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Abstract: In this paper, five phenomenological (Richards, a generalized Richards, Blumberg, Tsoularis & Wallace, 

and Gompertz) models are implemented to predict the cumulative number of COVID-19 cases. The five 

phenomenological models are in the form of ordinary differential equations with a few number of model parameters.  

The model parameters of each model were calibrated by fitting the model with the reported cumulative number of 

COVID-19 cases in East Java Province from March 25 until October 31, 2020 via nonlinear least square method. We 

compare the performance of the five phenomenological models by measuring four performance metrics, namely the 

root mean square error (RMSE), the mean absolute error (MAE), the coefficient of determination (𝑅2) and the Akaike 

information criterion (AIC).  When calibrating the cumulative number of cases, the five models perform very well, 

which are indicated by their high coefficient of determination (𝑅2 > 0.999). However, a comparison of the four- 

performance metrics shows that Tsoularis & Wallace performed the best followed by a generalized Richards model. 

The prediction for the final size of the COVID-19 epidemic in East Java according to the Tsoularis & Wallace model 
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is 𝐾 = 78 002. Both Richards and Gompertz models tend to underestimate the final size of the epidemic, while the 

Blumberg model tends to overestimate. The five models estimate the peak of the COVID-19 epidemic in East Java 

has been occurred on August 13-14, 2020. Using the predicted cumulative number of cases, we determine the daily 

new cases of COVID-19 in East Java. Based on the four-performance metrics, it appears that the five 

phenomenological models predict new daily cases of COVID-19 equally well. 

Keywords: phenomenological growth model; a generalized Richards model; Tsoularis & Wallace model; COVID-19 

prediction; final epidemic size; peak epidemic. 

2010 AMS Subject Classification: 92B05, 92D25, 92D30, 97M60. 

 

1. INTRODUCTION 

In late 2019, the Wuhan Municipal Health Commission reported some cases of unusual viral 

pneumonia [1], which were then identified as an impact of the novel severe acute respiratory 

syndrome coronavirus 2 (SARS-CoV-2). The World Health Organization (WHO) named the 

disease as 2019 coronavirus disease (COVID-19). COVID-19 is a highly contagious disease [2]. 

With a lot of international travel, COVID-19 can quickly spread around the world. Therefore, 

WHO declared the global outbreak of COVID-19 as a pandemic on March 11, 2020 [3]. 

The first COVID-19 case in Indonesia was reported on 2 March 2020 [4]. About a month later, 

the pandemic has spread to all provinces in Indonesia. East Java becomes one of the provinces in 

Indonesia with the highest cases of COVID-19. The first recorded case of COVID-19 in East Java 

occurred on March 17, 2020, when it was reported that six people in Surabaya had been confirmed 

to have COVID-19 [5]. As of 31 October 2020, the cumulative number of cases in East Java was 

52 465 cases (or 12.79% of the total cases in Indonesia). Of the cases reported in East Java, 46 464 

people have recovered and 3 752 people have died [6]. As of this writing, the COVID-19 outbreak 

is still ongoing and continues to spread, although implementation of some control measures have 

been carried out. 

The increasing number of COVID-19 cases has encouraged the development of mathematical 

modelling to help people understand the behavior of the COVID-19 epidemic. Currently, there are 

various mathematical models describing the dynamics of the COVID-19 epidemic available in 

literatures. In general, mathematical models are grouped into mechanistic compartment models 

and phenomenological models. The mechanistic compartment model takes into account the 

assumptions of physical or biological mechanisms in explaining the dynamics of disease 

transmission [7]. Epidemiological models based on a mechanistic approach include SIR epidemic 
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models and its development, which can be in the form of first order differential equations [8-13] 

or fractional differential equations [14-15]. Phenomenological models have been applied to 

generate growth curves of infectious diseases from the observed epidemic data, without 

mechanistic assumptions nor biological mechanisms incorporated in the transmission dynamics of 

disease [16-18].  

Logistic equation is a classical phenomenological model which consists of two parameters and 

is given by  

𝑑𝐶

𝑑𝑡
= 𝑟𝐶 (1 −

𝐶

𝐾
),                                                        (1) 

where 𝐶 = 𝐶(𝑡)  represents the cumulative number of COVID-19 cases at time 𝑡 ,  𝑟  is the 

epidemic growth rate at the early stage, 𝐾 is the final size of the epidemic, and 
𝑑𝐶(𝑡)

𝑑𝑡
  represents 

the incidence case at time 𝑡. Logistic model has been applied to predict the growth of COVID-19 

active cases [19-20]. Notice that logistic model (1) describes a symmetrical growth pattern with 

an exponential growth dynamics at the initial stage, i.e. when 𝐶(𝑡) ≪ 𝐾. By considering that the 

growth rate at the early stage is not always exponential and the 𝑆-shape epidemic curve can be 

asymmetric, the logistic model (1) is extended by many authors. For example, to describe 

asymmetric growth, Richards [21] introduced a parameter which measures the symmetry deviation 

about the inflection or turning point. To offer more flexible growth pattern, Chowell et al [17-18] 

introduced a ‘deceleration’ parameter which can describe linear, exponential or sub-exponential 

(e.g., polynomial) growth dynamics. Using the deceleration parameter, Chowell et al [17-18] 

extended the Richards model to obtain a generalized Richards model. Different type of shape 

parameter has been introduced by Blumberg [22]. Recently, Tsoularis and Wallace [23] have also 

proposed a more general logistic model, which can be considered as a combination of the 

Blumberg model and a generalized Richards model. In the limiting case, the Richards model can 

be reduced to Gompertz model.  

Recently, there has been a lot of literatures on modelling and analysis of the dynamics of 

COVID-19 transmission based on phenomenological models. These include the application of 

Richards model [24-27], a generalized Richards model [28-30] and Gompertz model [31-34]. In 

this paper, five phenomenological models including Richards, a generalized Richards, Blumberg, 

Tsoularis & Wallace and Gompertz growth models are applied to reproduce the empirical 

trajectory of COVID-19 epidemic by fitting those models to the reported cumulative number of 
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COVID-19 cases in East Java, Indonesia. The performance of the five phenomenological models 

is evaluated through four performance metrics, namely the root mean square error (RMSE), the 

mean absolute error (MAE), the coefficient of determination (𝑅2) and the Akaike information 

criterion (AIC). 

 

2. MATERIAL AND METHODS 

2.1. Data 

We used data from [6] which is the official Indonesian government website. The website [6] 

provides daily COVID-19 data for all provinces in Indonesia, including East Java. For our study, 

we consider daily data set of COVID-19 in East Java, which was taken on November 1, 2020. The 

data set consists of cumulative number of COVID-19 cases and daily new cases of COVID-19 

from March 25 until October 31, 2020. The cumulative number of COVID-19 cases and the daily 

new cases of COVID-19 in East Java are shown in Figure 1. 

 

 

Figure 1. Cumulative number of COVID-19 cases (left) and daily new cases of COVID-19 

(right) in East Java, Indonesia. 

2.2. Models 

There are many phenomenological models known in the literatures that have been used to 

describe dynamics of population, including for several infectious disease outbreaks.  In this paper, 

our data will be fitted to five types of phenomenological models and then we determine the best-

fit model among those models by choosing the best performance metrics in the calibration process.  

In the following Sub-sections, we review the considered phenomenological models. 
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2.2.1. Richards Growth Model 

Richards growth model extends the logistic model (1) by introducing parameter 𝑎  which 

adjusts the symmetrical deviation of the 𝑆-shaped curve as follows 

𝑑𝐶

𝑑𝑡
= 𝑟𝐶 (1 − (

𝐶

𝐾
)

𝑎

).                                                    (2) 

Notice that if 𝑎 = 1 then the Richards model (2) recovers to the logistic equation (1).  The 

solution of model (2) is given by 

𝐶(𝑡) =  𝐾 (1 − 𝑒−𝑎𝑟𝑡 (1 − (
𝐾

𝐶0
)

𝑎

))

−
1
𝑎

,                                      (3) 

where  𝐶0 = 𝐶(0). It is clear that  lim
𝑡→∞

𝐶(𝑡) = 𝐾. By setting 𝑑2𝐶/𝑑𝑡2 = 0, we can find that at 

the turning point (where the growth rate is maximum), the cumulative number of cases is 𝐶𝑝 =

𝐾 (
1

1+𝑎
)

1

𝑎
. Turning point is a point at which the cumulative number of cases attains its inflection 

point and the incidence curve reaches its maximum.  Hence, the turning point indicates the 

occurrence of the epidemic peak. 

 

2.2.2. A Generalized Richards Growth Model 

For the second model, we consider a generalized Richards growth model, which is given by 

the following differential equation 

𝑑𝐶

𝑑𝑡
= 𝑟𝐶𝑝 (1 − (

𝐶

𝐾
)

𝑎

).                                                 (4) 

𝑝 is known as the ‘deceleration of growth’ parameter which captures different early stages of the 

epidemic, where 𝑝 ∈ [0,1]. In the limiting cases, the incidence of cases grows exponentially when 

𝑝 = 1 and it remains constant if 𝑝 = 0. If 0 < 𝑝 < 1, then the incidence of cases shows a sub-

exponential growth pattern. At the turning point, the cumulative number of cases is 𝐶𝑝 =

𝐾 (
𝑝

𝑎+𝑝
)

1

𝑎
. The generalized Richards model (4) reduces to the Richards model (2) for 𝑝 = 1 and 

it reduces to the logistic equation (1) for 𝑝 = 1 and 𝑎 = 1.  
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2.2.3. Blumberg Growth Model 

We next consider the Blumberg growth model, which can also be considered as one of 

generalization of logistic growth equation. The differential equation form of the Blumberg model 

is 

𝑑𝐶

𝑑𝑡
= 𝑟𝐶𝑝 (1 −

𝐶

𝐾
)

𝛾

,                                                 (5) 

where 𝛾 is the shape parameter. It is clearly seen that the logistic equation is a special case of the 

Blumberg model, namely when 𝑝 = 𝛾 = 1. Blumberg growth model is also known as the hyper-

logistic equation. The explicit analytical solution of equation (5) does not always exist. The 

cumulative number of cases at the turning point can be determined by setting 𝑑2𝐶/𝑑𝑡2 = 0. In 

this way, we obtain 𝐶𝑝 = 𝐾
𝑝

𝑝+𝛾
. 

 

2.2.4. Tsoularis & Wallace Growth Model 

A more general growth model has been introduced by Tsoularis & Wallace, namely  

𝑑𝐶

𝑑𝑡
= 𝑟𝐶𝑝 (1 − (

𝐶

𝐾
)

𝑎

)

𝛾

.                                            (6) 

The Tsoularis & Wallace growth model reduces to a generalized Richards model for 𝛾 = 1 and 

recovers the Blumberg model for 𝑎 = 1. The general analytical solution of equation (6) cannot be 

written in an explicit form. However, we can determine the cumulative number of cases at the 

turning point by setting the second derivative of 𝐶(𝑡) to be zero. Here we get 𝐶𝑝 = 𝐾 (
𝑝

𝑝+𝑎𝛾
)

1

𝑎
. 

By choosing suitably parameter values, we can show that the cumulative number of cases at the 

turning point of the Tsoularis & Wallace model coincides with those of Richards, generalized 

Richards and Blumberg models. Tsoularis & Wallace have shown that the solution of model (6) 

satisfies   

lim
𝑛→∞

𝐶(𝑡) = 𝐾 ,                                                         (7) 

showing that the cumulative number of cases will converge to the final epidemic size 𝐾. Since 

this property is valid for any parameter values and all previous models (Richards, generalized 

Richards and Blumberg models) are special cases of the Tsoularis & Wallace model, it can be 

deduced the solution of those models also converge to 𝐾. 
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2.2.5. Gompertz Growth Model 

For the last model, we consider Gompertz growth model. The Gompertz model can be derived 

from the Richards model, i.e. by taking the limiting case as follows 

𝑑𝐶

𝑑𝑡
= lim

𝑎→0

𝑟

𝑎
𝐶 (1 − (

𝐶

𝐾
)

𝑎

) 

                    = lim
𝑎→0

𝑟

𝑎
𝐶 (1 − exp (𝑎 ln

𝐶

𝐾
)) 

                                           =   lim
𝑎→0

𝑟𝐶 (− ln
𝐶

𝐾
−

𝑎

2
(ln

𝐶

𝐾
)

2

+ 𝒪(𝑎2)) 

=  𝑟𝐶 ln
𝐾

𝐶
.                                                                           (8) 

The closed form of analytical solution of the Gompertz equation is given by 

𝐶(𝑡) = 𝐾 exp {ln (
𝐶0

𝐾
) exp(−𝑟𝑡)} , 𝐶(0) = 𝐶0.                                  (9) 

Clearly that lim
𝑛→∞

𝐶(𝑡) = 𝐾. Furthermore, at the turning point, the cumulative number of cases is 

𝐶𝑝 = 𝐾/𝑒, where 𝑒 is the natural number. 

 

2.3. Model Fitting 

In this paper, all five growth models will be fitted to the observed data of cumulative number 

of COVID-19 cases in East Java to estimate the model parameters. The fitting is performed via 

nonlinear least-square technique, i.e. by finding the set of model parameters �̂� which minimizes 

the following sum of squared differences 

 ∑ (𝐶(𝑡𝑖) − �̂�(𝑡𝑖; �̂�))
2

,𝑁
𝑖=1                                                   (10) 

where 𝐶(𝑡𝑖) represents the observed data of cumulative number of COVID-19 cases at time 𝑡𝑖, 

�̂�(𝑡𝑖; �̂�) denotes the related solution of the model with parameter �̂� and 𝑁 is the number of data 

points. To obtain the solution of each growth model in our study, we implement the fourth-order 

Runge-Kutta method using the first observed cumulative number of cases as the initial value. The 

models fitting in this work was performed using a built-in MATLAB function lsqcurvefit.  

To evaluate the performance of each model, the root mean square error (RMSE), the mean 

absolute error (MAE), the coefficient of determination (𝑅2) and the Akaike information criterion 

(AIC) are calculated according to the following formulae 
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𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝐶(𝑡𝑖) − �̂�(𝑡𝑖; �̂�))

2
𝑁

𝑖=1

,                                        (11) 

𝑀𝐴𝐸 =
1

𝑁
∑|𝐶(𝑡𝑖) − �̂�(𝑡𝑖; �̂�)|,

𝑁

𝑖=1

                                              (12) 

𝑅2 = 1 − 
∑ (𝐶(𝑡𝑖) − �̂�(𝑡𝑖; �̂�))

2
𝑁
𝑖=1

∑ (𝐶(𝑡𝑖) − 𝐶̅)2𝑁
𝑖=1

,                                           (13) 

𝐴𝐼𝐶 = 𝑁 ln (
∑ (𝐶(𝑡𝑖) − �̂�(𝑡𝑖; �̂�))

2
𝑁
𝑖=1

𝑁
) + 2𝑃,                                 (14) 

where 𝐶̅ is the average of the observed data of cumulative number of COVID-19 cases and 𝑃 is 

the number of model parameters. 

 

3. RESULTS AND DISCUSSION 

 

Figure 2. The observed data and predicted values calculated for the cumulative number of 

COVID-19 cases in East Java using five different growth models. 

As mentioned before, the five growth models are fitted to the observed cumulative number of 

COVID-19 cases in East Java using the built-in MATLAB function lsqcurvefit. For the calibration, 

we use data set from March 25 until October 31, 2020. When applying the function lsqcurvefit, we 
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need an initial guess as well as lower and upper bounds for each parameter. The initial guess, the 

lower and upper bounds used in the model fitting and the estimated value for each parameter are 

shown in Table 1. From this table, we see that the final epidemic size of the Richards model, a 

generalized Richards model, Blumberg model, Tsoularis & Wallace model and Gompertz model 

are respectively 71 855, 77 169, 107 392, 78 002, and 72 102. Roughly speaking, the final epidemic 

size estimated by the Richards is almost the same as that by the Gompertz model, while the final 

epidemic size estimated by the generalized Richards model is comparable to that by the Tsoularis 

& Wallace model. The final size of epidemic obtained by the Blumberg model is far larger than 

those obtained by other models. It is found that the Richards and Gompertz models have a tendency 

to underestimate the final epidemic size (𝐾), while the Blumberg model tends to overestimate the 

value of 𝐾. Thus, the final epidemic sizes estimated by the Richards/Gompertz models and that 

by the Blumberg model can respectively be used as lower and upper bounds of the future scenarios. 

The behavior of the Richards model in predicting the final size of the epidemic is consistent with 

the results in [28, 35]. 

Using the corresponding estimated parameter values, we solve each model and compare the 

result with the observed cumulative number of COVID-19 cases. Figure 2 shows that in the 

calibration period, all models fit well with the observed data. In Figure 2 we also plot the 8-month 

(240 days) ahead forecasts of cumulative number of COVID-19 cases in East Java using all five 

models. It is seen that the cumulative number of cases for each model is monotonically increasing 

and is convergent to the corresponding final epidemic size ( 𝐾 ). Moreover, the deceleration 

parameter of a generalized Richards, Blumberg and Tsoularis & Wallace models are estimated to 

be 0 < 𝑝 < 1, which indicates that the dynamic of epidemic growth in the early stage is not 

exponential but sub-exponential. 

Next, we calculate the cumulative number of COVID-19 cases at the turning point (𝐶𝑝) for 

each model using formulae given in Section 2. By substituting the corresponding estimated 

parameter values into those formulae, we get 𝐶𝑝 for each model.  𝐶𝑝 can be interpreted as the 

cumulative number of COVID-19 cases when the peak of the pandemic occurs. Hence, we can 

numerically estimate the time when the peak of the pandemic occurs (𝑡𝑝), i.e., by identifying the 

value of 𝐶𝑝 in the curve of cumulative number of cases and determining when 𝐶𝑝 occurs. 𝐶𝑝 and 

𝑡𝑝 for each model are shown in Table 2. The Richards model, Blumberg model and Gompertz 

model estimate the pandemic peak to occur on August 13, 2020, while a generalized Richards 
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model and Tsoularis & Wallace model give estimation of the peak of the pandemic to occur on 

August 14, 2020. 

 

 

Model Parameter 
Lower 

Bound 

Upper 

Bound 

Initial 

Guess 

Estimated 

Value 

Richards 

𝑟 0 4 0.5 4 

𝐾 4 x 104 5 x 105 4 x 104 71 855 

𝑎 0 4 1 0.0035 

Generalized 

Richards 

𝑟 0 4 0.5 0.2878 

𝑝 0 1 0.5 0.9109 

𝐾 4 x 104 5 x 105 4 x 104 77 169 

𝑎 0 4 1 0.1179 

Blumberg 

𝑟 0 4 0.5 0.4113 

𝑝 0 1 0.5 0.7268 

𝐾 4 x 104 5 x 105 4 x 104 107 392 

𝛾 0 4 2 2.1609 

Tsoularis & 

Wallace 

𝑟 0 4 0.5 0.3066 

𝑝 0 1 0.5 0.9236 

𝐾 4 x 104 5 x 105 4 x 104 78 002 

𝑎 0 4 1 0.0994 

𝛾 0 4 2 1.0178 

Gompertz 
𝑟 0 4 0.5 0.0141 

𝐾 4 x 104 5 x 105 4 x 104 72 104 

 

 

 

 

 

 

Table 1. Lower and upper bounds and initial guess for each parameter used in the fitting model, 

and the estimated value of parameter. 
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Model Richards 
Generalized 

Richards 
Blumberg 

Tsoularis & 

Wallace 
Gompertz 

𝐶𝑝 26 480 27 485 27 023 27 413 26 525 

𝑡𝑝 13-Aug-20 14-Aug-20 13-Aug-20 14-Aug-20 13-Aug-20 

 

 

Performance 

metrics 
Richards 

Generalized 

Richards 
Blumberg 

Tsoularis & 

Wallace 
Gompertz 

𝑅𝑀𝑆𝐸 444.8765 269.0351 333.7896 268.7001 420.7418 

𝑀𝐴𝐸 338.1818 211.1503 272.0806 204.7738 318.0247 

𝑅2 0.9996 0.9998 0.9993 0.9998 0.9994 

𝐴𝐼𝐶 2576.2458 2480.9201 2701.2065 2474.0672 2674.5726 

 

 

Performance 

metrics 
Richards 

Generalized 

Richards 
Blumberg 

Tsoularis & 

Wallace 
Gompertz 

RMSE 72.2991 71.7784 72.0002 71.7763 72.2463 

MAE 48.7937 48.7009 49.0218 48.6833 48.7621 

R2 0.6461 0.6534 0.675 0.6539 0.6742 

AIC 1898.2876 1896.9241 1898.1187 1898.9108 1895.7958 

 

Table 3 shows the performance metrics calculated from all five growth models applied to the 

observed cumulative number of COVID-19 cases in East Java. It is observed that all models 

studied in this paper show very high 𝑅2 values (> 0.999), indicating all models perform well. 

Based on the value of 𝑅2, the generalized Richards model and the Tsoularis & Wallace model  

Table 2. Cumulative number of COVID-19 cases in East Java at the inflection point (𝐶𝑝) and date 

when the peak of the pandemic is estimated to occur (𝑡𝑝). 

Table 3. Performance metrics calculated from the growth models applied to the observed 

cumulative number of COVID-19 cases. 

Equations with the best goodness of fit are represented in bold 

Table 4. Performance metrics calculated from the growth models applied to the observed daily 

new cases of COVID-19. 

Equations with the best goodness of fit are represented in bold 
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provide best results. Other performance metrics (𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸 and 𝐴𝐼𝐶) suggest the Tsoularis & 

Wallace model as the most suitable model followed by the generalized Richards model.  

 

Figure 3. The observed data and predicted values calculated for the daily new cases of COVID-

19 in East Java using five different growth models. 

 

Having the curve prediction of cumulative number of COVID-19, we can we predict the new 

daily cases on the 𝑖-th day (𝐷(𝑡𝑖)) by taking the different between the cumulative number of cases 

on the 𝑖-th day and that on (𝑖 − 1)-th day:  

𝐷(𝑡𝑖) = 𝐶(𝑡𝑖) − 𝐶(𝑡𝑖−1).                                                   (14) 

In Figure 3, we compare the actual new daily cases of COVID-19 in East Java with the prediction 

obtained from all five growth models studied in this paper. We see that the actual data of new daily 

cases is very scattered and therefore it is not easy to predict. Nevertheless, Figure 3 shows that all 

five growth models produce reasonably good predictions of new daily cases of COVID-19. To see 

how good their prediction, in Table 4, we show the goodness of fit statistics calculated from the 

growth models applied to the daily news cases of COVID-19. It is seen that the determination coefficient 

(𝑅2) of all five models are good enough, i.e. 𝑅2 ≈ 0.65. Furthermore, all performance metrics 

(𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝑅2  and 𝐴𝐼𝐶 ) for all five models for the daily new cases are comparable and 

difficult to distinguish. This fact indicates that all five  models studied in this works perform 

equally well to predict the daily new cases of COVID-19 in East Java. Furthermore, by observing 
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Figure 3 we can identify the occurrence of the peak of the epidemic. Based on the predictions of 

the Richards model, Blumberg model and Gompertz model, the pandemic peak of COVID-19 in 

East Java is estimated to occur on August 13, 2020, while the generalized Richards model and 

Tsoularis & Wallace model predict that the pandemic peak occurs on August 14, 2020. Those 

predictions are consistent with the predictions based on the cumulative number of cases. 

 

4. CONCLUSION 

We have implemented phenomenological models to predict the cumulative number of COVID-

19 cases in East Java. The studied models are the Richards, generalized Richards, Blumberg, 

Tsoularis & Wallace and Gompertz models. It is observed that the five studied phenomenological 

models have very high coefficient of determination (𝑅2 > 0.999), which indicates that those 

models have very good performance. By comparing the four performance metrics 

(𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, 𝑅2 and 𝐴𝐼𝐶), we found that the Tsoularis & Wallace model is the most suitable 

growth model in predicting the cumulative number of COVID-19 cases in East Java. According to 

the Tsoularis & Wallace model, the final epidemic size is 𝐾 = 78 002  and the peak of the 

epidemic was predicted to occur on August 14, 2020. Using the estimation of the final epidemic 

size by the Richards and Gompertz models as the lower bound and that by the Blumberg model as 

the upper bound, the lower and upper bounds of the final epidemic size are approximately 72 000 

and 107 400, respectively. We also found that the deceleration parameter for generalized Richards, 

Blumberg and Tsoularis & Wallace model are  𝑝 ≈ 0.9, indicating that the growth dynamic of the 

early-stage epidemic is sub-exponential.  
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