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Abstract: Cluster analysis is a multivariate analysis that aims to cluster objects or data so that objects or data that are 

in the same cluster have relatively more homogeneous properties than objects or data in different clusters. Probabilistic 

clustering method is often based on the assumption that data comes from a mixture of distributions, for examples 

Poisson, normal, lognormal, and Erlang. Thus the probabilistic clustering problem is transformed into a parameter 

estimation problem because the data is modeled by a cluster of mixture distribution. Data points that have the same 

distribution can be defined as one cluster. This distribution is applied to identify users on the community question 

answering site (CQA). In this paper the distribution of beta mixtures for single variable cases will be applied to the 

data on the proportion of student’s GPA in the subject of Business Statistics and Economic Mathematics of the 

Informatics Telecommunications Business Management, Faculty of Economics and Business, Telkom University. 

Based on the results of the analysis on the GPA data, Economic Mathematics and  Business Statistics shows the 

smallest integrated classification likelihood estimation Bayesian criterion (ICL BIC) scores in two clusters for GPA 

and Business Statistics Value. While the ICL value of BIC in Economic Mathematics shows the smallest ICL BIC 

value in one cluster. Then it can be concluded that GPA and Business Statistics occur in Mixture 2 clusters. 
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1.  INTRODUCTION 

Cluster analysis is a multivariate analysis that aims to cluster objects or data so that objects or data 

that are in the same cluster have relatively more homogeneous properties than objects or data in 

different clusters (Zickmund et al. 2010 and Hair et al. 2010). 

The concept of cluster formation includes hierarchical methods, non-hierarchical methods and 

clustering methods that are probable (probabilistic clustering). The hierarchical method starts 

clustering with two or more objects that have the closest similarity. Then the process is forwarded 

to other objects that have a second closeness so the cluster will form a kind of tree where there is 

a clear hierarchy or level between objects, from the most similar to the less similar to form a cluster. 

The endpoint is a set of clusters, where each cluster is distinct from the other cluster, and the 

objects within each cluster are broadly similar to each other. 

The non-hierarchical method begins by first determining the desired number of groups (two or 

more groups). After determining the number of clusters, then the grouping process is carried out 

without following a hierarchical process. The disadvantage in this method is that the number of 

cluster must be determined in advanced. 

In addition to the hierarchical and non-hierarchical methods outlined above, there is other method 

that is often used, namely the clustering method that has the opportunity to determine the optimal 

number of groups based on the distribution of the data. This clustering method is called a 

probabilistic clustering technique which assumes that the data follows a certain distribution. 

Probabilistic methods have the potential to be widely used in a variety of applications such as 

market segmentation, image segmentation (Blekas et al. 2005) and (Stauffer et al. 1999), 

handwriting recognition (Revow et al., 1996), and document clustering (Hoffman, 2001). This 

clustering method has the opportunity to try to optimize the suitability of the observed data with 

mathematical models using a probabilistic approach (Anggarwal, 2014). This method is often 
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based on the assumption that data comes from a mixture of distributions of opportunities, for 

example Poisson, normal, lognormal, and Erlang. Thus the clustering problem is transformed into 

a parameter estimation problem because the data is modeled by a cluster of mixture distribution. 

Data points that have the same distribution can be defined as groups. 

Sahu et al. (2016) discusses the distribution of beta mixtures of multiple variables where the 

parameter estimation use the EM algorithm and the determination of the optimal number of groups 

using the integrated classification likelihood (Bayesian information criterion) determinant method. 

This distribution is applied to identify users on the community question answering site (CQA). In 

this paper the distribution of beta mixtures for single variable cases will be applied to the data on 

the proportion of GPA in the subject of Business Statistics and Economic Mathematics, students 

of the Informatics Telecommunications Business Management (MBTI), Faculty of Economics and 

Business, Telkom University. 

 

2. BETA DISTRIBUTION 

Let Y be a random variable having beta distribution with the parameters 𝛼 and 𝛽, where-−∞ <

𝛼 < ∞ and −∞ < 𝛽 < ∞. The density function of this random variable is:  

𝑔(𝑦|𝛼, 𝛽) =  
𝑦𝛼−1(1−𝑦)𝛽−1

𝐵(𝛼,𝛽)
     ;    0 < 𝑦 < 1.                (1)                                                 

The curve of the beta density for various combinations of parameters is presented in Figure 1. 

 

 

Figure 1. Beta Density Function Curve of Beta Distribution for Various Parameters 
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The mean and variances of this random variable are: 

𝐸(𝑌) =
𝛼

𝛼 + 𝛽
, 

and 𝑉𝑎𝑟(𝑌) =
𝛼𝛽

[(𝛼+𝛽)2(𝛼+𝛽+1)]
. 

 

3. THE MULTIVARIATE BETA MIXTURE MODEL 

Sahu et al. (2016) used the 𝑖, 𝑥𝑖, 𝑖 = 1,2,⋯ , 𝑛, observation data to form a mixture density function 

𝑓(𝑥𝑖|𝜶, 𝒂, 𝒃) = ∑ 𝛼𝑐𝑓𝑐(𝑥𝑖|𝑎𝑐, 𝑏𝑐)                                             (2)
𝐶

𝑐=1
 

where 𝜶 = {𝛼1, 𝛼2, … , 𝛼𝐶}, ∑ 𝛼𝑐 = 1 ; 𝛼𝑐 > 0𝐶
𝑐=1  express the mixture coefficient; 𝐶 denotes the 

number of  groups in the mix; 𝑓𝑐  denotes the  density function of probability from the beta 

distribution of the single c-variable; 𝒂 = {𝑎1, 𝑎2, … , 𝑎𝐶} and  𝒃 = {𝑏1, 𝑏2, … , 𝑏𝐶} where 𝑎𝐶 and 𝑏𝐶 

represent c-cluster parameters. 

The density function of the beta distribution of a single variable for the c-class mix of beta is 

defined as 

𝑓𝑐(𝑥𝑖|𝑎𝑐, 𝑏𝑐) =
Γ(𝑎𝑐 + 𝑏𝑐)

Γ(𝑎𝑐)Γ(𝑏𝑐)
𝑥𝑖

𝑎𝑐−1
(1 − 𝑥𝑖)

𝑏𝑐−1                                  (3) 

where Γ(. ) states the gamma function which is defined as 

Γ(𝑦) =  ∫ 𝑡𝑦−1𝑒−𝑡𝑑𝑡; 𝑡 > 0
∞

0

. 

 

4. MAXIMUM LIKELIHOOD ESTIMATION FOR THE MULTIVARIATE BETA MIXTURE 

MODEL 

The parameters of the multivariate BMM can be estimated using maximum likelihood estimation. 

Suppose that Θ = {𝛼1, 𝛼2, … , 𝛼𝐶;  𝑎1, 𝑎2, … , 𝑎𝐶;  𝑏1, 𝑏2, … , 𝑏𝐶}  represents the set of  unknown 

mixture parameters of  the model and 𝑥 = {𝑥1, 𝑥2, … , 𝑥𝑛} represent the set of the normalized 

feature vectors. Therefore, the likelihood function corresponding to C components of the mixture 

can be expressed as (Sahu at al. 2016) 
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𝐿(𝑋|Θ) =  ∏𝑓(𝑥𝑖|𝜶, 𝒂, 𝒃)

𝑛

𝑖=1

= ∏∑𝛼𝑐𝑓𝑐(𝑥𝑖|𝑎𝑐, 𝑏𝑐).

𝐶

𝑐=1

𝑛

𝑖=1

 (4) 

The expectation maximization (EM) algorithm is used to estimate the mixture model parameters  

for maximum likelihood in which each user’s feature vector 𝑥𝑖  is assigned to  C dimensional 

indication vector 𝒛𝑖 = (𝑧𝑖1, 𝑧𝑖2, … , 𝑧𝑖𝐶)𝑇𝑠uch that 

𝑧𝑖𝑐 = {
1 ;  If 𝑥𝑖  belongs to the component 𝑐
0 ; otherwise.

                                        (5) 

Suppose that 𝑍 = {𝑧1, 𝑧2, … , 𝑧𝑛}   denote the set of indication vectors for set of users’ 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}. The likelihood function of the data set is given by 

𝐿(𝑋, 𝑍|Θ) = ∏∏[𝛼𝑐𝑓𝑐(𝑥𝑖|𝑎𝑐, 𝑏𝑐)]
𝑧𝑖𝑐  

𝐶

𝑐=1

𝑛

𝑖=1

                                                (6) 

Next, take the logarithm of the likelihood function, which is given by 

𝑙𝑜𝑔(𝐿(𝑋, 𝑍|Θ)) = ∑∑𝑧𝑖𝑐 log[𝛼𝑐𝑓𝑐(𝑥𝑖|𝑎𝑐, 𝑏𝑐)]

𝐶

𝑐=1

𝑁

𝑖=1

                                    (7) 

Now, the estimation of Θ is done through EM algorithm with number of iterations I = {0, 1, 2, ...} 

between the expectation and maximization steps so as to  a sequence estimate {Θ̂}
(𝐼)

 until the 

change in the  value of the log-likelihood function expressed in equation (7) is negligible. 

Expectation step: the indication for the c-component of feature vectors replaced its expectations 

as follows 

𝑧𝑖𝑐
(𝐼)

= 𝐸[𝑧𝑖𝑐 ⎸𝑥, Θ] =  
�̂�𝑐

(𝐼)
𝑓𝑐(𝑥𝑖|�̂�𝑐, �̂�𝑐)

∑ �̂�𝑘
(𝐼)

𝑓𝑘(𝑥𝑖|�̂�𝑐, �̂�𝑐)
𝐶
𝑘=1

                                       (8) 

Maximization steps :  the set of unknown parameters Θ = {𝛼1, 𝛼2, … , 𝛼𝐶 ;  𝑎1, 𝑎2, … , 𝑎𝐶 ;  𝑏1, 𝑏2, … , 𝑏𝐶} 

of the mixture model are  calculated using the estimated 𝑧𝑖𝑐  values in the expectation step. The 

mixing coefficients of the model are calculated as 

�̂�𝑐
(𝐼+1)

= 
∑ �̂�𝑖𝑐

(𝐼)𝑛
𝑖=1

𝑛
 ; 𝑐 = 1,2, … , 𝐶.                                            (9) 
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The gradient derivative of the expectation of the log-likelihood of the dataset  𝑎𝑐  and 𝑏𝑐  and 

equated to zero, which is used to find the value �̂�𝑐, �̂�𝑐 that maximizes the likelihood as follows 

[

𝜕𝐸[log (𝐿(𝑋, 𝑍|Θ)))]
𝜕𝑎𝑐

𝜕𝐸[log (𝐿(𝑋, 𝑍|Θ)))]
𝜕𝑏𝑐

] = 0                                            (10) 

where,  

𝜕𝐸[log (𝐿(𝑋, 𝑍|Θ)))]

𝜕𝑎𝑐
= ∑�̂�𝑖𝑐 [

Γ′(𝑎𝑐 + 𝑏𝑐)

Γ(𝑎𝑐 + 𝑏𝑐)
−

Γ′(𝑎𝑐)

Γ(𝑎𝑐)
+ log(𝑥𝑖)]  

𝑛

𝑖=1

                (11) 

and 

𝜕𝐸[log (𝐿(𝑋, 𝑍|Θ)))]

𝜕𝑏𝑐
= ∑ �̂�𝑖𝑐 [

Γ′(𝑎𝑐 + 𝑏𝑐)

Γ(𝑎𝑐 + 𝑏𝑐)
−

Γ′(𝑏𝑐)

Γ(𝑏𝑐)
+ log(1 − 𝑥𝑖)]               

𝑛

𝑖=1

(12) 

From equations (11) and (12), equation (10) can be represented as follows 

[
 
 
 
 
 ∑ �̂�𝑖𝑐[𝜓(𝑎𝑐 + 𝑏𝑐) − 𝜓(𝑎𝑐) + log (𝑥𝑖)]

𝑛

𝑖=1

∑�̂�𝑖𝑐[𝜓(𝑎𝑐 + 𝑏𝑐) − 𝜓(𝑏𝑐) + log (1 − 𝑥𝑖)]

𝑛

𝑖=1 ]
 
 
 
 
 

= 0                            (13) 

where 𝜓(. )  represents the digamma function defined as 𝜓(𝜆) =
Γ′(𝜆)

Γ(λ)
. An exact solution to 

equation (13) as the digamma function is defined through integration. Therefore, the Newton-

Raphson (a tangent method for root finding) is used to estimate parameter 𝑎𝑐 and 𝑏𝑐 iteratively as 

[
𝑎𝑐

(𝐼+1)

𝑏𝑐
(𝐼+1)

] = [
𝑎𝑐

(𝐼)

𝑏𝑐
(𝐼)

] −

[
 
 
 
 
𝜕𝐸[log(𝐿(𝑋, 𝑍|Θ))]

𝜕𝑎𝑐

𝜕𝐸[log(𝐿(𝑋, 𝑍|Θ))]

𝜕𝑏𝑐 ]
 
 
 
 

 

x 

[
 
 
 
 
𝜕2𝐸[log(𝐿(𝑋, 𝑍|Θ))]

(𝜕𝑎𝑐)2

𝜕2𝐸[log(𝐿(𝑋, 𝑍|Θ))]

𝜕𝑎𝑐𝜕𝑏𝑐

𝜕2𝐸[log(𝐿(𝑋, 𝑍|Θ))]

𝜕𝑏𝑐𝜕𝑎𝑐

𝜕2𝐸[log(𝐿(𝑋, 𝑍|Θ))]

(𝜕𝑏𝑐)2 ]
 
 
 
 
−1

 

(14) 

where 
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𝜕2𝐸[log(𝐿(𝑋, 𝑍|Θ))]

(𝜕𝑎𝑐)2
= ∑�̂�𝑖𝑐[𝜓

′(𝑎𝑐 + 𝑏𝑐) − 𝜓′(𝑏𝑐)]

𝑛

𝑖=1

 (15) 

where 𝜓′(. ) is a tri-gamma function. The initial value of 𝑎𝑐
(0)

 and 𝑏𝑐
(0)

 needed to start the iteration 

process expressed in equation (14) is done through estimating the moment of beta distribution. The 

moment estimates 𝑎𝑐
(0)

 and 𝑏𝑐
(0)

 are defined as 

�̂�𝑐
(0)

= �̅�𝑐 [
�̅�𝑐(1 − �̅�𝑐)

𝜎𝑐
2

− 1] (16) 

�̂�𝑐
(0)

= (1 − �̅�𝑐) [
�̅�𝑐(1 − �̅�𝑐)

𝜎𝑐
2

− 1]       (17) 

where �̅�𝑐 is the sample mean and 𝜎𝑐
2 is the sample variance of the feature value corresponding to 

D-dimension of the feature vectors and belongs to the C component of beta distribution. The 

Newton-Raphson algorithm converges when the change in values of estimates �̂�𝑐 and  �̂�𝑐  is less 

than a small positive value ξ, with each successive iteration of equations (19) and (20).   

The maximum possible estimate of the beta distribution parameters can be done using the EM 

algorithm. The EM algorithm depends on initialization, Fuzzy C-Means (FCM) is used to initialize. 

First, the data set (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) is partitioned into a C cluster. Next, the parameters of each 

component of the dataset is estimated using the method of moment of the beta distribution and 

setting them as initial parameters which is required in EM algorithm. 

 

5. ESTIMATING THE NUMBER OF COMPONENTS IN THE MIXTURE 

Various approaches have been proposed to estimate the number of components in mixture model. 

Sahu at al. (2016) use deterministic approach based on EM algorithm to obtain a range of values 

for 𝐶 = 1,2, … , 𝐶𝑚𝑎𝑥 which is assumed to have optimal value of  C. The number of components 

is selected according to the following criteria 

�̂� = arg𝑚𝑖𝑛𝐶{𝑀𝑆𝐶 (Θ̂(𝐶), 𝐶), 𝐶 = 1,2, … , 𝐶𝑚𝑎𝑥}  (18) 

where Θ̂(𝐶)  is an estimate of the mixture parameters assuming that it has C components, and 

MSC (Θ̂(𝐶), 𝐶) is the model selection criterion. In Sahu at al. (2016), ICL-BIC is used as the 

model selection criterion defined as follows 
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𝐼𝐶𝐿 − 𝐵𝐼𝐶(𝐶) = −2 log 𝐿𝐶 + 𝑝 log(𝑛) − 2∑∑𝑧𝑖𝑐 log 𝑧𝑖𝑐  

𝐶

𝑐=1

𝑛

𝑖=1

 (19) 

where 𝐿𝐶  is the logarithm for getting the maximum likelihood solution of the beta mixture model 

and 𝑝 is the number of estimated parameters. The detailed procedure for estimating the optimal 

number of beta components in the mixture of the dataset is illustrated in the following algorithm. 

Algorithm: Estimating the number of components in the beta mixture  

Input: (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) and 𝐶𝑚𝑎𝑥  

Output: The optimal number of components C representing beta mixture  

Begin 

 for C = 1 to Cmax do 

     if C == 1 then 

Estimates that each parameter pair {�̂�𝑐 , �̂�𝑐} using equation (14). 

Compute the value of  ICL-BIC (C) using equation (19). 

 else 

Initialize EM algorithm using FCM clustering algorithm; alternate the following two 

steps to estimate the mixture parameters as:  

E-Step: Compute 𝑧𝑖𝑐
(𝐼)

 using equation (8). 

M-Step: 

(1) Estimate the mixing coefficients using equation (9). 

(2) Estimate {�̂�𝑐, �̂�𝑐} using equation (14). 

Repeat E-Step and M-Step until the change in equation (7) is negligible. 

Compute the value of ICL-BIC (C) using equation (19). 

end if-else 

     end for 

Select �̂� such that  �̂� = arg𝑚𝑖𝑛𝐶{𝐼𝐶𝐿 − 𝐵𝐼𝐶(𝐶), 𝐶 = 1,2, … , 𝐶𝑚𝑎𝑥}  

end 
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6. APPLICATION 

The initial stage of this research was to conduct a study of cluster analysis in the field of business 

management. The data used is secondary data obtained based on data from Telkom University. 

Based on data from Telkom University regarding the scores of students and GPA, a univariate beta 

model will be applied to the data on the proportion of Telkom University students from 2009 to 

2017 to classify the scores and GPA of Telecommunication and Informatics Business Management 

students. The data includes 108 classes for Business Statistics and Economic Mathematics courses 

and the overall GPA of students. A summary of statistics on proportion data for the three variables 

is presented in Table 1. 

Table 1. Summary of proportion data statistics 

Proportion data statistics GPA Economic Mathematics Business Statistics 

Mean 0,4621 0,4273 0,5828 

Median 0,3800 0,3350 0,6300 

Standard  Deviation 0,2205 0,2142 0,1910 

Minimum 0,06 0,08 0,22 

Maximum 0,85 0,95 0,95 

The proportion data for the 3 (three) variables can be illustrated in Figure 2. 

GPA 
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Economic Mathematics 

 

Business Statistics 

 

Figure 2: Proportion Histogram Data 
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7. ANALYSIS RESULTS 

GPA 

C ICL-BIC 

1 -30.0228 

2 -66,7877 

3 -40.8837 

4 30.8365 

Economic Mathematics 

C ICL-BIC 

1 -32.0280 

2 -21.5667 

3 7.4926 

4 101.7882 

Business Statistics 

C ICL-BIC 

1 -55.1038 

2 -75.7477 

3 -51.1398 

4 NaN 

Based on the results of the analysis on the GPA data, Economic Mathematics and  Business 

Statistics shows the smallest ICL BIC value in the two clusters for GPA and Business Statistics 

scores. While the ICL value of BIC in Economic Mathematics shows the smallest ICL BIC value 

in one cluster. Then it can be concluded that GPA and Business Statistics occur in Mixture 2 

clusters. 
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