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Abstract. A nonlinear discrete-time model of information dissemination is considered and conditions for existence

of a positive equilibrium of this system are obtained. It is shown that asymptotically stable positive equilibrium

saves his stability under the influence of stochastic perturbations of the different types: small multiplicative pertur-

bations, quickly fading multiplicative perturbations and quickly fading additive perturbations. Stability conditions

are obtained using Lyapunov functions, are formulated in the terms of linear matrix inequalities (LMIs) and are

illustrated by numerical simulations of solutions of the considered system. As an unsolved problem it is proposed

to investigate the situation when stochastic perturbations fade on the infinity, but not very quickly. The proposed

research method can be applied to investigate many other nonlinear mathematical models in various applications.

Keywords: stochastic perturbations; Lyapunov functions; linear matrix inequalities (LMIs); asymptotic mean

square stability; stability in probability; numerical simulations.
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1. INTRODUCTION

The model of information dissemination during the last years is enough popular in research

(see, for instance, [1, 2, 3, 4, 5, 8] and references therein). This model consists of the following

compartments: Ignorants (I), Sharers or Spreaders (S), and Removed (R) people. The term
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”Ignorant” means a person that does not know about the information. The word ”Sharer” is

used to denote that a person is attracted by the information and/or he finds it funny or interesting,

then he decides to share it. The term ”Removed” means a person who has seen the post and has

decided for some personal reasons not to share it.

It is supposed that the quantity of members of each group depends on the time moment

i= 0,1, ..., i.e., Ii, Si, Ri, but the quantity of members of all groups is a constant, i.e., Ii+Si+Ri =

N = const. So, the model of information dissemination is described via the system of three

nonlinear difference equations [3]

(1.1)

∆Ii =µN−µIi−
β IiSi

N
,

∆Si =−µSi +
β1IiSi

N
− γRiSi

N
,

∆Ri =−µRi +
β2IiSi

N
+

γRiSi

N
,

where ∆Ii = Ii+1− Ii and the same for all other variables.

Below conditions are obtained by which the system (1.1) has a positive equilibrium and

stability of this equilibrium is investigated under different types of stochastic perturbations.

2. EXISTENCE OF A POSITIVE EQUILIBRIUM

Putting in (1.1) Ii = I∗, Si = S∗, Ri = R∗, we obtain the system of algebraic equations for the

system (1.1) equilibrium E∗ = {I∗,S∗,R∗}

(2.1)

µN =
β I∗S∗

N
+µI∗,

β1I∗S∗

N
=

γR∗S∗

N
+µS∗,

β2I∗S∗

N
+

γR∗S∗

N
= µR∗.

From two first equations (2.1) we have

(2.2) S∗ =
µN(N− I∗)

β I∗
, R∗ =

β1I∗−µN
γ

.

Substituting (2.2) into the equality N = I∗+S∗+R∗, we obtain the equation for I∗

(2.3) N = I∗+
µN(N− I∗)

β I∗
+

β1I∗−µN
γ

.
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Using the notations

(2.4)
a0 =β (β1 + γ), a1 = (β µ +βγ + γµ)N, a2 = γµN2,

b =
µN
β1

, F(b) = a0b2−a1b+a2,

the Eq. (2.3) can be transformed to the quadratic equation

(2.5) F(I∗) = a0(I∗)2−a1I∗+a2 = 0.

Lemma 2.1. Let us suppose that a2
1 > 4a0a2, i.e., the Eq. (2.5) has two roots

(2.6) I∗1 =
a1 +

√
a2

1−4a0a2

2a0
, I∗2 =

a1−
√

a2
1−4a0a2

2a0
,

and the system (1.1) has two equilibria E∗1 = (I∗1 ,S
∗
1,R
∗
1), E∗2 = (I∗2 ,S

∗
2,R
∗
2), where S∗i and R∗i are

defined via (2.2) for appropriate I∗i , i = 1,2. Then

(1) if a1 > 2a0b and F(b)> 0 then both equilibria E∗1 and E∗2 are positive;

(2) if a1 > 2a0b and F(b) ≤ 0 or a1 ≤ 2a0b and F(b) < 0 then there exist only one positive

equilibrium E∗1 ;

(3) if a1 ≤ 2a0b and F(b)≥ 0 then a positive equilibrium does not exist.

Proof. (1) Following (2.2), (2.4), (2.6) and I∗1 > I∗2 , it is enough to show that from a1 > 2a0b and

F(b)> 0 it follows I∗2 > b, i.e., β1I∗2 > µN. Really, the inequality F(b) = a0b2−a1b+a2 > 0

is equivalent to (a1−2a0b)2 > a2
1−4a0a2, from where it follows a1−2a0b >

√
a2

1−4a0a2 or

I∗2 =
a1−

√
a2

1−4a0a2

2a0
> b.

(2) If a1 > 2a0b then via (2.6) I∗1 >
a1

2a0
> b, i.e., β1I∗1 > µN, therefore, the equilibrium E∗1 is a

positive one. Besides, the inequality F(b) = a0b2−a1b+a2≤ 0 is equivalent to (a1−2a0b)2≤

a2
1−4a0a2, from where it follows a1−2a0b≤

√
a2

1−4a0a2 or I∗2 =
a1−

√
a2

1−4a0a2

2a0
≤ b, i.e.,

the equilibrium E∗2 is not a positive one.

If a1 ≤ 2a0b then I∗2 <
a1

2a0
≤ b, i.e., β1I∗2 < µN, therefore, the equilibrium E∗2 is not a

positive one. Besides, the inequality F(b) = a0b2−a1b+a2 < 0 is equivalent to (a1−2a0b)2 <

a2
1−4a0a2, from where it follows 2a0b−a1 <

√
a2

1−4a0a2 or I∗1 =
a1 +

√
a2

1−4a0a2

2a0
> b, i.e.,

β1I∗1 > µN, therefore, the equilibrium E∗1 is a positive one.
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(3) The inequality F(b) = a0b2− a1b+ a2 ≥ 0 is equivalent to (a1− 2a0b)2 ≥ a2
1− 4a0a2,

from where it follows 2a0b−a1≥
√

a2
1−4a0a2 or I∗1 =

a1 +
√

a2
1−4a0a2

2a0
≤ b, i.e., β1I∗1 ≤ µN,

therefore, the equilibrium E∗1 is not a positive one. Since I∗2 < I∗1 ≤ b, then the equilibrium E∗2

is not a positive one too. �

Remark 2.1. If a2
1 = 4a0a2 then the Eq. (2.5) has one root I∗ =

a1

2a0
and by the condition

β1a1 > 2a0µN the system (1.1) has a positive equilibrium E∗ = (I∗,S∗,R∗), where S∗ and R∗

are defined in (2.2).

Example 2.1. Put I0 = 830, S0 = 130, R0 = 60, β1 = 0.081, β2 = 0.031, γ = 0.002, µ =

2.6× 10−4. Via (2.4) in this case b = 3.2741, a0 = 0.0093, a1 = 0.2587 > 2a0b = 0.0609,

a2 = 0.5410, a2
1 = 0.0669 > 4a0a2 = 0.0201, F(b) =−0.2064. So, the conditions (2) of Lemma

2.1 hold and there are one positive equilibrium E∗1 = (25.5530,92.1499,902.2971) and one not

a positive equilibrium E∗2 = (2.28,1058.08,−40.36).

Putting β1 = 0.000081 with the same values of all other parameters, we obtain a1−2a0b =

−0.3514 and F(b) = 457.56, i.e., the conditions (3) of Lemma 2.1 hold and both equilibria are

not positive ones: E∗1 = (1108.4,−0.6804,−87.7102), E∗2 = (7.5465,1144.7,−132.2944).

2.1. Centralization and linearization. Consider the nonlinear differential equation

(2.7) ∆xi = F(xi),

where xi ∈Rn and the equation F(xi)= 0 has a solution x∗ that is an equilibrium of the difference

equation (2.7). Using the new variable yi = xi− x∗, represent the Eq. (2.7) in the form

(2.8) ∆yi = F(x∗+ yi).

It is clear that stability of the zero solution of the Eq. (2.8) is equivalent to stability of the

equilibrium x∗ of the Eq. (2.7).

Let JF =

∥∥∥∥∂Fi

∂x j

∥∥∥∥, i, j = 1, ...,n, be the Jacobian matrix of the function F = {F1, ...,Fn} and

lim|y|→0
|o(y)|
|y|

= 0, where |y| is the Euclidean norm in Rn. Using Taylor’s expansion in the
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form F(x∗+ y) = F(x∗)+ JF(x∗)y+ o(y) and the equality F(x∗) = 0, we obtain the linear ap-

proximation

(2.9) ∆zi = JF(x∗)zi

of the Eq. (2.8). So, a condition for asymptotic stability of the zero solution of the linear Eq.

(2.9) is also a condition for local stability of the equilibrium x∗ of the initial nonlinear Eq. (2.7).

3. STOCHASTIC PERTURBATIONS

Let {Ω,F,P} be a basic probability space, Fi ∈ F, i ∈ Z = {0,1, ...}, be a family of σ -

algebras, E be the expectation, (ξ ji)i∈Z , j = 1,2,3, be three mutually independent sequences of

Fi-adapted mutually independent identically distributed random variables such that

(3.1)
Eξ ji = 0, Eξ

2
ji = 1, j = 1,2,3, i ∈ Z,

Eξ jiξkm = 0 if j 6= k or i 6= m.

3.1. Multiplicative perturbations. Let us suppose that the system (1.1) influences by sto-

chastic perturbations that are proportional to the deviation of the system state Ei = (Ii,Si,Ri)

from the equilibrium E∗ = (I∗,S∗,R∗), i.e., the system (1.1) takes the form

(3.2)

∆Ii =µN−µIi−
β IiSi

N
+σ1i(Ii− I∗)ξ1,i+1,

∆Si =−µSi +
β1IiSi

N
− γRiSi

N
+σ2i(Si−S∗)ξ2,i+1,

∆Ri =−µRi +
β2IiSi

N
+

γRiSi

N
+σ3i(Ri−R∗)ξ3,i+1,

where (σ ji)i∈Z , j = 1,2,3, are three number sequences. Note that the equilibrium E∗=(I∗,S∗,R∗)

of the system (1.1) is also the solution of the system (3.2).

Calculating the Jacobian matrix of the system (3.2) and using (2.1), we obtain for the system

(3.2) the linear approximation of the type (2.9) in the form

∆zi = Azi +
3

∑
j=1

C jiziξ j,i+1,(3.3)

where zi = (z1i,z2i,z3i)
′, ′ is the transpose sign, the 3×3-dimensional matrix C ji has all zero ele-

ments besides of the diagonal element c j j,i = σ ji, j = 1,2,3, i∈ Z, the matrix A= JF(I∗,S∗,R∗),
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i.e.,

(3.4) A =


−
(

µ +
βS∗

N

)
−β I∗

N
0

β1S∗

N
β1I∗− γR∗

N
−µ −γS∗

N
β2S∗

N
β2I∗+ γR∗

N
γS∗

N
−µ

 .

3.2. Additive perturbations. Let us suppose that the system (1.1) influences by additive sto-

chastic perturbations of the form

(3.5)

∆Ii =µN−µIi−
β IiSi

N
+σ1iξ1,i+1,

∆Si =−µSi +
β1IiSi

N
− γRiSi

N
+σ2iξ2,i+1,

∆Ri =−µRi +
β2IiSi

N
+

γRiSi

N
+σ3iξ3,i+1,

where (σ ji)i∈Z , j = 1,2,3, are three number sequences. Note that in this case the equilibrium

E∗ = (I∗,S∗,R∗) of the system (1.1) is not a solution of the system (3.5).

Similarly to (3.3) the linear approximation of the system (3.5) takes the form

∆zi = Azi +Ciξi+1,(3.6)

where zi and A are the same as in (3.3), (3.4), Ci = diag(σ1i,σ2i,σ3i), ξi = (ξ1i,ξ2i,ξ3i)
′.

4. STABILITY

Definition 4.1. The equilibrium E∗= (I∗,S∗,R∗) of the system (3.2) is called stable in probabil-

ity if for any ε > 0 and ε1 > 0 there exists a δ > 0 such that the solution Ei =(Ii,Si,Ri) of the sys-

tem (3.2) satisfies the inequality P{supi∈Z |Ei−E∗|> ε/F0}< ε1 provided that P{|E0−E∗|<

δ}= 1.

Definition 4.2. The solution of the Eq. (3.3) is called:

- uniformly mean square bounded if supi∈Z E|zi|2 < ∞;

- asymptotically mean square trivial if limi→∞ E|zi|2 = 0;

- mean square summable if
∞

∑
i=0

E|zi|2 < ∞.

Remark 4.1. Note that if the solution of the Eq. (3.3) is mean square summable then it is

uniformly mean square bounded and asymptotically mean square trivial.
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Definition 4.3. The zero solution of the Eq. (3.3) is called:

- mean square stable if for each ε > 0 there exists a δ > 0 such that E|zi|2 < ε , i ∈ Z, if

E|z0|2 < δ ;

- asymptotically mean square stable if it is mean square stable and for each initial value z0 the

solution zi of the Eq. (3.3) is asymptotically mean square trivial.

Remark 4.2. It is known that sufficient conditions for asymptotic mean square stability of the

zero solution of the linear Eq. (3.3) at the same time are sufficient conditions for stability in

probability of the equilibrium E∗ = (I∗,S∗,R∗) of the nonlinear system (3.2) [6].

Remark 4.3. Note that the Eq. (3.6) is the linear approximation of the nonlinear system (3.5).

So, if the solution zi of the Eq. (3.6) is asymptotically mean square trivial then the solution

Ei = (Ii,Si,Ri) of the system (3.5) satisfies the condition limi→∞ E|Ei−E∗|2 = 0 provided that

E|E0−E∗|2 is small enough.

Theorem 4.1. [6] Let there exist a nonnegative function V (xi), which satisfies the conditions

(4.1) EV (z0)≤ c1E|z0|2, E∆V (zi)≤−c2E|zi|2, i ∈ Z.

Then the zero solution of the Eq. (3.3) is asymptotically mean square stable.

Theorem 4.2. [7] Let there exist a nonnegative function V (xi), which satisfies the conditions

(4.2) EV (z0)≤ c1E|z0|2, E∆V (zi)≤−c2E|zi|2 + γi, i ∈ Z,
∞

∑
i=0

γi < ∞.

Then the solution of the Eq. (3.6) is mean square summable.

4.1. Small multiplicative perturbations. Everywhere below the inequality R < 0 means that

the symmetric matrix R is negative definite.

Theorem 4.3. Suppose that σ ji does not depend on i, i.e., σ ji = σ j and therefore C ji = C j,

j = 1,2,3, i∈ Z. Let there exist a positive definite 3×3-dimensional matrix P such that the LMI

(4.3) A′P+PA+A′PA+
3

∑
j=1

C′jPC j < 0

holds. Then the equilibrium (I∗,S∗,R∗) of the system (3.2) is stable in probability.
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Proof. Following Remark 4.2, it is enough to prove that the zero solution of the linear Eq.

(3.3) is asymptotically mean square stable. Really, using the properties of ξ j,i+1 (3.1), for the

function Vi = z′iPzi and the Eq. (3.3) we have

E∆Vi =E
[
z′i+1Pzi+1− z′iPzi

]
=E

[(
zi +Azi +

3

∑
j=1

C jziξ j,i+1

)′
P

(
zi +Azi +

3

∑
j=1

C jziξ j,i+1

)
− z′iPzi

]

=2Ez′iP

(
Azi +

3

∑
j=1

C jziξ j,i+1

)
+E

(
Azi +

3

∑
j=1

C jziξ j,i+1

)′
P

(
Azi +

3

∑
j=1

C jziξ j,i+1

)

=E

(
2z′iPAzi + z′iA

′PAzi +
3

∑
j=1

z′iC
′
jPC jzi

)

=Ez′i

(
PA+A′P+A′PA+

3

∑
j=1

C′jPC j

)
zi.

From here and the LMI (4.3) it follows that the function Vi satisfies the conditions (4.1) of

Theorem 4.1. So, the zero solution of the Eq. (3.3) is asymptotically mean square stable and

therefore the equilibrium (I∗,S∗,R∗) of the system (3.2) is stable in probability. The proof is

completed. �

Example 4.1. In Fig.1 the solution Ei = (Ii,Si,Ri) of the system (3.2) with σ ji = σ j, j = 1,2,3,

is shown in the deterministic case (σ1 = σ2 = σ3 = 0) with the initial condition I0 = 700,

S0 = 260, R0 = 60 and the values of all other parameters, given in Example 2.1. One can see

that the solution converges to the positive equilibrium E∗1 = (25.5530,92.1499,902.2971).

Example 4.2. Consider now the system (3.2) with constant σ j, j = 1,2,3. Via MATLAB it

was shown that by the values of all parameters, given in Example 2.1, the LMI (4.3) holds for

maximal values of σ1 = 0.058, σ2 = 0.05, σ3 = 0.02. In Fig.2 25 trajectories of the solution

Ei = (Ii,Si,Ri) are shown with the initial conditions I0 = 230, S0 = 60, R0 = 730. The equi-

librium E∗1 = (25.5530,92.1499,902.2971) of the system (3.2) is stable in probability, so, all

trajectories converge to this equilibrium. Note that stability in probability is a local stability,

so, the initial values are chosen closer to the equilibrium E∗1 than in Fig.1.



INFORMATION DISSEMINATION UNDER STOCHASTIC PERTURBATIONS 9

FIGURE 1. The solution of the system (3.2) in deterministic case (all σ j are

zeros) with the initial condition I0 = 700, S0 = 260, R0 = 60. The solution

converges to the equilibrium E∗1 = (25.5530,92.1499,902.2971)

FIGURE 2. 25 trajectories of the solution of the system (3.2) with σ1 = 0.058,

σ2 = 0.05, σ3 = 0.02 and the initial conditions I0 = 230, S0 = 60, R0 = 730.

All trajectories converge to the equilibrium E∗1 = (25.5530,92.1499,902.2971)

which is stable in probability

4.2. Fading multiplicative perturbations.

Theorem 4.4. Suppose that

(4.4)
∞

∑
i=0

σ
2
i < ∞, σ

2
i = max

j=1,2,3
σ

2
ji,
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and there exist a positive definite 3×3-dimensional matrix P such that the LMI

(4.5) A′P+PA+A′PA < 0

holds. Then the solution of the Eq. (3.3) is asymptotically mean square trivial.

Proof. Let p be the maximal diagonal element of the matrix P and pm be the minimal eigenvalue

of the matrix P, i.e., z′iPzi ≥ pm|zi|2. Using the properties of ξ j,i+1 (3.1), for the Lyapunov

function

(4.6) Vi = exp

(
−

i−1

∑
k=0

λk

)
z′iPzi, λi =

p
pm

σ
2
i ,

we obtain

(4.7)

E∆Vi =E

[
exp

(
−

i

∑
k=0

λk

)
z′i+1Pzi+1− exp

(
−

i−1

∑
k=0

λk

)
z′iPzi

]

=exp

(
−

i

∑
k=0

λk

)
E
[
z′i+1Pzi+1− eλiz′iPzi

]

=exp

(
−

i

∑
k=0

λk

)
E

[(
zi +Azi +

3

∑
j=1

C jiziξ j,i+1

)′
P

(
zi +Azi +

3

∑
j=1

C jiziξ j,i+1

)
− eλiz′iPzi

]

=exp

(
−

i

∑
k=0

λk

)
Ez′i

[
(I +A′)P(I +A)+

3

∑
j=1

C′jiPC ji− eλiP

]
zi

=exp

(
−

i

∑
k=0

λk

)
Ez′i

[
A′P+PA+A′PA+

3

∑
j=1

C′jiPC ji +(1− eλi)P

]
zi.

Note that eλi ≥ 1+λi or 1− eλi ≤−λi. So, via (4.6)

(4.8) (1− eλi)z′iPzi ≤−λi pm|zi|2 =−pσ
2
i |zi|2.

Besides, using the definition of the matrix C ji, we have

(4.9)
3

∑
j=1

z′iC
′
jiPC jizi = z′i


p11σ2

1i 0 0

0 p22σ2
2i 0

0 0 p33σ2
3i

zi ≤ pσ
2
i |zi|2.
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FIGURE 3. 25 trajectories of the solution of the system (3.5) with σ1i =
2.8

1+ i
,

σ2i =
2.2

1+ i
, σ3i =

4.6
1+ i

, and the initial conditions I0 = 70, S0 = 120, R0 = 830.

All trajectories converge to the equilibrium E∗1 = (25.5530,92.1499,902.2971).

From (4.7), (4.8), (4.9) and (4.4) it follows

(4.10) E∆Vi ≤exp

(
−

∞

∑
k=0

λk

)
Ez′i
[
A′P+PA+A′PA

]
zi.

From here and the LMI (4.5) it follows that the function Vi satisfies the conditions (4.1) of

Theorem 4.1. So, the zero solution of the Eq. (3.3) is asymptotically mean square stable and

therefore the equilibrium (I∗,S∗,R∗) of the system (3.2) is stable in probability. The proof is

completed. �

Example 4.3. In Fig.3 25 trajectories of the solution Ei = (Ii,Si,Ri) of the system (3.2) are

shown with σ1i =
2.8

1+ i
, σ2i =

2.2
1+ i

, σ3i =
4.6

1+ i
, and the initial conditions I0 = 70, S0 = 120,

R0 = 830, all other parameters are the same as in Example 2.1. In correspondence with Theo-

rem 4.4 and Remark 4.3 all trajectories converge to the equilibrium

E∗1 = (25.5530,92.1499,902.2971).

4.3. Fading additive perturbations.

Theorem 4.5. Suppose that

(4.11)
∞

∑
i=0

γi < ∞, γi =
3

∑
j=1

σ
2
ji,
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and there exist a positive definite 3×3-dimensional matrix P such that the LMI

(4.12) A′P+PA+A′PA < 0

holds. Then the solution of the Eq. (3.6) is asymptotically mean square trivial.

Proof. Using the properties of ξ j,i+1 (3.1) and (4.11), for the function Vi = z′iPzi and the Eq.

(3.6) we have

E∆Vi =E
[
z′i+1Pzi+1− z′iPzi

]
=E
[
(zi +Azi +Ciξi+1)

′P(zi +Azi +Ciξi+1)− z′iPzi
]

=2Ez′iP(Azi +Ciξi+1)+E(Azi +Ciξi+1)
′P(Azi +Ciξi+1)

≤E

(
2z′iPAzi + z′iA

′PAzi +‖P‖
3

∑
j=1

σ
2
jiξ

2
j,i+1

)
=Ez′i

(
PA+A′P+A′PA

)
zi +‖P‖γi.

From here and (4.12) it follows that the conditions (4.2) of Theorem 4.2 hold. Therefore, the

solution of the Eq. (3.6) is asymptotically mean square summable and asymptotically mean

square trivial. The proof is completed. �

Example 4.4. In Fig.4 25 trajectories of the solution Ei = (Ii,Si,Ri) of the system (3.5) are

shown with σ1i =
150
1+ i

, σ2i =
30

1+ i
, σ3i =

100
1+ i

, and the initial conditions I0 = 230, S0 =

60, R0 = 730, all other parameters are the same as in Example 2.1. In correspondence with

Theorem 4.5 and Remark 4.3 all trajectories converge to the equilibrium

E∗1 = (25.5530,92.1499,902.2971).

Remark 4.4. There is an unsolved problem: is it possible to weaken the conditions (4.4) and

(4.11)? For example, to consider a situation with fading stochastic perturbations in the case

when the sequence (σ ji)i≥0 converges to the zero but is not a square summable, i.e. lim
i→∞

σ2
ji = 0

but
∞

∑
i=0

σ2
ji = ∞, j = 1,2,3.
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FIGURE 4. 25 trajectories of the solution of the system (3.5) with σ1i =
150
1+ i

,

σ2i =
30

1+ i
, σ3i =

100
1+ i

, and the initial conditions I0 = 230, S0 = 60, R0 = 730.

All trajectories converge to the equilibrium E∗1 = (25.5530,92.1499,902.2971).

5. CONCLUSIONS

Impact of different types of stochastic perturbations on a nonlinear discrete-time model of

information dissemination is studied. It is shown that asymptotically stable positive equilibrium

of the considered model saves his stability under influence of small multiplicative perturbations,

quickly fading multiplicative perturbations or quickly fading additive perturbations. For getting

appropriate stability conditions the method of Lyapunov functions and method of linear matrix

inequalities (LMIs) are used. The levels of fading stochastic perturbations are defined by square

summable number sequences. For future investigation the unsolved problem is proposed to get

stability conditions for stochastic perturbations that fade on the infinity not so quickly. Similar

research can be applied for many other nonlinear models in different applications.

CONFLICT OF INTERESTS

The author declares that there is no conflict of interests.

REFERENCES

[1] S. Bidah, O. Zakary, M. Rachik, H. Ferjouchia, Mathematical Modeling of Public Opinions: Parameter

Estimation, Sensitivity Analysis, and Model Uncertainty Using an Agree-Disagree Opinion Model, Abstr.

Appl. Anal. 2020 (2020), 1837364.



14 LEONID SHAIKHET

[2] H. Boutayeb, S. Bidah, O. Zakary, M. Rachik, A New Simple Epidemic Discrete-Time Model Describing the

Dissemination of Information with Optimal Control Strategy, Discrete Dyn. Nat. Soc. 2020 (2020), 7465761.

[3] Z. Rachik, H. Boutayeb, S. Bidah, O. Zakary, M. Rachik, Control of information dissemination in online

environments: optimal feedback control, Commun. Math. Biol. Neurosci. 2020 (2020), 86.

[4] F. Roshani, Y. Naimi, Effects of degree-biased transmission rate and nonlinear infectivity on rumor spreading

in complex social networks, Phys. Rev. E. 85 (2012), 036109.

[5] C.-Y. Sang, S.-G. Liao, Modeling and simulation of information dissemination model considering user’s

awareness behavior in mobile social networks, Physica A: Stat. Mech. Appl. 537 (2020), 122639.

[6] L. Shaikhet, Lyapunov functionals and stability of stochastic difference equations. Springer Science & Busi-

ness Media, London, Dordrecht, Heidelberg, NewYork, 2011.

[7] L. Shaikhet, Lyapunov functionals construction for stochastic difference second-kind Volterra equations with

continuous time, Adv. Difference Equ. 2004 (2004), 67-91.

[8] C. Wang, Z.X. Tan, Y. Ye, L. Wang, K.H. Cheong, N. Xie, A rumor spreading model based on information

entropy, Sci. Rep. 7 (2017), 9615.


