection is done by sorting each feature based on the Chi Square feature 

selection results from the largest value to the smallest value[8][35]. Meanwhile, the chi-square 

feature selection value that is greater than the significant value indicates the rejection of the 

independence hypothesis. Whereas if two events show dependent, then the feature resembles or is 

the same as the corresponding category label in the category. 

 

3. RESULTS AND DISCUSSION 

Wind Speed in Climate to Energy 

Research studies on wind speed are very important to use because they involve the needs in terms 

of climate, including assessing the monsoon[36]. The monsoon in Indonesia is part of the East and 

Southeast Asian Monsoons and this extension of the monsoon system is called the North Australian 

monsoon[37]. The characteristic of the East Asian monsoon is the strong winter component. The 

flow of air from the North to the Northeast affects China and the South China Sea, then crosses 

the equator to the southern hemisphere and becomes the northwestern Monsoon of the North 

Australian Sea[38][39]. 

East Asian monsoons are formed during winter in the Northern Hemisphere, namely in December, 

January and February[40]. High pressure is on the Asian continent and low pressure in the southern 

hemisphere due to the summer on the Australian continent, so that the wind blows from Asia to 

Australia. During this period, from the tip of southern Sumatra, Java, Bali, Nusa Tenggara to Irian, 

the monsoon winds blew from west to east. 
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In fact, during the summer in the Northern Hemisphere, namely June, July and August. Low 

pressure is on the Asian continent and high pressure is on the Australian continent, so that the wind 

blows from Australia to Asia[41]. From the tip of southern Sumatra, Java, Bali, Nusa Tenggara to 

Irian, the monsoon wind blows from east to west. This period brings dry air masses, so it can be 

said that this period coincides with the dry season in most parts of Indonesia. Then, wind speed is 

also useful for oceanographic studies, one of which is for analyzing the level of fertility of a waters 

that always fluctuates because it is influenced by oceanographic phenomena that occur. 

Meanwhile, [42] conducted by the North Pacific region with 2-year data series, in 1999 and 2000 

concluded that chlorophyll-a concentrations were higher during periods of relatively strong winds, 

whereas chlorophyll-a concentrations decreased during periods of relatively weak winds. This 

pattern shows that most areas with increasing wind speed can deepen the mixed layer vertically in 

the ocean so as to cool the ocean surface and increase the concentration of chlorophyll-a. 

The wind speed study can be useful as renewable energy[43]. Air that moves has mass, density 

and velocity. So that with these factors, the wind has kinetic energy and potential energy[44][45]. 

However, the velocity factor dominates the position of the mass towards the earth's surface. Thus 

the kinetic energy is more dominant than potential energy. The movement of air molecules has 

kinetic energy, so that locally the number of air molecules moving through an area during a certain 

period of time determines the amount of power. This area is not the surface area of the earth, but 

the area upright.  

Different topography or altitude causes different wind potential, and because wind power is 

proportional to wind speed cube, even a small difference in wind speed will result in a large 

difference in power. Wind conditions and speed determine the rotor type and size. Average wind 

speeds ranging from 3 m/s are adequate for small size propeller wind turbines, above 5 m/s for 

medium 5 wind turbines and above 6 m/s for large wind turbines[46]. Thus the wind power system 

makes use of wind through windmills to generate electricity[47]. Wind energy is an alternative 

energy that has good prospects because it is always available in nature, and is a clean and 

renewable energy source[48]. The process of utilizing wind energy goes through two conversion 

stages, namely: The wind flow will move the rotor which causes the rotor to rotate in accordance 

with the wind blowing. Also, the rotation of the rotor is connected to the generator so that 
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electricity can be generated. Thus, wind energy is kinetic energy or energy caused by wind speed 

to be used to rotate windmill blades [49] [50]. 

Scopus Database 

In this paper, we are performing corpus analysis and the dataset was generated on Scopus using 

the keyword “Wind Speed Forecasting”, it was found that 8430 total publications during 1945 to 

last 2020, including  2745 open access, 891 Gold access, 206 hybrid gold, 1043 bronze access, 

and 1473 green access. Figure 1 represents that in the Scopus database the first published paper 

was in 1945 and up to 2020 there was a quite drastic increase, more specifically the increase was 

seen in early 2000 to 2016. Then, Table 2 explains that the Chinese academy of sciences has 

published the most with 213 papers, and followed by Ministry of Education China 198 papers, and 

National Oceanic and Atmospheric Administration 197 papers. Overall, universities and 

institutions in the Republic of China (ROC) were the leading contributors to the paper for this 

study. 

 

Figure 1. Paper Publication from 1945 to Last 2020 
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Table 2: Top 10 Affiliation 

AFFILIATION Number Paper 

Chinese Academy of Sciences 213 

Ministry of Education China 198 

National Oceanic and Atmospheric Administration 197 

National Center for Atmospheric Research 168 

North China Electric Power University 136 

Lanzhou University 110 

Danmarks Tekniske Universitet 99 

University of Colorado Boulder 93 

Dongbei University of Finance and Economics 92 

Nanjing University of Information Science &amp; Technology 92 

Table 3: Top 10 Journal Sources 

SOURCE TITLE Number Paper 

Monthly Weather Review 235 

Weather And Forecasting 183 

Renewable Energy 164 

Energies 124 

Energy Conversion And Management 118 

Journal Of Applied Meteorology And Climatology 114 

Quarterly Journal Of The Royal Meteorological Society 102 

Atmospheric Environment 94 

Journal Of Geophysical Research Atmospheres 92 

Applied Energy 88 

In line with this, Table 3 highlight top 10 journal sources, top-3 source title tersebut adalah Monthly 

Weather Review, Weather And Forecasting, and Renewable Energy. It can be seen that although 

there are numerous specialist journals on Climate and Energy, the most cited papers have been 

published mainly in wind speed forecasting not necessarily on Climate and Energy Journal. This 

phenomenon demonstrates that there is a constant growing consideration for the subject, this is 
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apparent as indicated by the growing number of quotations per year on each article.  

Table 4: Top 20 Most Cited Paper 

Authors Title Year Cite 

Powell M.D., Vickery P.J., Reinhold 

T.A. [51] 

Reduced drag coefficient for high wind speeds in 

tropical cyclones 
2003 956 

Lei M., Shiyan L., Chuanwen J., 

Hongling L., Yan Z. [52] 

A review on the forecasting of wind speed and 

generated power 
2009 736 

Kalogirou S.A. [53] 
Artificial neural networks in renewable energy 

systems applications: A review 
2000 707 

Donlon C.J., Martin M., Stark J., 

Roberts-Jones J., Fiedler E., Wimmer 

W. [54] 

The Operational Sea Surface Temperature and Sea 

Ice Analysis (OSTIA) system 
2012 576 

Janssen P.A.E.M. [55]  
Quasi-linear theory of wind-wave generation applied 

to wave forecasting 
1991 574 

Atlas R., Hoffman R.N., Ardizzone J., 

Leidner S.M., Jusem J.C., Smith D.K., 

Gombos D. [56] 

A cross-calibrated, multiplatform ocean surface wind 

velocity product for meteorological and 

oceanographic applications 

2011 553 

Chen S.X., Gooi H.B., Wang M.Q. [57] Sizing of energy storage for microgrids 2012 552 

Ummels B.C., Gibescu M., Pelgrum E., 

Kling W.L., Brand A.J. [58] 

Impacts of wind power on thermal generation unit 

commitment and dispatch 
2007 539 

Mohandes M.A., Halawani T.O., 

Rehman S., Hussain A.A.[59] 
Support vector machines for wind speed prediction 2004 522 

Karki R., Hu P., Billinton R. [60] 
A simplified wind power generation model for 

reliability evaluation 
2006 502 

Kavasseri R.G., Seetharaman K. [61] 
Day-ahead wind speed forecasting using f-ARIMA 

models 
2009 494 

Zeng X., Zhao M., Dickinson R.E.[62] 

Intercomparison of bulk aerodynamic algorithms for 

the computation of sea surface fluxes using TOGA 

COARE and TAO data  

1998 493 
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Arge O.N., Pizzo V.J. [63] 

Improvement in the prediction of solar wind 

conditions using near-real time solar magnetic field 

updates 

2000 489 

Howell R., Qin N., Edwards J., Durrani 

N.[47] 

Wind tunnel and numerical study of a small vertical 

axis wind turbine 
2010 478 

Li G., Shi J.[64] 
On comparing three artificial neural networks for 

wind speed forecasting 
2010 455 

Stoffelen A., Anderson D.[65] 
Scatterometer data interpretation: Estimation and 

validation of the transfer function CMOD4 
1997 451 

Torres J.L., García A., De Blas M., De 

Francisco A.[66] 

Forecast of hourly average wind speed with ARMA 

models in Navarre (Spain) 
2005 446 

Sideratos G., Hatziargyriou N.D.[67] 
An advanced statistical method for wind power 

forecasting 
2007 437 

Soman S.S., Zareipour H., Malik O., 

Mandal P. [68] 

A review of wind power and wind speed forecasting 

methods with different time horizons 
2010 431 

Erdem E., Shi J. [69] 
ARMA based approaches for forecasting the tuple of 

wind speed and direction 
2011 407 

 

Table 4 describes as many as 20 papers that have the highest citation, we can see that the techniques 

commonly used are basic time series such as ARIMA / ARMA. However, there are also papers 

using machine learning such as support vector machines and neural networks. Both of these 

techniques promise high accuracy and precision when used for forecasting. To see the trend of 

method use, it can be seen in Figure 2 using co-occurences within 3 words distance. Information 

that can be retrieved is that popular techniques used are Artificial Neural Networks, 

Backpropagation, Regression Analysis, Time Series, Mathematical Models, Ensemble Forecasting, 

Artificial Intelligence, Decision Trees. What is interesting is that there are also many papers that 

use methods such as Wavelet Decomposition, Long Short-term Memory, and Fuzzy Inference. To 

evaluate the model, most papers still use Mean Square Error and Root Mean Square Error. In fact, 

to make predictions it is advisable to use The mean absolute percentage error (MAPE) and 
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Symmetric mean absolute percentage error (SMAPE or sMAPE) because there is a range that can 

be said whether the model is good or not. 

 

Figure 2. Co-occurrences within 3 words distance Nouns and Adjective 

 

 

Figure 3. Cluster Dendogram 
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CONCLUDING REMARKS 

Based on this analysis, the future trend will discuss a lot about the application of deep learning 

methods to forecast wind speed. However, the ensemble technique or also the hybird method which 

is very broad is still used because it combines information in both parametric and non-parametric 

methods so that the resulting information is richer,following ARIMA+FFNN [70], 

ARIMAX+FFNN [71]. SARIMA+SVR [72][73], Advanced techniques are also used, such as deep 

neural networks [74][75], long short term memory[76][77], facebook prophet model[78][79]. 

Meanwhile, the wind speed series are complex and exhibits several levels of seasonality[80]: the 

wind speed at a given hour is dependent not only on the load at the previous hour, but also on the 

wind speed at the same hour on the previous day, and on the wind speed at the same hour on the 

day with the same denomination in the previous week. At the same time, there are many important 

exogenous variables that must be considered, especially climate-related variables. 

Besides, the technique used can also include combining optimization techniques with hybrids, such 

as ANFIS+Quantum-behaved PSO[81], ARIMA + FFNN + GA, VAR-NN-PSO[82], VAR-NN-

GA[10], ARIMA+Deep Learning[83], VAR+GSTAR+SVM[84]. Also, multi kernel learning 

includes Fixed rules, Heuristic approaches, Bayesian approaches, Boosting approaches. For 

combinations also use the Linear combination, Nonlinear combination, Data-dependent 

combination. Another technique also uses the best feature selection using feature selection which 

aims to Reduce Overfitting, Less redundant data means less opportunity to make decisions based 

on noise. Improves Accuracy, Less misleading data means modeling accuracy improves. Reduces 

Training Time, fewer data points reduce algorithm complexity and algorithms train faster. Such as 

Random forest, Boruta, XgBoost, Random multinomial logit (RMNL), Auto-encoding networks 

with a bottleneck-layer, Submodular feature selection, local learning based feature selection, 

Recommender system based on feature selection. The feature selection methods are introduced 

into recommender system research. 
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