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Abstract. In this paper, we investigate a free terminal time optimal control applied to 6 ordinary differential equa-

tions which describe the spread of COVID-19 infection. We propose an extension of the classical Susceptible-

Exposed-Infectious-Recovered (SEIR) model, where the infectious patients are divided into unreported (U) and

reported cases (I). To have a more realistic model, we estimate the parameters of our model using real Moroccan

data. We use Bootstrap as a statistical method to improve the reliability of the parameters estimates. The main

goal of this work is to find the optimal control strategy and to determine the optimal duration of a vaccination

campaign adequate to eradicate the infection in Morocco. For this, we introduce into the model a saturated vac-

cination function, which takes into account the limited resources on the COVID-19 vaccine, and we formulate a

minimization problem where the final time is considered to be free. The existence of optimal control is investi-

gated. The characterization of the sought optimal control and optimal final time is derived based on Pontryagin’s

maximum principle. Using Matlab, we solve the optimality system with an iterative method based on the iterative

Forward-Backward Sweep Method (FBSM). The numerical simulation results show the efficiency of a vaccination

strategy on reducing the number of infectious individuals within an optimal period time which is approximately

equal to 44 days.
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1. INTRODUCTION

The infectious COVID-19 spreads via direct contact or droplets and results for the majority

of cases in initial symptoms including fever, cough, dyspnea, myalgia, or fatigue. Emergency

symptoms can occur, they include intestinal symptoms like diarrhea, cardiac injury, chest pain

or pressure, confusion, difficulty walking, and kidney injury. The complication of the infection

would lead to death (see Chan et al. [1] and Sohrabi et al. [2]). Epidemic models are of

very relevant interest in the background literature related to understanding the propagation,

extinction, oscillatory behaviours and convergence properties of the state-trajectory solutions

to their equilibrium points see Wang et al. [3], Soares and Bassanezi [4], and Köhler-Rieper

et al. [5]. Many mathematical models have been developed in recent decades to gain insight

into the transmissible nature of infectious diseases, such as SIR models, SIS models and SEIR

models with or without time delays, see for example Beretta [6], Li et al. [7], Yew Ng and

Mei Gui [8] and De Luca and Romeo [9]. When the pandemic start, we are interested to

understand where and how did the pandemic start, what is the risk of its spread in the region

and importation in other regions of the world, every one try to understand the pathogen and

its epidemiological characteristics. At the stage where the pandemic takes hold, researchers

investigating various intervention and control strategies; usually pharmacological interventions

do not work in the event of a pandemic and thus non-pharmacological interventions are most

appropriate. Newbold et al.[10] develop an epidemiological-economic model to examine the

optimal duration and intensity of physical distancing measures aimed to control the spread of

COVID-19. Their model was applied to the United States where they consider the trade-off

between the lives saved by physical distancing both directly from stemming the spread of the

virus and indirectly from reductions in air pollution during the period of physical distancing and

the short and long run economic costs that ensue from such measures.

Optimal control of epidemics with purely non-pharmaceutical procedures was treated in

Kantner and Koprucki [11]. They consider an extension of SEIR model and continuous-time

optimal control theory to compute the optimal non-pharmaceutical intervention strategy, to min-

imize disease-related deaths and to establish a sufficient degree of natural immunity in order to

exclude a second wave, when the eradication of the epidemic isn’t possible. Their obtained
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solution was close to the stability boundary of the system, and they calibrate their model to re-

produce the initial exponential growth phase of the COVID-19 pandemic in Germany. Chen et

al. have developed a numerical solution for uncertain SIR model with application to COVID-19

(see Chen et al. [12]). They presented an α-path-based approach, that can handle the high-

dimensional SIR model, to calculate the uncertainty distributions and related expected values

of solutions. Furthermore, they estimated the parameters by using the method of moments

and designed a numerical algorithm to solve them. Their model was applied to the infected

and recovered data of the province of Hubei to describe the development trend of COVID-19.

They affirmed that the lockdown policy achieves almost 100% efficiency after February 13,

2020. Chowdhury et al.[13] employed a multivariate prediction model, based on up-to-date

transmission and clinical parameters, to simulate outbreak trajectories in 16 countries, from di-

verse regions and economic categories. In each country, they modelled the impacts on intensive

care unit (ICU) admissions and deaths over an 18-month period. This multi-country analy-

sis demonstrates that intermittent reductions of R0 below 1 through a potential combination of

suppression interventions and relaxation can be an effective strategy for COVID-19 pandemic

control. Global stability for delay SIR and SEIR epidemic models with non-linear incidence

rate was developed by Huanga et al. to show that the global properties of equilibria only depend

on the basic reproductive number and that the latent period in a vector does not affect the stabil-

ity, but the latent period in an infected host plays a positive role to control disease development

(see Huanga et al. [14]). They incorporate time delays into the ordinary differential equation

models and consider two delay differential equation models in which delays are caused by the

latency of the infection in a vector, and by the latent period in an infected host. SEIR epidemic

model for the spread of COVID-19 using the Caputo fractional derivative was investigated by

Shahram [15]. By using the fixed point theory, the existence of a unique solution for the model

was treated. Also, by using the fractional Euler method, they get an approximate solution to the

model. The generalized fractional order SEIR model was employed by Xu et al. [16] to fore-

cast analysis of the epidemics trend of COVID-19 in the USA, two modified models SEIQRP

and SEIQRPD successfully capture the development process of COVID-19, which provides an

important reference for understanding the trend of the outbreak. To control the diffusion of
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infectious disease such as COVID-19, Park and Kim analysed the basic reproduction number in

South Korea that allow identification of a necessary level of vaccine stockpile in order to achieve

herd immunity(see Park and Kim [17]. They adopted an susceptible-infected-susceptible model

that allows a stochastic diffusion. Their results shows that the basic reproduction number of

South Korea is substantially lower than those of the other regions and is approximately equal

to 2. The herd immunity suggests that at least 62% of the susceptible population be vaccinated

when the vaccine becomes available. Other works on the optimal control problem of COVID-19

can be found in [18, 19, 20, 21] and the references therein.

With the lack of effective treatment for COVID-19, vaccination remains one of the possible

solutions to control this infectious disease. In order to evaluate the impact of a vaccination cam-

paign on the spread of COVID-19, we propose in this work an optimal control problem based

on a SEUIRD model adapted to this epidemic and which takes into consideration real data from

the epidemiological situation in Morocco. Our contribution essentially consists of estimating

the parameters of our model from the number of cases communicated by the Ministry of Health

in Morocco; the aim being to build a model that reflects, as possible as, the reality. Solving an

optimal control problem where we considered a saturated vaccination function
uS

1+bS
where

u represents the percentage of susceptible people vaccinated. This function is the most appro-

priate for the current context, which is characterised by high international demand on available

vaccines and limited manufacturing capacities. Also, through this work we propose an answer

to a fundamental question concerning the optimal duration of the vaccination campaign in order

to reduce the number of the infection cases.

The paper is organised as follows: in Section 2, we present our mathematical model and

the parameters estimates. In Section 3, we formulate the optimal control problem, we prove

the existence of a solution and put forward the control expression. In Section 4, we propose

numerical simulations to show the efficiency of our control strategy. Finally, some conclusions

are given in Section 5.
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2. COVID-19 MATHEMATICAL MODEL

2.1. Model construction. In this paper, we consider a model of six non-linear differential

equations which describe the dynamic of the COVID-19 disease. The total population, denoted

N, is divided into six different compartments:

• Susceptible individuals (S), people who may be infected by the virus;

• Exposed individuals and asymptomatic individuals (E), infected with the virus but with-

out typical symptoms of infection;

• Unreported infection cases (U), who are infectious but not yet confirmed by a test;

• Reported infection cases (I), people who are diagnosed as COVID-19 positive patients

and are hospitalized;

• Recovered individuals (R);

• Individuals that deceased due to the disease (D).

We assume that the transmission of COVID-19 occurs following adequate contact between sus-

ceptible and infected people in E and U compartments. As the positive diagnosed people in

I are isolated, we assume that they have no contact with susceptible and do not contribute to

the disease spread. Due to the non-linear contact dynamics in the population, we use the inci-

dence function β
E +U

N
S to indicate successful transmission of COVID-19, where β denotes

the infection contact rate. We assume that all newly infected individuals enter to the exposed

compartment E for k−1 days (k is the rate at which individuals leaves the latent class by be-

coming infectious). A proportion p of the infectious individuals are diagnosed and enter the

compartment I. While the remaining infectious patients are considered as free infectious peo-

ple and they are regrouped in the unreported compartment U . Among infectious patients who

are not yet detected and isolated, some of them are diagnosed at a rate γ . In our model, we use

a time-dependent decreasing mortality rate m(t) given by the following formula

(1) m(t) .
= m0 exp(m1× t)

From the clinical data, we have observed that there was an increasing change within time for

the number of individuals who progress from I to the class R; to reflect this, we assume that

people in I enter into the removed class with a time-dependent variable r(t), which is derived
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from the following logistic function:

(2) r(t) .
= r f +

r0− r f

1+ exp
(

t− t1/2

∆

) .

where t1/2 represents the time at which r(t) reaches its half value, ∆ determines the width of

r(t). The parameters r0 and r f model asymptotic values.

The transfer diagram of our model is given in Figure 1.

FIGURE 1. Transfer diagram.

The dynamics of the model is governed by the following differential equations:

(3)



Ṡ =−β
(E +U)

N
S,

Ė = β
(E +U)

N
S− kE,

U̇ = (1− p)kE− γU,

İ = pkE + γU− (r(t)+m(t))I,

Ṙ = r(t)I,

Ḋ = m(t)I.

with initial data,

S(0) = S0, E(0) = E0, U(0) =U0, I(0) = I0, R(0) = R0 and D(0) = D0.
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2.2. Positivity and boundedness of solutions. As the model (3) describes the temporal evo-

lution of a human populations, we shall show that the solutions remain non-negative and bounded.

From the system (3), we have

(4)

dS
dt

∣∣∣
S=0

= 0,

dE
dt

∣∣∣
E=0

= β
SU
N
≥ 0,

dU
dt

∣∣∣
U=0

= (1− p)kE ≥ 0,

dI
dt

∣∣∣
I=0

= pkE + γU ≥ 0,

dR
dt

∣∣∣
R=0

= rI ≥ 0,

dD
dt

∣∣∣
D=0

= mI ≥ 0.

We note that all above rates are non-negative on bounding planes of the non-negative cone of

R6. Thus, if we begin in the interior of this cone, we shall always remain in this cone as the

direction of the vector filed is inward on all the bounding planes. So, all the solutions of the

system (3) are positive. Further, as N(t) denotes the total population, then N(t) = S(t)+E(t)+

I(t)+U(t)+R(t)+D(t), and by adding equations in (3), it is easy to prove that all solutions S,

E, U , I, R and D are bounded by N(0). Hence, the model is well posed in a biologically feasible

domain given by the following positive invariant set:

(5) S= {(S, E,U, I, R,D) |0≤ S, E,U, I, R,D≤ N(0)} .

2.3. Parameters estimation. In this section, we estimate parameters of the model (3), as well

as the unknown initial conditions E0 and U0. For this, we will use the least squares data fitting

method and the cumulative daily data of confirmed, removed and death cases form June 10,2020

to November 14,2020, reported by the Ministry of Public Health in Morocco and available in

[22].

Firstly, we start by computing parameters m0 and m1 in (1). We assume that the cumulative

numbers of reported cases and deceased people are respectively given by

(6) I(t) .
= a0 exp(a1× t) and D(t) .

= b0 exp(b1× t).
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Combining equations (1), (6) and Ḋ(t) = m(t)I(t), we set

(7) m0 =
b0b1

a0
and m1 = b1−a1.

Using real data of reported cases I(t) and deaths D(t) from [22] and the Matlab curve toolbox,

we obtain the estimates of a0, a1, b0 and b1 (see Table 1). Thus, we get m0 = 3.7429× 10−04

and m1 =−6.9×10−04.

TABLE 1. Parameter estimates of the functions I(t) and D(t).

Parameter Value 95% confidence bounds

a0 11315 (10810 - 11810)

a1 0.02079 (0.02047 - 0.02112)

b0 210.7 (197.5 - 223.90)

b1 0.0201 (0.01963 - 0.02056)

Then, as the progression rate, k, form E to the infectious stage is equal to the inverse of the

mean incubation period [23], and knowing that several studies show that the mean incubation

period of COVID-19 is around 5 days (see for example [24, 25, 26]); we fix k = 1/5 per days.

Finally, the remaining parameters and the unknown initial conditions E0 and U0 are estimated

by fitting in the model (3) to the observed data using the MATLAB routine lsqcurvefit. The

resulting estimations are listed in Table 2 and the best model fit to the real data is shown in

Figures 2-4.
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FIGURE 2. Real data and fitted curve for I.
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FIGURE 3. Real data and fitted curve for R.
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FIGURE 4. Real data and fitted curve for D.

2.4. Bootstrap and Reliability Analysis. Bootstrapping is a statistical method based on pro-

ducing a sample distribution by re-sampling from the given data (see Efron B, Tibshirani RJ

[27], Fox J [28]). This approach allows us to estimate the distribution of any statistical param-

eter and can provide more accuracy measures to the sample estimates. It can be used with any

types of models under weak assumptions.

Bootstrap sampling has been used to improve the reliability of the estimates of the parameters

β , p, γ , r f , r0, t1/2, ∆ as well as the initial condition E0 and U0. The distributions of the estimated

parameters obtained from 1000 generated data sets are given in Figure 5, and the mean, the

standard deviation, and 95% confidence interval are listed in Table 2. The results provide a

good confidence level of the set of our estimated parameters.
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TABLE 2. Parameters estimates, mean, standard deviation and 95% Confidence Interval.

Parameter Estimate Mean Standard deviation (SD) 95% Confidence Interval (CI)

β 0.115768024 0.112256948 0.00420654 (0.10116158 - 0.117410608)

p 0.289325082 0.311295688 0.070078017 (0.255519854 - 0.587618612)

γ 0.136098016 0.123876227 0.019388298 (0.040352552 - 0.144011587)

r f 0.498252228 0.497751743 0.012559405 (0.498251772 - 0.498252228)

r0 0.017165194 0.017003139 0.000100169 (0.016816212 - 0.017197129)

t1/2 1071.542139 1070.742858 27.18332868 (1062.089459 - 1071.657161)

∆ 32.04221371 31.69876736 3.414919291 (26.51246374 - 32.40571967)

E0 2718.311292 2971.089892 562.6065861 (2714.998332 - 3992.062558)

U0 2047.200867 2303.351431 223.9384701 (1976.389227 - 2793.777185)

3. OPTIMAL CONTROL PROBLEM

3.1. Optimal control formulation. Here, we can note that the variable D does not appear in

the first 5 equations of the system (3), it can be deduced from D = N−S−E−U − I−R. So,

we can limit our study to the following system

(8)



Ṡ =−β
(E +U)

N
S,

Ė = β
(E +U)

N
S− kE,

U̇ = (1− p)kE− γU,

İ = pkE + γU− (r(t)+m(t))I,

Ṙ = r(t)I.

with initial data,

S(0) = S0, E(0) = E0, U(0) =U0, I(0) = I0 and R(0) = R0.

The control strategy we adopt consist of a vaccination campaign that aims to limit the spread

of the COVID-19 disease among Moroccan population. We consider a control variable u(t)

which represents the percentage of individuals being vaccinated per unit of time. As there

is a limited resources and the whole population can not be vaccinated, we chose a saturated
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vaccination function given by
u

1+bS
where b is the saturation factor that measures the effect of

the susceptible being delayed for vaccination. A positive number, denoted ω , is used to model

the efficiency of the vaccine. We assume that the vaccinated people will join the recovered

individuals compartment. Our model with control is given as follow

(9)



Ṡ =−β
(E +U)

N
S−ω

u
1+bS

S,

Ė = β
(E +U)

N
S− kE,

U̇ = (1− p)kE− γU,

İ = pkE + γU− (r(t)+m(t))I,

Ṙ = r(t)I +ω
u

1+bS
S,

with initial data,

S(0) = S0, E(0) = E0, U(0) =U0, I(0) = I0 and R(0) = R0.

Our control strategy aims at minimizing the number of the susceptible and the infected individ-

uals, maximizing the number of the recovered individuals as well as minimizing the cost of the

vaccination program. Also, our goal is to minimize the duration of the vaccination program.

Mathematically, we formulate an optimal control problem with free terminal time based on the

objective functional

(10) J(u, t f ) =

t f∫
0

(
S(t)+E (t)+U(t)−R(t)+

A
2

u2(t)
)

dt +Bt2
f ,

where A and B are the weight constants of the control and time respectively.

In other words, we seek optimal control u∗ and optimal terminal time t∗f such that

(11) J(u∗, t∗f ) = min
{

J(u, t f ) |u ∈U and t f ∈ R+
}
,

subject to system (9), with Uad is the set of the admissible controls, defined by

(12) Uad =
{

u(t) : 0≤ u≤ umax ≤ 1, u is measurable , t ∈
[
0, t f

]}
.
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For the existence of a solution of the system (9), we note X(t) = [S(t),E(t), I(t),U(t),R(t)]T

and we write this system as follows

(13)
dX
dt

= AX +F (X) = G(X) ,

where

(14) A =



0 0 0 0 0

0 −k 0 0 0

0 (1− p)k 0 −γ 0

0 pk −(r+m) γ 0

0 0 r 0 0


,

and

(15) F (X) =



−β
S(E +U)

N
−ω

u
1+bS

S

β
S(E +U)

N
0

0

ω
u

1+bS
S


.

The function F satisfies

|F (X1)−F (X2) | =

∣∣∣∣βN (S1 (E1 +U1)−S2 (E2 +U2)
)
+ωu

(
S2

1+bS2
− S1

1+bS1

)∣∣∣∣
+

∣∣∣∣βN (S1 (E1 +U1)−S2 (E2 +U2)
)∣∣∣∣+ ∣∣∣∣ωu

(
S2

1+bS2
− S1

1+bS1

)∣∣∣∣
≤ 2β

N
|S1(E1 +U1)−S2(E2 +U2)|+2ωu

∣∣∣∣ S1

1+bS1
− S2

1+bS2

∣∣∣∣
≤ 2β

N
|S1(E1−E2)+S1(U1−U2)− (E2 +U2)(S1−S2)|

+
2ωu

(1+bS1)(1+bS2)
|S1−S2|



OPTIMAL CONTROL AND FREE OPTIMAL TIME PROBLEM FOR COVID-19 15

≤ 2β

N
(N|E1−E2|+N|U1−U2|+2N|S1−S2|)+2ω|S1−S2|

≤ 2β (|E1−E2|+ |U1−U2|)+(4β +2ω) |S1−S2|

≤ (8β +2ω) |X1−X2|

where

(16) |X1−X2|= |S1−S2|+ |E1−E2|+ |I1− I2|+ |U1−U2|+ |R1−R2|.

Furthermore, one has

(17) |G(X1)−G(X2) | ≤M|X1−X2|,

where

(18) M = max(‖A‖,8β +2ω)< ∞.

Thus, it follows that the function G is uniformly Lipschitz continuous. From the boundedness

of the control u and the restriction on the state variables, we conclude that there exist a solution

of the system (9) (see [29]). In the rest of this section, we will be interested in proving the

existence of the optimal control and deriving its characterization.

3.2. Existence of an optimal control. The existence of the optimal control can be obtained

using a result by Fleming and Rishel [30] (see Corollary 4.1). Let f = [ f1 f2 f3 f4 f5]
T be the

right-hand side of the system (9) and X = [S E U I R]T .

Theorem 1. Consider the control problem with system (9). There exist an optimal control u∗

such that

(19) J(u∗(t), t f ) = min
u∈Uad

J
(
u(t), t f

)
if the following conditions are satisfied:

(1) The set of controls and corresponding solutions to the system (9) is non-empty.

(2) The control set Uad is convex and closed.

(3) The function f is bounded by a linear function in the state and control variables.
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(4) The integrand of the objective functional, L(X ,u) = S+E +U −R+
A
2

u2, is convex on

Uad and there exist constants c1, c2 > 0, and ρ > 1 such that L(X ,u)≥ c1
(
|u|2
) ρ

2 − c2.

(5) The pay-off term at the terminal time in the objective functional φ
(
X(t f ), t f

)
= Bt2

f is

continuous.

Proof.

• Condition 1 To prove that the set of controls and corresponding state variables is non-

empty, we use a simplified version of an existence result [31] (see Theorem 7.1.1).

• Condition 2 The set Uad is closed and convex by definition.

• Condition 3 We have

(20)



f1 = Ṡ≤ 0,

f2 = Ė ≤ β
(E +U)

N
S,

f3 = U̇ ≤ (1− p)kE,

f4 = İ ≤ pkE + γU,

f5 = Ṙ≤ I +ωu.

Using the boundness of the state variables, system (20) can be rewrite in matrix form:

(21) f ≤M1X +M2u,

where

(22) M1 =



0 0 0 0 0

2β 0 0 0 0

0 (1− p)k 0 0 0

0 pk γ 0 0

0 0 0 1 0


and M2 =



0

0

0

0

ω


which gives a linear function of controls vector and state variables vector. Thus, we can

write

(23) ‖ f‖ ≤C (‖X‖+‖u‖) ,
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where C = max(‖M1‖,‖M2‖).

Hence, we see that the right hand side of the state system is bounded by a sum of state

and control vector. Therefore, condition 3 is satisfied.

• Condition 4 To verify condition 4, we note that the integrand in the objective functional

(10) is quadratic in the control, it is convex on Uad . As the state variables are bounded

by N, and by considering c2 = N, c1 =
A
2

and ρ = 2 it is easy to check that the constants

c1, c2 > 0, and ρ > 1 satisfies L(X ,u)≥ c1
(
|u|2
) β

2 − c2.

• Condition 5 It is obvious that φ
(
X(t f ), t f

)
is continuous.

�

3.3. Characterization of the optimal control. In order to derive the necessary conditions

for our optimal control problem, we use the Pontryagin’s Maximum Principale given in [32].

This principal converts the problem (9)–(11) into a problem of minimizing a Hamiltonian, H,

defined by

(24) H = S+E +U−R+
A
2

u2 +
5

∑
i=1

λi fi,

where fi for i = 1, . . . ,5 is the right side of the differential equation of the ith state variable.

By applying the Pontryagin’s maximum principle [32] and the existence result for optimal

control and corresponding optimal states from [30], we obtain the following theorem:

Theorem 2. Given an optimal control u∗, an optimal terminal time t∗f and solutions S∗, E∗, I∗

and R∗ of the corresponding state system (9), there exists an adjoint vector λ = [λ1,λ2,λ3,λ4,λ5]

that satisfies

(25)

·
λ 1 =−1+(λ1−λ2)β

(E +U)

N
+ω(λ1−λ5)

u
(1+bS)2 ,

·
λ 2 =−1+(λ1−λ2)β

S
N
+λ2k−λ3(1− p)k−λ4 pk,

·
λ 3 =−1+(λ1−λ2)β

S
N
+ γ(λ3−λ4),

·
λ 4 = (λ4−λ5)r(t)+λ4m(t),
·
λ 5 = 1,

with the transversality condition λi(t f ) = 0 for i = 1, . . . ,5.
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Furthermore, the optimal control u∗ is given by

(26) u∗ = min
(

umax,max
(

0,ω
(λ1−λ5)S∗

A(1+bS∗)

))
,

and the optimal final time is given by

(27) t∗f =
R(t∗f )−S(t∗f )−E(t∗f )−U(t∗f )−

A
2
(u(t∗f ))

2

2B
.

Proof. The adjoint equations and transversality conditions can be obtained by using Pontrya-

gin’s Maximum Principle such that

(28)



·
λ 1 =−

∂H
∂S

, λ1(t f ) = 0,
·
λ 2 =−

∂H
∂E

, λ2(t f ) = 0,
·
λ 3 =−

∂H
∂U

, λ3(t f ) = 0,
·
λ 4 =−

∂H
∂ I

, λ4(t f ) = 0,
·
λ 5 =−

∂H
∂R

, λ5(t f ) = 0.

The optimal control u∗ can be solved from the optimality condition,

(29)
∂H
∂u

= 0,

that is

(30)
∂H
∂u

= Au−λ1
ω

1+bS
S+λ5

ω

1+bS
S = 0.

with the control bounds in Uad , it is easy to obtain u∗ in the form (26).

The transversality condition for t f to be the optimal terminal time can be stated as

(31) H(t∗f ,X(t∗f ),λ (t
∗
f ),u(t

∗
f )) =−

∂φ

∂ t
(t∗f ,X(t∗f )),

where φ(t,X(t)) = Bt2

that is

(32) S(t∗f )+E(t∗f )+U(t∗f )−R(t∗f )+
A
2

u(t∗f )
2 +2Bt∗f = 0.
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Then

(33) t∗f =
R(t∗f )−S(t∗f )−E(t∗f )−U(t∗f )−

A
2
(u(t∗f ))

2

2B

�

4. NUMERICAL SIMULATION

In this section, we illustrate the numerical simulations associated to the resolution of the

optimality system. This system consists of the state system, adjoint system, the control char-

acterization and separated boundary conditions at times t0 = 0 and t f . To solve this two-point

boundary value system, we use an iterative method based on a combination of forward and

backward difference approximation, which converges when a tolerance criterion is reached.

The numerical scheme we propose to compute the solution of our optimality system and the

optimal final time is summarized in the algorithm given below. Let X the state variable and λ

the adjoint variable.

Algorithm

Step 0

• Make initial guess for the terminal time t f and the control u0.

Step 1

• Solve the state system (9) with initial condition X0 forward in time using the stored

values for X and u.

• Solve the adjoint system (25) with transversality condition λ (t f ) = 0 backward in time

using the stored value for the controls and the state variable.

Step 2

• Update the control using new X , λ and the formula (26).

• Update the free terminal time using the formula (27).

Step 3

• Testing the convergence : if the difference of values of these variables in this iteration

and the last iteration is sufficiently small, output the obtained current values as solutions.

If the difference is not considerably small, return to Step 1.



20 MOHAMED ELHIA, KHALID CHOKRI, MERYEM ALKAMA

Our numerical results are carried out using the parameters values obtained in section 2.3.

The efficiency of the vaccine is set to ω = 80% and the initial condition are given by: N(0) =

35952000, S(0) = 35930988, E(0) = 2718, U(0) = 2047, I(0) = 8472 and R(0) = 7565. We

use b = 10−6, A = 105 and B = 105. We display the spread of infection over a period of 157

days in the absence and presence of the vaccination strategy.

In figure 6, we remark that the number of susceptible individuals decreases more rapidly

during the vaccination campaign, it reach 160 at the day 157.

The vaccination contains the infection to the lower values on exposed individuals represented

in the figure 7, it goes from 2928 at the day 14 to 0 at the day 157, while it grows to 5,7×104

without control at the day 157.

In figure 8, the evolution of the infected individuals takes more time to decrease than the

exposed one, it goes from 1,975× 104 at the day 48 to 4345 at the day 157, while without

vaccination, the infected compartment of the epidemic is uncontrolled and goes to high levels

represented on the value 2,84×105 at the day 157.

Figure 9 shows that the vaccination strategy gets the number of U to 0 at the day 157, while,

without control, it still reaches high levels as the previous states.

The number of death is increasing in both the parts with and without control, but the figure

10 shows that we can limit it to 926 at the day 157, while it’s 4864 at the same day without

control.

The figure 11 represents the optimal control where we see that the full effort on u is applied

during almost the entire control period.

Finally, we can conclude that the vaccination control strategy has an efficient impact on

reducing the number of susceptible, exposed and infectious people in an optimal period time,

which approximates 44 days as shown in figure 12.
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FIGURE 6. Susceptible in-
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FIGURE 8. Diagnosed in-

fectious individuals with

and without control.

0 50 100 150
0

1

2

3

4

5

6
x 10

4

Time (Days) 

U(t)  

 

 

With control

Without control

FIGURE 9. Undiagnosed
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and without control.
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FIGURE 10. Deaths cases

with and without control.
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5. CONCLUSION

Recent studies reported the severe consequences of COVID-19 on public health and the econ-

omy. The number of infection and deaths around the world motivates the researchers to work

for a vaccine that can help to eradicate this pandemic. The concern of this paper is to contribute

to the world efforts that aim at understanding the dynamic of this infectious disease and limiting

its spread. By setting an optimal control problem based on a model that reflects the epidemio-

logical situation of Morocco, and includes a saturated vaccination function; we investigate the

impact of a vaccination campaign on reducing the number of infectious individuals as well as

the optimal duration of this campaign. Our results show that vaccination is an effective strat-

egy that can help to control the spread of COVID-19 in Morocco within an optimal time that

approximates 44 days. Note that the model and the optimal approach used in this study can

be applied to other countries. Also, taking into account the main role of the spatial diffusion

of the COVID-19 disease, one possible extension of this work is to consider a regional control

approach based on a reaction-diffusion model.
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