BIVARIATE BETA MIXTURE MODEL WITH CORRELATIONS

NURVITA TRIANASARI ${ }^{1,2, *}$, I MADE SUMERTAJAYA ${ }^{3}$, ERFIANI 3, I WAYAN MANGKU ${ }^{4}$
${ }^{1}$ Department of Statistics, Student of Doctoral Program at Sekolah Pasca Sarjana-IPB, Bogor, Indonesia
${ }^{2}$ Telkom of Economics and Business School, Telkom University, Bandung, Indonesia
${ }^{3}$ Department of Statistics, IPB University, Bogor, Indonesia
${ }^{4}$ Department of Mathematics, IPB University, Bogor, Indonesia

Copyright © 2021 the author(s). This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The method of clustering is a probabilistic model based on clustering technique. The clustering method is often based on the assumption that data comes from a mixed model. One such mixture model is the beta mixed model. This mixed model can be used for the case of one variable or multiple variables. However, for the mixed beta model of the double variable, each variable is assumed to be independent. In this article, we propose a mixed beta model with correlated variables. The parameter estimation method uses the MLE method via the EM algorithm. While determining the optimal number of clusters using the ICL-BIC criteria. Monte Carlo simulation is used to see the performance of the model.

Keywords: probabilistic clustering; MLE method; EM algorithm; ICL-BIC; Monte Carlo simulation.
2010 AMS Subject Classification: 68T10.

1. INTRODUCTION

Cluster analysis is a double variable analysis which aims to group objects or data so that objects or data that are in the same cluster have relatively homogeneous properties than objects or data that are in different clusters (Johnson et al. 2007; Zickmund et al. 2010).

The concept of forming groups is a hierarchical method, a non-hierarchical method and a probability clustering method. The probability clustering method is a probabilistic model based

[^0]clustering technique which assumes that the data follows a certain distribution. Hordering methods have the opportunity to be widely used in various applications such as market segmentation, image segmentation (Blekas et al. 2005 and Stauffer et al. 1999), handwriting recognition (Revow et al. 1996), and document clustering (Hoffman 2001). The clustering method has the opportunity to try to optimize the compatibility between the data observed with a mathematical model using a probabilistic approach. The method is often based on the assumption that the data comes from a mixture (mixture) of the distribution of opportunities, for example Poisson, beta, normal, lognormal, and Erlang. Thus the clustering problem is transformed into the parameter estimation problem because the data is modeled by a mixed distribution of the cluster. Data points that have the same distribution can be defined as groups. A mixed model with too many clusters might overfit with data, whereas a mixed model with too few clusters is not flexible enough to approach the real model.
Sahu et al. (2016) discusses the mixed model of beta double variable with the estimated parameters using the EM algorithm and the determination of the optimal cluster using the ICLBIC deterministic method (integrated classification likelihood Bayesian information criterion). Sahu et al. (2016) assumes that there is no correlation between the variables. Until now there has been no research that discusses the mixed model beta two variables that involve correlations between variables. Olkin and Liu (2003) discuss the problem of beta formation of two variables based on the existence of correlations between variables while research related to the mixed beta model of two variables usually assumes no correlation between variables. Related to the results of research by Sahu et al. (2016) and Olkin and Liu (2003), we need another method in determining the optimal optimal number of groups in the mixed beta model of two variables by involving correlations between the variables. The purpose of this article is to discuss the mixed beta model of two variables involving correlation between variables by utilizing the results of research from Sahu et al. (2016) and Olkin and Liu (2003). Monte Carlo simulations will be used to evaluate the performance of the proposed method.

2. Mixed Beta Two Variable Model

The density function of opportunities for variables and those that follow the beta mixture distribution of two variables (Olkin and Liu, 2003) are

$$
\begin{equation*}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{j=1}^{k} \alpha_{j} \frac{x_{1}^{a_{j}-1} x_{2}^{b_{j}-1}\left(1-x_{1}\right)^{b_{j}+c_{j}-1}\left(1-x_{2}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1} x_{2}\right)^{a_{j}+b_{j}+c_{j}}} \tag{1}
\end{equation*}
$$

where $\alpha_{j}>0, \alpha_{1}+\alpha_{2}+\cdots+\alpha_{C}=1$ with $a_{j}>0, b_{j}>0$ and $c_{j}>0$ for $j=1,2, \cdots, k$ are parameters of the beta mixture distribution of two variables, and

$$
B\left(a_{j}, b_{j}, c_{j}\right)=\frac{\Gamma\left(a_{j}\right) \Gamma\left(b_{j}\right) \Gamma\left(c_{j}\right)}{\Gamma\left(a_{j}+b_{j}+c_{j}\right)}, \text { for } j=1,2, \cdots, k
$$

Figure 1 illustrates the opportunity density density curve for the distribution of beta mixes of two variables for various combinations of parameters. The expected value and variety of variables and can be obtained directly from the marginal distribution as follows:
$E\left(X_{1}\right)=\sum_{j=1}^{k} w_{j} \frac{a_{j}}{a_{j}+c_{j}}$,
$\operatorname{Var}\left(X_{1}\right)=\sum_{j=1}^{k} w_{j}\left(\left(\frac{a_{j}}{a_{j}+c_{j}}\right)^{2}+\frac{a_{j} c_{j}}{\left(a_{j}+c_{j}\right)^{2}\left(a_{j}+c_{j}+1\right)}\right)-\left(\sum_{j=1}^{k} w_{j} \frac{a_{j}}{a_{j}+c_{j}}\right)^{2}$,
$E\left(X_{2}\right)=\sum_{j=1}^{k} w_{j} \frac{b_{j}}{b_{j}+c_{j}}$
$\operatorname{Var}\left(X_{2}\right)=\sum_{j=1}^{k} w_{j}\left(\left(\frac{b_{j}}{b_{j}+c_{j}}\right)^{2}+\frac{b_{j} c_{j}}{\left(b_{j}+c_{j}\right)^{2}\left(b_{j}+c_{j}+1\right)}\right)-\left(\sum_{j=1}^{k} w_{j} \frac{b_{j}}{b_{j}+c_{j}}\right)^{2}$,
the density function of the opportunity for the distribution of a beta mixture of two variables can be written in another form, namely:
$f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\sum_{j=1}^{k} w_{j} f_{X_{1}, X_{2}}^{j}\left(x_{1}, x_{2}\right)$
with
$f_{X_{1}, X_{2}}^{j}\left(x_{1}, x_{2}\right)=\sum_{i=0}^{\infty} d_{j} A(i) \frac{x_{1}^{a_{j}+i-1}\left(1-x_{1}\right)^{b_{j}+c_{j}-1}}{B\left(a_{j}+i, b_{j}+c_{j}\right)} \frac{x_{2}^{b_{j}+i-1}\left(1-x_{2}\right)^{a_{j}+c_{i}-1}}{B\left(b_{j}+i, a_{j}+c_{j}\right.}$
The form of the opportunity density function above can be used to calculate the expected value of two variables X_{1} and X_{2}, i.e.
$E\left(X_{1}^{k} X_{2}^{l}\right)=\int_{0}^{1} \int_{0}^{1} x^{k} y^{l} \sum_{j=1}^{k} w_{j} f_{X, Y}^{j}(x, y) d x d y$
$E\left(X_{1}^{k} X_{2}^{l}\right)=\sum_{j=1}^{k} w_{j} \int_{0}^{1} \int_{0}^{1} x^{k} y^{l} \sum_{j=1}^{k} w_{j} f_{X, Y}^{j}(x, y) d x d y$

$$
\begin{equation*}
=\sum_{j=1}^{k} w_{j}{ }_{3} F_{2}\left(a_{j}+k, b_{j}+l, s_{j} ; s_{j}+k, s_{j}+l ; 1\right) \tag{2}
\end{equation*}
$$

where $s_{j}=a_{j}+b_{j}+c_{j}$

Figure 1. Density Function for Beta Distribution of Two Variable Variants for different value of parameter Combinations: (i) $w_{1}=0,35, w_{2}=0,65, a_{1}=15, a_{2}=30, b_{1}=25$, and $b_{2}=30, c_{1}=25$, and $c_{2}=15$; (ii) $w_{1}=0,4, w_{2}=0,6, a_{1}=15, a_{2}=25, b_{1}=25$, and $b_{2}=30, c_{1}=35$, and $c_{2}=20$; (iii) $w_{1}=0,45, w_{2}=$ $0,55, a_{1}=35, a_{2}=15, b_{1}=25$, and $b_{2}=35, c_{1}=20$, and $c_{2}=35$; (iv) $w_{1}=0,5, w_{2}=0,5, a_{1}=35, a_{2}=$ $15, b_{1}=25$, and $b_{2}=35, c_{1}=45$, and $c_{2}=35$

3. MLE FOR THE BVARIATE BETA MiXtURE MODEL PARAMETER

In the following, we will look for estimators of the beta distribution parameters of two variables using the maximum likelihood method. Suppose a random sample is sized n, i.e. $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ from the distribution of a beta mixture of two Olkin-Liu variables such as Equation (1). The realization of the random sample is $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$. The likelihood function for the random sample is (Olkin and Liu, 2003)
$L_{1}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})=\prod_{i=1}^{n}\left\{\sum_{j=1}^{k} \alpha_{j} \frac{x_{1 i}{ }^{a_{j}-1} x_{2 i}{ }^{b_{j}-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}\right\}$
with $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right), \boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right), \boldsymbol{\alpha}=\left(\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \ldots, \boldsymbol{\alpha}_{k}\right)$.
The possibility function is:
$l_{1}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})=\sum_{i=1}^{n} \ln \left\{\sum_{j=1}^{k} \alpha_{j} \frac{x_{1 i}{ }^{a_{j}-1} x_{2 i}{ }^{b_{j}-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}\right\}$
The log-possibility function is
$l_{1}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})=\sum_{i=1}^{n} \ln \left\{\sum_{j=1}^{k} \alpha_{j} \frac{x_{1 i}{ }^{a_{j}-1} x_{2 i} b_{j}-1}{}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}\right]$
The log-possibility function above is difficult to maximize because it contains a logarithm of the sum. One way to overcome the above problem is to use the EM algorithm. For example $\boldsymbol{Z}=\left(Z_{i j} ; i=1,2, \ldots, n_{i}, j=1,2, \ldots, k\right)$, which is the latent variable that determines the group with observations originating,

$$
Z_{i j}=\left\{\begin{array}{c}
1 ; \text { observations }\left(x_{1 i}, x_{2 i}\right) \text { derived from distribution } f_{j} \\
0 ; \text { others }
\end{array}\right.
$$

The possibility function is:

$$
L_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})=\sum_{i=1}^{n} \sum_{j=1}^{k} Z_{i j} \ln \left(\alpha_{j} \frac{x_{1 i}{ }^{a_{j}-1} x_{2 i}{ }^{b_{j}-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}\right)^{z_{i j}}
$$

The log-possibility function is:

$$
\begin{equation*}
l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})=\sum_{i=1}^{n} \sum_{j=1}^{k} Z_{i j} \ln \left(\alpha_{j} \frac{x_{1 i}^{a_{j}-1} x_{2 i}{ }^{b_{j}-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}\right) . \tag{3}
\end{equation*}
$$

Stage E (expectation stage)

Substitute Z_{j} in Equation (3) to be $E\left(Z_{i j}\right)=T_{i j}$, i.e.

$$
\begin{equation*}
E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]=\sum_{i=1}^{n} \sum_{j=1}^{k} T_{i j} \ln \left(\alpha_{j} \frac{x_{1 i}^{a_{j}-1} x_{2 i}^{b_{j}-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}\right) . \tag{4}
\end{equation*}
$$

with $T_{i j}$ is

$$
\begin{aligned}
T_{i j}=P\left(Z_{i j}=\right. & \left.1 \mid\left(X_{i}, Y_{j}\right)=\left(x_{i}, y_{j}\right) ; a, b, c, \alpha\right) \\
& =\frac{\alpha_{j} \frac{x_{1 i}^{a_{j}-1} x_{2 i} b_{j-1}\left(1-x_{1 i}\right)^{b_{j}+c_{j}-1}\left(1-x_{2 i}\right)^{a_{j}+c_{j}-1}}{B\left(a_{j}, b_{j}, c_{j}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{j}+b_{j}+c_{j}}}}{\sum_{l=1}^{k} \alpha_{l} \frac{x_{1 i}^{a_{l}-1} x_{2 i}^{b_{l}-1}\left(1-x_{1 i}\right)^{b_{l}+c_{l}-1}\left(1-x_{2 i} a^{a_{l}+c_{l}-1}\right.}{B\left(a_{l}, b_{l}, c_{l}\right)\left(1-x_{1 i} x_{2 i}\right)^{a_{l}+b_{l}+c_{l}}}}
\end{aligned}
$$

Stage M (maximization stage)

Maximize Equation (4) to estimate $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{a}$
$\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial \alpha_{j}}=0$,
will get an estimate for the parameter $\boldsymbol{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$, i.e.
$\widehat{w}_{j}=\frac{1}{n} \sum_{\Gamma=1}^{n} T_{i j} ; j=1,2, \ldots k$.
Whereas the estimated parameters $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, dan $\boldsymbol{c}=$ $\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ is the solution of the following equations
$\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial a_{j}}=0 ; j=1,2, \ldots k$,
$\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial b_{j}}=0 ; j=1,2, \ldots k$,
$\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j}}=0 ; j=1,2, \ldots k$,
with

$$
\begin{aligned}
& \frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial a_{j}}=\sum_{\Gamma=1}^{n} T_{i j}\left[\ln x_{1 i}+\ln \left(1-x_{2 i}\right)-\ln \left(1-x_{1 i} x_{2 i}\right)+\frac{\Gamma^{\prime}\left(a_{j}+b_{j}+c_{j}\right)}{\Gamma\left(\mathrm{a}_{j}+b_{j}+c_{j}\right)}-\frac{\Gamma^{\prime}\left(b_{j}\right)}{\Gamma\left(b_{j}\right)}\right] \\
& \frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial b_{j}}=\sum_{\Gamma=1}^{n} T_{i j}\left[\ln x_{2 i}+\ln \left(1-x_{1 i}\right)-\ln \left(1-x_{1 i} x_{2 i}\right)+\frac{\Gamma^{\prime}\left(a_{j}+b_{j}+c_{j}\right)}{\Gamma\left(\mathrm{a}_{j}+b_{j}+c_{j}\right)}-\frac{\Gamma^{\prime}\left(a_{j}\right)}{\Gamma\left(a_{j}\right)}\right], \\
& \frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j}}=\sum_{\Gamma=1}^{n} T_{i j}\left[\ln \left(1-x_{1 i}\right)+\ln \left(1-x_{2 i}\right)-\ln \left(1-x_{1 i} x_{2 i}\right)+\frac{\Gamma^{\prime}\left(a_{j}+b_{j}+c_{j}\right)}{\Gamma\left(\mathrm{a}_{j}+b_{j}+c_{j}\right)}-\frac{\Gamma^{\prime}\left(b_{j}\right)}{\Gamma\left(b_{j}\right)}\right] .
\end{aligned}
$$

There is no analytical solution for the alleged parameters $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right), \boldsymbol{b}=$ $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, and $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$. Numerical solutions using the Newton-Raphson iteration method can be used to obtain the expected parameters $\boldsymbol{a}=\left(a_{1}, a_{2}, \ldots, a_{k}\right), \boldsymbol{b}=$ $\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, and $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$. Iteration equation to get the estimated parameters $\boldsymbol{a}=$ $\left(a_{1}, a_{2}, \ldots, a_{k}\right), \boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{k}\right)$, and $\boldsymbol{c}=\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ is

$$
\left(\begin{array}{l}
\boldsymbol{a}^{(k+1)} \tag{5}\\
\boldsymbol{b}^{(k+1)} \\
\boldsymbol{c}^{(k+1)}
\end{array}\right)=\left(\begin{array}{l}
\boldsymbol{a}^{(k)} \\
\boldsymbol{b}^{(k)} \\
\boldsymbol{c}^{(k)}
\end{array}\right)-\left(\begin{array}{l}
\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial a_{j}} \\
\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial b_{j}} \\
\frac{\partial E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j}}
\end{array}\right) \times\left(\begin{array}{lll}
\frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\left(\partial a_{j}\right)^{2}} & \frac{\partial^{2} E\left[l_{2}(a, b, c, \boldsymbol{\alpha})\right]}{\partial a_{j} \partial b_{j}} & \frac{\partial^{2} E\left[l_{2}(a, b, c, \boldsymbol{\alpha})\right]}{\partial a_{j} \partial c_{j}} \\
\frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial b_{j} \partial a_{j}} & \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\left.\partial \partial b_{j}\right)^{2}} & \frac{\partial^{2} E\left[l_{2}(a, b, c, w)\right]}{\partial b_{j} \partial c_{j}} \\
\frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j} \partial a_{j}} & \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j} \partial b_{j}} & \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{\alpha})\right]}{\left.\partial c_{j}\right)^{2}}
\end{array}\right)^{-1}
$$

with

$$
\begin{aligned}
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\left(\partial a_{j}\right)^{2}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}, b_{j}, c_{j}\right)-\Psi^{\prime}\left(a_{j}\right)\right], \\
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\left(\partial b_{j}\right)^{2}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}, b_{j}, c_{j}\right)-\Psi^{\prime}\left(b_{j}\right)\right], \\
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\left(\partial c_{j}\right)^{2}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}, b_{j}, c_{j}\right)-\Psi^{\prime}\left(c_{j}\right)\right], \\
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial b_{j} \partial a_{j}}=\frac{\partial^{2} E\left[l_{2}(a, b, c, \alpha)\right]}{\partial a_{j} \partial b_{j}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}+b_{j}+c_{j}\right)\right], \\
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j} \partial a_{j}}=\frac{\partial^{2} E\left[l_{2}(a, b, c, \alpha)\right]}{\partial a_{j} \partial c_{j}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}+b_{j}+c_{j}\right)\right], \\
& \frac{\partial^{2} E\left[l_{2}(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{\alpha})\right]}{\partial c_{j} \partial b_{j}}=\frac{\partial^{2} E\left[l_{2}(a, b, c, \alpha)\right]}{\partial b_{j} \partial c_{j}}=\sum_{i=1}^{n} T_{i j}\left[\Psi^{\prime}\left(a_{j}+b_{j}+c_{j}\right)\right] .
\end{aligned}
$$

The initial values for the Newton-Raphson iteration process above use the moment estimation results for the parameters of the beta distribution, i.e.

$$
\begin{align*}
& \hat{a}_{j}^{(0)}=\bar{x}_{j}\left(\frac{\bar{x}_{j}\left(1-\bar{x}_{j}\right)}{S_{X j}^{2}}-1\right) \\
& \hat{b}_{j}^{(0)}=\bar{y}_{j}\left(\frac{\bar{y}_{j}\left(1-\bar{y}_{j}\right)}{S_{Y j}^{2}}-1\right) \\
& \hat{c}_{j}^{(0)}=\frac{\left(1-\bar{x}_{j}\right)\left(\frac{\bar{x}_{j}\left(1-\bar{x}_{j}\right)}{S_{X j}^{2}}-1\right)+\left(1-\bar{y}_{j}\right)\left(\frac{\bar{y}_{j}\left(1-\bar{y}_{j}\right)}{S_{Y j}^{2}}-1\right)}{2} . \tag{6}
\end{align*}
$$

where \bar{x}_{j} and $S_{X j}^{2}$ each state the mean and variety of examples for the X variable of the j cluster. Whereas \bar{y}_{j} and $S_{Y j}^{2}$ each state the mean and variety of examples for the Y variable of the j cluster.

4. SIMULATION STUDY

In this section an evaluation of the performance of the mixed beta two variables using the Monte Carlo simulation will be discussed. The data that will be used to evaluate the distribution of beta mix two variables is simulation data generated from MATLAB software from two distribution cases. Case 1, the simulation data are generated from the beta mixture distribution of two variables proposed in this paper which involve correlations between variables. Case 2,
simulation data generated from the distribution of beta mixture developed by Sahu et al. (2016) which does not involve correlation between variables.

Case Simulation Data 1

Case 1 simulation data is obtained from the generation of data through MATLAB software from the beta mixture distribution of two variables with the number of groups 2 and sample sizes 100, 300 and 500. Pearson correlation between the two variables tried is 6 , namely 2 low Pearson correlation values (correlation value between 0.1 to 0.2), 2 moderate Pearson correlation values (correlation values between 0.5 to 0.6) and 2 high Pearson correlation values (correlation values between 0.8 to 0.9). There are 6 combination parameters for the beta mixed model two variables that will be tried (Table 1).

Table 1. Combinations of Beta Mixed Model Parameters Two variables Case 1 for Monte Carlo Simulation

No.	a_{1}	a_{2}	b_{1}	b_{2}	c_{1}	c_{2}	w_{1}	w_{2}	Pearson Correlation
1	35	25	25	35	30	35	0,35	0,65	Low
2	35	25	27	35	30	35	0,35	0,65	Low
3	35	15	25	35	20	35	0,35	0,65	Moderate
4	25	25	20	40	45	35	0,35	0,65	Moderate
5	15	30	25	30	25	16	0,35	0,65	High
6	15	30	25	30	35	16	0,35	0,65	High

Thus there are 18 possible data scenarios to be simulated. Each data scenario is generated 1,000 times with a certain sample size and a certain Pearson correlation coefficient value. All data scenarios are presented in Table 2.

Table 2. Case Simulation Data Scenarios 1

Scenario Number	Parameter Combination Number	n	Pearson Correlation
1	1	100	Low
2	2	100	Low
3	3	100	Moderate
4	4	100	Moderate
5	5	100	High
6	6	100	High
7	1	300	Low
8	2	300	Low
9	3	300	Moderate
10	4	300	Moderate
11	5	300	High
12	6	300	High
13	1	500	Low
14	2	500	Low
15	3	500	Moderate
16	4	500	Moderate
17	5	500	High
18	6	500	High

Case Simulation Data 2

Case 2 simulation data were obtained from the generation of data through MATLAB software from the beta mixture distribution of two variables with the number of groups 2 and sample sizes of 100, 300 and 500 . Table 3 presents 12 combinations of parameters tested. The combination of parameters is made in such a way that clearly visible distance between the center of the group. Distances between center groups are categorized as close, medium and far. Because the sample size was tested there were 3 , and the combination of parameters there were 12 , overall, 36 data case scenarios were generated (see Table 4).

Table 3. Parameters of the Beta Variable Mixed Model Combination Case 2 for Monte Carlo Simulation

No.	a_{11}	a_{12}	a_{21}	a_{22}	b_{11}	b_{12}	b_{21}	b_{22}	α_{1}	α_{2}	Between Cluster Center
1	30	40	25	35	30	20	25	20	0,35	0,65	Close
2	25	40	25	35	40	30	35	20	0,35	0,65	Medium
3	20	40	20	35	40	20	35	20	0,35	0,65	Long
4	40	20	20	25	25	25	40	20	0,35	0,65	Close
5	40	20	20	30	25	25	40	20	0,35	0,65	Medium
6	40	20	20	35	20	35	40	20	0,35	0,65	Long
7	40	15	40	25	25	25	30	20	0,35	0,65	Close
8	40	15	40	25	20	25	30	20	0,35	0,65	Medium
9	40	15	40	25	15	25	30	20	0,35	0,65	Long
10	35	25	20	40	35	25	45	35	0,35	0,65	Close
11	35	25	20	40	35	25	50	30	0,35	0,65	Medium
12	35	25	20	40	35	25	50	20	0,35	0,65	Long

Table 4. Case 2 Simulation Data Scenario

Scenario Number	Parameter Combination Number	n	Pearson Correlation
1	1	100	Close
2	2	100	Medium
3	3	100	Long
4	1	300	Close
5	2	300	Medium
6	3	300	Long
7	1	500	Close
8	2	500	Medium
9	3	500	Long
10	4	100	Close
11	5	100	Medium
12	6	100	Long
13	4	300	Close
14	5	300	Medium
15	6	300	Long
16	4	500	Close
17	5	500	Medium
18	6	500	Long
19	7	100	Close

20	8	100	Medium
21	9	100	Long
22	7	300	Close
23	8	300	Medium
24	9	300	Long
25	7	500	Close
26	8	500	Medium
27	9	500	Long
28	10	100	Close
29	11	100	Medium
30	12	100	Long
31	10	300	Close
32	11	300	Medium
33	12	300	Long
34	10	500	Close
35	11	500	Medium
36	12	500	Long

In this section, we will discuss the performance comparison results of the two-variable beta mixture model discussed in this paper with the beta mixture model Sahu et al. (2016) for data containing correlations. The comparison is done using a Monte Carlo simulation. The size of the comparison used is the percentage of accuracy of the number of groups of the results of each model. The results of the comparison are presented in Table 5.

Table 5. Comparison of Proposed Model Performance with Sahu et al Model, for Case 1

			Percentage of Accuracy Scenario Number	
	n	Pearson Correlation	Number of Cluster	
			Proposed Model	Sahu et al. Model
1	100	Low	91,0	0
2	100	Low	93,8	0
3	100	Moderate	100	98,5
4	100	Moderate	100	53,1
5	100	High	100	98,4
6	100	High	100	100
7	300	Low	98,3	0
8	300	Low	99,3	0
9	300	Moderate	100	100
10	300	Moderate	100	69,5
11	300	High	100	100
12	300	High	100	100
13	500	Low	99,7	0
14	500	Low	100	0
15	500	Moderate	100	100
16	500	Moderate	100	77,8
17	500	High	100	100
18	500	High	100	100

Based on Table 5 it can be seen that the percentage of accuracy of the number of groups for the proposed model in this paper is above 90%. While the percentage accuracy of the number of groups for the model of Sahu et al. (2016), at least 0%. This happens for data with low

Pearson correlation. Both the proposed model and the Sahu et al. (2016), the greater the Pearson correlation value, the greater the accuracy of the number of groups. Both the proposed model and the Sahu et al. (2016), the greater the sample size, the greater the accuracy of the number of groups. Based on the results of the comparison of the performance of the proposed model with the model of Sahu et al. (2016), which is in Table 5 shows that the percentage of the number of groups for the proposed model is greater than the percentage of the number of groups for the model of Sahu et al. (2016), except for high correlation measures. This shows that for correlated data, the proposed model is better to be used than the Sahu et al. (2016).

The performance of the method for estimating the parameters of a beta mix two-variable model involving correlations proposed in this paper is presented in Tables 6 and 7. Based on Table 4.4, it appears that the greater the sample size, the EM estimator values for the proposed model parameters in this paper are closer to the actual parameter values for all measures of Pearson correlation. This means that the larger the sample size, the more accurate the EM estimation method in estimating the proposed model parameters in this paper. Based on Table 4.5, it appears that the greater the sample size, the deviation of the EM estimator values for the proposed model parameters from the actual parameters is smaller for all measures of Pearson correlation. This means that the larger the sample size, the more precise the EM estimation method in estimating the parameters of the proposed model in this paper.

Table 6. Accuracy of EM Estimation Methods for Proposed Models

Scenario Number	n	Pearson Correlation											$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	\hat{b}_{1}	\hat{b}_{2}	\hat{c}_{1}	\hat{c}_{2}	\widehat{w}_{1}	\widehat{w}_{2}
			39.082	26.470	28.403	36.564	33.722	36.809	0.352	0.648										
2	100		38.849	26.522	31.124	35.947	34.103	36.244	0.348	0.652										
3	100		37.292	15.544	26.592	36.306	21.272	36.334	0.349	0.651										
4	100		26.653	26.134	21.292	41.832	48.094	36.536	0.350	0.650										
5	100		16.311	31.350	27.226	31.354	27.322	16.721	0.351	0.649										
6	100		15.931	31.111	26.592	31.145	37.224	16.604	0.351	0.649										
7	300		36.761	25.428	26.126	35.578	31.346	35.628	0.349	0.651										
8	300		36.734	25.476	28.322	35.634	31.465	35.659	0.350	0.650										
9	300		35.625	15.137	25.459	35.319	20.347	35.325	0.349	0.651										
10	300	Moderate	25.550	25.438	20.408	40.740	46.001	35.633	0.351	0.649										
11	300	High	15.311	30.442	25.534	30.446	25.565	16.216	0.350	0.650										
12	300	High	15.341	30.198	25.554	30.191	35.830	16.110	0.350	0.650										
13	500	Low	35.957	25.225	25.575	35.361	30.683	35.371	0.348	0.652										
14	500	Low	35.914	25.268	27.600	35.443	30.688	35.423	0.351	0.649										
15	500	Moderate	35.491	15.060	25.339	35.115	20.277	35.124	0.350	0.650										
16	500	Moderate	25.342	25.176	20.259	40.312	45.569	35.252	0.349	0.651										
17	500	High	15.249	30.361	25.445	30.344	25.457	16.183	0.349	0.651										
18	500	High	15.160	30.144	25.266	30.163	35.385	16.071	0.350	0.650										

Table 7. Precision of the EM Estimation Method for the Proposed Model

Scenario Number	n	Pearson Correlation	Precision for estimators							
			$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	\hat{b}_{1}	\hat{b}_{2}	\hat{c}_{1}	\hat{c}_{2}	\widehat{w}_{1}	\widehat{w}_{2}
1	100	Low	106.425	19.083	59.845	52.892	71.947	47.957	0.006	0.006
2	100	Low	113.029	22.460	78.953	56.716	81.761	53.402	0.007	0.007
3	100	Moderate	54.274	4.663	26.030	25.768	16.953	26.042	0.002	0.002
4	100	Moderate	32.393	14.291	18.977	38.962	108.509	27.236	0.003	0.003
5	100	High	14.143	27.699	40.320	26.263	45.234	6.775	0.003	0.003
6	100	High	10.602	18.467	29.657	18.486	60.142	5.128	0.002	0.002
7	300	Low	40.929	5.938	15.822	15.530	24.273	14.697	0.002	0.002
8	300	Low	42.123	6.020	20.584	16.918	25.198	15.927	0.003	0.003
9	300	Moderate	15.139	1.181	7.398	6.807	4.742	6.766	0.001	0.001
10	300	Moderate	9.619	4.468	5.465	12.585	32.143	8.935	0.001	0.001
11	300	High	3.301	7.233	10.096	6.866	11.263	1.838	0.001	0.001
12	300	High	2.802	5.493	7.767	5.371	16.294	1.553	0.001	0.001
13	500	Low	19.391	3.170	7.240	8.236	11.346	7.644	0.002	0.002
14	500	Low	21.752	3.185	8.973	8.530	11.952	8.140	0.002	0.002
15	500	Moderate	8.117	0.756	4.003	4.277	2.558	4.333	0.000	0.000
16	500	Moderate	5.541	2.723	3.243	7.511	18.305	5.196	0.000	0.000
17	500	High	1.918	4.057	5.870	3.868	6.444	0.990	0.001	0.001
18	500	High	1.574	3.313	4.572	3.255	9.205	0.886	0.001	0.001

Table 8. Comparison of Proposed Model Performance with Sahu et al. Model for Case 2

Scenario Number	Parameter Combination Number	n	Distance Between Cluster Center	Percentage of Accuracy Number of Cluster	
				Model Usulan	Sahu et al. Model
1	1	100	Close	12.1	1.6
2	2	100	Medium	86.4	100
3	3	100	Long	100	100
4	1	300	Close	25.3	40.3
5	2	300	Medium	97.9	100
6	3	300	Long	100	100
7	1	500	Close	17	49.7
8	2	500	Medium	99.7	100
9	3	500	Long	100	100
10	4	100	Close	100	96.8
11	5	100	Medium	100	99.9
12	6	100	Long	100	100
13	4	300	Close	100	100
14	5	300	Medium	100	100
15	6	300	Long	100	100
16	4	500	Close	100	100
17	5	500	Medium	100	100
18	6	500	Long	100	100
19	7	100	Close	100	1.6
20	8	100	Medium	100	37.8
21	9	100	Long	100	93.4
22	7	300	Close	100	1.1
23	8	300	Medium	100	70.9
24	9	300	Long	100	100
25	7	500	Close	100	0.2
26	8	500	Medium	100	90.2
27	9	500	Long	100	100
28	10	100	Close	100	20.8

BIVARIATE BETA MIXTURE MODEL WITH CORRELATIONS

29	11	100	Medium	100	94.2
30	12	100	Long	100	100
31	10	300	Close	100	46.8
32	11	300	Medium	100	100
33	12	300	Long	100	100
34	10	500	Close	100	55.8
35	11	500	Medium	100	100
36	12	500	Long	100	100

In this section, we will discuss the performance comparison results of the two-variable beta mixture model discussed in this paper with the beta mixture model Sahu et al. (2016) for data generated from the model of Sahu et al. (2016) which does not contain correlation. The size of the comparison used is the percentage of accuracy of the number of groups of the results of each model. The results of the comparison are presented in Table 8. It appears that both the proposed model and the Sahu et al. (2016), the farther the distance between the centers of the cluster, the greater the percentage of accuracy of the number of groups. In general, the larger the sample size, the greater the percentage of accuracy of the number of groups for each model. The results of the comparison show that overall it can be concluded that the mixed beta model of the two variables discussed in this paper is better than the beta mixture model Sahu et al. (2016) for the case of uncorrelated data except for the case of a combination of parameters 1 , 2 and 3 for the distance between close and medium cluster centers.

Based on the results of comparisons for data case 1 and data case 2 it can be concluded that in general the mixed beta model of the two variables discussed in this paper is better than the mixed model beta Sahu et al. (2016) for the case of correlated data or non-correlated data.

5. Conclusions

In this article the mixed beta model of two variables has been discussed which involves the correlation between the variables by utilizing the results of previous studies. Estimation of parameters for the distribution of a beta mixture of multiple variables involving correlations between the variables discussed in this my paper uses the EM algorithm. Whereas the selection of the best distribution or model or in other words the determination of the optimal number of clusters uses the ICL-BIC criteria. Simulation results show that in general the two variable beta mixed model proposed in this article is better than the Sahu et al beta mixed model. (2016) for the case of correlated data or non-correlated data. The simulation results also show that the larger the sample size, the more accurate and more precise the EM estimation method in estimating the parameters of the proposed model in this article.

CONFLICT OF INTERESTS

The author(s) declare that there is no conflict of interests.

REFERENCES

[1] C.C. Aggarwal, Data Classification: Algorithms and Applications, CRC Press, Boca Raton, London, New York, 2014.
[2] K. Blekas, A. Likas, N.P. Galatsanos, I.E. Lagaris, A Spatially Constrained Mixture Model for Image Segmentation, IEEE Trans. Neural Netw. 16 (2005), 494-498.
[3] J.F. Hair, et al. Multivariate Data Analysis: A Global Perspective. 7th ed. Upper Saddle River: Prentice Hall, 2009.
[4] T. Hofmann, Unsupervised Learning by Probabilistic Latent Semantic Analysis. Mach. Learn. 42 (2001), 177-196.
[5] R.A. Johnson, D.W. Wichern, Applied Multivariate Statistical Analysis. 6th Ed. Prentice-Hall, London, 2007.
[6] T.P. Sahu, N.K. Nagwani, S. Verma, Multivariate Beta Mixture Model for Automatic Identification of Topical Authoritative Users in Community Question Answering Sites, IEEE Access. 4 (2016), 5343-5355.
[7] C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in: Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA, 1999: pp. 246-252.
[8] I. Olkin, R. Liu, A bivariate beta distribution, Stat. Probab. Lett. 62 (2003), 407-412.
[9] M. Revow, C.K.I. Williams, G.E. Hinton, Using generative models for handwritten digit recognition, IEEE Trans. Pattern Anal. Machine Intell. 18 (1996), 592-606.
[10] W.G. Zikmund, Business research methods., South-Western Cengage Learning, Mason, OH, 2010.

[^0]: *Corresponding author
 E-mail address: nurvitatrianasari@telkomuniversity.ac.id
 Received January 4, 2021

