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Abstract: This paper considers the count regression models in case of the dataset contains overdispersion and 

outliers. Seven robust and non-robust estimators are provided for four count regression (Poisson, negative binomial 

(NB), zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB)) models. The non-robust estimators 

were obtained by applying the maximum likelihood estimation on the four count models. While two robust 

estimators were obtained by applying the M-estimation on the Poisson and NB models (MP and MNB estimators), 

and the third robust estimator is the quantile regression of the count model (QRC estimator). Simulation study and 

empirical application were conducted to evaluate the performance and the efficiency for the robust and non-robust 

estimators of the four count regression models. The results showed that, in general, all robust estimators gave better 

performance than all non-robust estimators if the model contains outliers. And the QRC estimator reforms well even 

if the percent of the outlier values up to 25% when the sample size is large, dispersion value is small (less than or 

equal one). While when the dispersion value more than one, the MNB estimator is the efficient. The results of our 

application, which based on German health survey data in 1998, indicate that the significant variable that effect on 

the number of visits to doctor is the patient's condition (bad health or not in bad health), and the QRC estimator is 

the best for this data. 

Keywords: count regression models; M-estimation; negative binomial regression; Poisson regression; zero inflated 

negative binomial regression; zero inflated Poisson regression; quantile regression. 
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1. INTRODUCTION  

The most common probability distribution used to model count data is the Poisson distribution 

[1]. The Poisson distribution is favored because it accounts for the positive skewness inherent in 

count data, allows for zero counts, and has ease of use and interpretation. Count data often 

display substantial overdispersion with respect to the Poisson models. Overdispersion is occurs 

when the variance of the response variable is greater than the mean and may cause standard 

errors of the estimates to be deflated or underestimated, a variable may appear to be a significant 

predictor when it is in fact not significant. Therefore, the Poisson distribution is not very flexible; 

where it assumes equidispersion (i.e., the mean and variance are equal). On the other hand, the 

NB distribution employs an additional parameter that models overdispersion. That is, the 

negative binomial distribution as a Poisson (𝜇) distribution, where 𝜇 is itself a random variable 

that distributed as a gamma distribution. For a more discussion on both the Poisson and NB 

distributions, see, e.g., [1, 2, 3, 4, 5]. 

To deal with the overdispersion problem in count regression, some suggestions have been made 

in the statistical literature. Most of these suggestions are based on updating the count regression 

model itself or the estimation method used. Nelder and Wedderburn [6] suggested the use of the 

quasi-likelihood estimation method that define the relationship between mean and variance in the 

model. Ismail and Jemain [2] suggested Poisson-gamma mixture and generalized Poisson models 

as alternative models for Poisson model to deal with overdispersion problem. Also, Rahayu and 

Sadik [7] suggested zero inflated count regression models to detect zero inflated and 

overdispersion problems, they concluded that the ZINB model fits better than a standard ZIP in 

the presence of excess zeros and overdispersion problems. 

It is well known that outlier values in the dataset can really mess up the analysis, since maximum 

likelihood (ML) estimators of generalized linear model (GLM) ate very sensitive to outliers [8, 9, 

10]. Moreover, outliers may be a result of the overdispersion problem because outliers are 

observations which deviate from the common pattern of the data, see [11, 12, 13].  

In several regression models, it is necessary to use robust regression or quantile regression to 

detect outliers and to provide resistant stable results in the presence of outliers, see, e.g., [14, 15, 

16, 17, 18, 19, 20]. However, despite the fair amount of existing literature, robust inference for 

generalized linear models seems to be very limited [14, 21]. Specifically, robust estimators for 

Poisson regression model are proposed by [21, 22], the efficiency of the two robust estimators is 
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studied by [14]. Machado and Santos Silva [23] developed the quantile regression estimator for 

count regression models. While the robust estimator for NB model is proposed by [24]. 

In this paper, we study the efficiency of robust and non-robust estimators for count regression 

models when the dataset contains overdispersion problem, many zeros, and outliers. To achieve 

this goal, a Monte Carlo simulation study and real data application have been performed. 

This paper is organized as follows: Section 2 represents the four count regression (Poisson, NB, 

ZIP, and ZINB) models, their non-robust estimators, and how to choose the appropriate count 

regression model for any dataset. Three robust estimators are presented in Section 3. Section 4 

shows the design and results of the simulation study. The results of our empirical application are 

discussed in Section 5. Section 6 offers some concluding remarks. 

 

2. COUNT REGRESSION MODELS 

2.1. Poisson Regression Model 

The basic GLM for count data is the Poisson regression model with log link function, where the 

random component is specified by the Poisson distribution of the response variable which is a 

count. Consider the modeling framework of GLM where the response variable 𝑦𝑖, for 𝑖 = 1, … , 𝑛  

is drawn from a distribution belonging to the exponential family, such that 𝐸(𝑦𝑖|𝑥𝑖) =

𝑉𝑎𝑟(𝑦𝑖|𝑥𝑖) = 𝜇𝑖  and linear predictor as:   𝑔(𝜇𝑖) = 𝑥𝑖
𝑇𝛽 , where  𝛽 = (𝛽1, … , 𝛽𝑝)

𝑇
∈ ℛ𝑝 is the 

vector of regression parameters, 𝑥𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑝)  ∈ ℛ𝑝  is a set of explanatory variables, 

and 𝑔(∙) is the link function. Using the log link function, we can write the Poisson regression 

model in terms of the mean of the response, based on a sample 𝑦1, 𝑦2, … , 𝑦𝑛, as  

𝑦𝑖 = 𝜇𝑖 +  𝜀𝑖 = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽) + 𝜀𝑖; 𝑖 = 1,2, … , 𝑛,                    (1) 

where 𝜀𝑖  is the error term. Then the log-likelihood function for 𝑛  independent Poisson 

observations with probabilities given in the density function of Poisson distribution is [25]: 

𝑙𝑜𝑔𝐿(𝛽) = ∑ {𝑦𝑖𝑙𝑜𝑔(𝜇𝑖) − 𝜇𝑖 − 𝑙𝑜𝑔(𝑦𝑖!)}𝑛
𝑖=1 .                          (2) 

To get the ML estimates for the model in (1), we are maximizing the log-likelihood respect to 𝛽. 

However, maximizing the log-likelihood has not closed-form solution, so numerical search 

procedures (such as Fisher scoring [26]) are used to find the ML estimates. We will refer to the 

ML estimator of the Poisson model as the MLP estimator. 
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2.2. Negative Binomial Regression Model 

The NB regression model is a popular generalization of Poisson regression because it loosens the 

highly restrictive assumption that the variance is equal to the mean made by the Poisson model 

and an alternative approach to modeling overdispersion in count data is to start from a Poisson 

regression model and add a dispersion parameter α =
1

ϕ
. NB distribution can be viewed as a 

Poisson distribution according to a Gamma distribution. Thus, the NB distribution is known as a 

Poisson-Gamma mixture with the following formula [25]: 

𝑓(𝑦𝑖; 𝜇𝑖, 𝛼) =  
Γ(𝑦𝑖+𝛼−1)

Γ(𝑦𝑖+1)Γ(𝛼−1)
(

1

1+𝛼𝜇𝑖
)

𝛼−1

(
𝛼𝜇𝑖

1+𝛼𝜇𝑖
)

𝑦𝑖

,   𝑦𝑖 = 0,1, . . 𝑛. 

With 𝐸(𝑦𝑖) = 𝜇𝑖 and variance is 𝑉𝑎𝑟(𝑦) = 𝜇𝑖 + 𝛼−1𝜇𝑖
2 = 𝜇𝑖(1 + ϕ𝜇𝑖). 

This model is attractive because it manages to handle data that is overdispersed since it allows 

for random variation in the Poisson conditional mean by letting: 

𝐸(𝑦𝑖|𝑥𝑖) = 𝑍𝑖𝜇𝑖 = 𝑍𝑖𝑒𝑥𝑝 (𝑥𝑖
𝑇𝛽),  𝑖 = 1,2, … , 𝑛, 

where 𝑍𝑖  a random variable that is gamma distributed. This extra parameter 𝛼 in the variance 

expression allows us to construct a more accurate model for certain count data, since now the 

mean and the variance do not need to be equal.  

As in Poisson model, the regression coefficients of NB model are estimated using the method of 

ML, by maximization the following log-likelihood function of NB model: 

𝑙𝑜𝑔𝐿(𝛼, 𝛽) =   ∑ {
(∑ 𝑙𝑜𝑔(𝑗 + 𝛼−1)𝑦𝑖−1

𝑗=0 ) − 𝑙𝑜𝑔[Γ(𝑦𝑖 + 1)] − (𝑦𝑖 + 𝛼−1)

𝑙𝑜𝑔 (1 + 𝛼 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽)) + 𝑦𝑖𝑙𝑜𝑔(𝛼) + 𝑦𝑖

}𝑛
𝑖=1 ,     (3) 

where 𝑙𝑜𝑔 (
Γ(𝑦𝑖+𝛼−1)

Γ(𝛼−1)
) = ∑ 𝑙𝑛(𝑗 + 𝛼−1)𝑦𝑖−1

𝑗=0  and 𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽). We will refer to the ML 

estimator of the NB model as the MLNB estimator. 

 

2.3. Zero Inflated Poisson Model 

A particular kind of overdispersion obtains when there are more zeros in the data than is 

consistent with a Poisson distribution, several statistical models have been proposed for count 

data with an excess of zeros, including the ZIP model introduced by [27]. It assumes that the 

sample is a mixture of two sorts of individuals: one group whose counts are generated by the 

standard Poisson regression model, and another group call them the absolute zero group who 

have zero probability of a count greater than zero. 
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In cases of overdispersion, the ZIP model typically fits better than a standard Poisson model [7]. 

The ZIP model consists of two components: 

1. A binary logistic regression model for membership in the latent class of individuals for 

whom the response variable is necessarily zero. 

2. A Poisson regression model for the latent class of individuals for whom the response may 

be or a positive count.  

Suppose that case 1 occurs with probability 𝜋  and case 2 occurs with probability  1 −  𝜋  . 

Therefore, the probability distribution of the ZIP random variable 𝑦𝑖 could be written: 

𝑓(𝑦𝑖; 𝜇𝑖, 𝜋𝑖) = {

𝜋𝑖 + (1 − 𝜋𝑖)𝑒𝑥𝑝(−𝜇𝑖)      𝑖𝑓 𝑦𝑖 = 0;

 (1 − 𝜋𝑖) (
𝜇

𝑖

𝑦𝑖

𝑦𝑖!
)  𝑒𝑥𝑝(−𝜇𝑖)             𝑖𝑓 𝑦𝑖 > 0,

                   (4) 

 where 𝜇𝑖 ≥ 0,0 ≤ 𝜋𝑖 ≤ 1 , and the mean and variance for ZIP are 𝐸(𝑌) = (1 − 𝜋)𝜇; 𝑉𝑎𝑟(𝑌) =

𝜇(1 − 𝜋)(1 + 𝜇𝜋). And  𝜋𝑖 =
𝑒𝑥𝑝(𝑧𝑖

𝑇𝛾)

1+𝑒𝑥𝑝(𝑧𝑖
𝑇𝛾)

  𝑖 = 1,2, … 𝑛, where 𝑧𝑖 is the 𝑖𝑡ℎ row of Z which is the 

matrix for the logit model, and 𝛾 corresponds to a (𝑝0 × 1) vector of coefficients. The model 

allows 𝜇𝑖 and 𝜋𝑖 to depend on covariates through the relationships: 𝑔(𝜋𝑖) = 𝑙𝑜𝑔 (
𝜋𝑖

1−𝜋𝑖
) = 𝑧𝑖

𝑇𝛾; 

ℎ(𝜇𝑖) = 𝑥𝑖
𝑇𝛽. 

The regression coefficients are estimated using the method of maximum likelihood, where the 

log-likelihood function of ZIP model is defined as: 

𝑙𝑜𝑔𝐿(𝛾, 𝛽) = ∑ 𝑙𝑜𝑔{𝑒𝑥𝑝(𝑧𝑖
𝑇𝛾) + 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝑥𝑖

𝑇𝛽)]} + ∑ [𝑦𝑖𝑥𝑖
𝑇𝛽 − 𝑒𝑥𝑝(𝑥𝑖

𝑇𝛽) −𝑦𝑖>0𝑦𝑖=0

𝑙𝑜𝑔(𝑦𝑖!)] − ∑ 𝑙𝑜𝑔[1 + 𝑒𝑥𝑝(𝑧𝑖
𝑇𝛾)]𝑛

𝑖=1 .                          (5) 

 

2.4. Zero Inflated Negative Binomial Model  

The ZINB model is the most popular models to handle excess zeros and overdispersion problems 

introduced by [3]. It is formed of Poisson Gamma mixture distribution and has a dispersion 

parameter (𝛼) that useful to describe the variation of the data. It assumes that there are two 

distinct data generation processes, the result of a Bernoulli trial is used to determine which of the 

two processes is used. For observation i, with probability 𝜑𝑖 the only possible response of the 

first process is zero counts, and with probability of (1 − 𝜑𝑖) the response of the second process 

is governed by a negative binomial with mean 𝜑𝑖. The ZINB distribution can be defined as: 
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𝑓(𝑦𝑖; 𝜇𝑖, 𝜑𝑖, 𝛼) = {
𝜑𝑖(1 − 𝜑𝑖) (

𝛼

𝛼+𝜇𝑖
) 𝛼                          𝑦𝑖 = 0;

(1 − 𝜑𝑖) 
Γ(𝑦𝑖+𝛼)

Γ(𝑦𝑖+1)Γ(𝛼)
 (

𝛼

𝛼+𝜇𝑖
) 𝛼  (

𝜇𝑖

𝛼+𝜇𝑖
)

𝑦𝑖

  𝑦𝑖 > 0,   
         (6) 

where 0 ≤ 𝜑𝑖 ≤ 1 , 𝜇𝑖 ≥ 0 , and Γ(∙) is the gamma function. The mean and variance for the 

ZINB distribution are: 𝐸(𝑌) = (1 − 𝜑)𝜇 ; Var (𝑌) = (1 − 𝜑)[1 + 𝜇(𝜑 + 𝛼)].  And 𝜑𝑖 =

exp(𝑧𝑖
𝑇𝛾)

1+exp(𝑧𝑖
𝑇𝛾)

. As in ZIP model, the ZINB model allows 𝜇𝑖  and 𝜑𝑖 to depend on covariates through 

the relationships: 

𝑔(𝜑𝑖) = 𝑙𝑜𝑔 (
𝜑𝑖

1−𝜑𝑖
) = 𝑧𝑖

𝑇𝛾; ℎ(𝜇𝑖) = log (
𝛼𝜇𝑖

1+𝛼𝜇𝑖
) = 𝑥𝑖

𝑇𝛽. 

The regression coefficients are estimated using the ML method. The log-likelihood function is 

given by: 

𝑙𝑜𝑔𝐿(𝛾, 𝛼, 𝛽) = ∑ log {𝜑𝑖(1 − 𝜑𝑖) (
𝛼

𝛼+𝜇𝑖
)

𝛼
} + log ∑ [(1 −𝑦𝑖>0𝑦𝑖=0

                                                          𝜑𝑖) (
Γ(𝑦𝑖+𝛼)

Γ(𝑦𝑖+1)Γ(𝛼)
 (

𝛼

𝛼+𝜇𝑖
) 𝛼  (

𝜇𝑖

𝛼+𝜇𝑖
)

𝑦𝑖

)].                        (7) 

Rahayu and Sadik [7] showed that the ZINB model fits better than the ZIP model in the presence 

of excess zeros and overdispersion problems. 

Figure 1 shows how to choose the appropriate count regression model in the case of 

overdispersion and/or zero inflation. 

 

Figure 1: Selection of the appropriate count regression model. 
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3. ROBUST COUNT REGRESSION ESTIMATIONS 

3.1. Robust Estimation of Poisson Model 

 In literature, there is no specific robust estimation for Poisson regression model. However, the 

general robust estimation methods for GLM can be applied to Poisson model [21, 28]. 

Cantoni and Ronchetti [21] developed a robust estimation based on robust deviances that are 

natural generalization of quasi-likelihood functions, consider a general class of M-estimators of 

Mallows’s type, where the influence of deviations on 𝑦 and 𝑋 are bounded separately. Then the 

robust estimator of the Poisson model (MP) is given by solving the following equations [14]: 

∑ [𝜓𝑐(𝑟𝑖)𝑤(𝑥𝑖)
𝜇𝑖

′

√𝑉𝑎𝑟(𝜇𝑖)
−

1

𝑛
∑ E[𝜓𝑐(𝑟𝑖)]𝑛

𝑖=1 𝑤(𝑥𝑖)
𝜇𝑖

′

√𝑉𝑎𝑟(𝜇𝑖)
] = 0𝑛

𝑖=1 , 

where 𝜇𝑖
′ =

𝜕

𝜕𝛽
𝜇𝑖 , 𝑟𝑖 =

𝑦𝑖−𝜇𝑖

√𝑉𝑎𝑟(𝜇𝑖)
 are the Pearson residuals, 𝑤(𝑥𝑖) = √1 − ℎ𝑖 ; ℎ𝑖  is the ith 

diagonal element of the hat matrix, and 𝜓𝑐(∙) is the Huber function that defined by: 

 𝜓𝑐(𝑟𝑖) = {
𝑟𝑖                   |𝑟𝑖| ≤ 𝑐;

𝑐 𝑠𝑖𝑔𝑛(𝑟𝑖)     |𝑟𝑖| > 𝑐,
 

 

where the constant 𝑐 is typically chosen to ensure a given level of asymptotic efficiency 

[21]. 

 

3.2. Robust Estimation of Negative Binomial Model 

Following [21, 29], Aeberhard et al. [24] developed a M-estimator of the NB model (MNB), that 

yielding a robust estimator for 𝛽  which achieve robustness on one hand in the response by 

bounding the Pearson residual that is the first appears naturally in the score function 

Ψ𝛽(𝑦𝑖, 𝑥𝑖 , 𝛽, 𝛼) and on the other hand on the design by introducing weights 𝑤(𝑥𝑖). Then the 

MNB estimator of 𝛽 is given by solving the following equations: 

∑
𝜓𝑐(𝑟𝑖)

𝑟𝑖
Ψ𝛽(𝑦𝑖, 𝑥𝑖, 𝛽, 𝛼)𝑤(𝑥𝑖) − 𝑎𝑖(𝛽) = 0,   𝑛

𝑖=1                              (8) 

 where 
𝜓𝑐(𝑟𝑖)

𝑟𝑖
∈ [0,1], Ψ𝛽(𝑦𝑖, 𝑥𝑖 , 𝛽, 𝛼) =

𝑦𝑖−𝜇𝑖

√𝑉𝑎𝑟(𝜇𝑖)
 𝜇𝑖

′ 𝑥𝑖 and a Fisher consistency correction term 

𝑎𝑖(𝛽) = 𝐸 [
𝜓𝑐(𝑟𝑖)

𝑟𝑖
Ψ𝛽(𝑦𝑖, 𝑥𝑖 , 𝛽, 𝛼)𝑤(𝑥𝑖)].  

For 𝛼, the MNB estimator for 𝛼 is given by solving the following equations: 

∑
𝜓𝑐(𝑟𝑖)

𝑟𝑖
Ψ𝛼(𝑦𝑖, 𝑥𝑖 , 𝛽, 𝛼)𝑤(𝑥𝑖) − 𝑏𝑖(𝛼) = 0,                              𝑛

𝑖=1 (9) 
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where 𝛹𝛼(𝑦𝑖, 𝑥𝑖, 𝛽, 𝛼) = (
−1

𝛼2) (𝐹(𝑦𝑖 + 1/𝛼) − 𝐹(1/𝛼) − 𝑙𝑜𝑔(𝛼𝜇𝑖 + 1) −
𝛼(𝑦𝑖−𝜇𝑖)

𝛼𝜇𝑖+1
) ; 𝐹(𝑢) =

𝜕𝑙𝑜𝑔 𝛤(𝑢)

𝜕𝑢
 denotes the digamma function, and 𝑏𝑖(𝛼) = 𝐸 [

𝜓𝑐(𝑟𝑖)

𝑟𝑖
𝛹𝛼(𝑦𝑖, 𝑥𝑖 , 𝛽, 𝛼)𝑤(𝑥𝑖)] is another 

Fisher consistency term. Equations in (8) and (9) can be solved using Newton-Raphson or Fisher 

scoring algorithms to get the MNB estimator. 

 

3.3. Quantile Regression Estimation of Count Models 

Quantile regression is pure ducts of robust statistic. The basic idea is to estimate the conditional 

quantile of an outcome 𝑦 given a vector of covariates 𝑥𝑖 defined as for any pre-specified level 

0 ≤ 𝑞 ≤ 1. Then the qth regression quantile is defined as any solution to the minimization 

problem [30]: 

 ∑ 𝑞|𝑦𝑖 − 𝑥𝑖
𝑇𝛽|𝑦𝑖≥𝑥𝑖

𝑇𝛽 + ∑ (1 − 𝑞)|𝑦𝑖 − 𝑥𝑖
𝑇𝛽|𝑦𝑖<𝑥𝑖

𝑇𝛽 .                    (10) 

The sample median is the minimizer of the sum of absolute deviations. The model estimates the 

relationship between the qth quantile of a response distribution and the regression parameters, it 

was originally developed for continuous responses as count responses do not have continuous 

quantiles. 

Quantile regression model for count is used when we simply cannot obtain a reasonably fitted 

Poisson, negative binomial, and zero count models, because mean regression models may be 

sensitive to response outliers and provide no information on factors affecting other distributional 

points (e.g., upper and lower 5% quantiles) of the response due to some data problems. 

Researchers have attempted to design quantile count models according to two different methods. 

The first method is based on [31]. They estimated quantiles based on a semi-parametric 

modeling of the conditional mean of the count response, using a pseudo-likelihood algorithm. 

The problem with this approach is that the full range of the count distribution cannot be 

understood based on the predictors. The second general method was offered by [23], they 

suggested an artificial smoothing by adding a uniformly distributed noise to the count data. The 

act of smoothing the data is called ‘jittering’, which will convert the count data to a continuous 

variable that has a one-to-one relationship with the conditional quantiles of the counts. Machado 

and Santos Silva [23] replaced the response variable 𝑦 with a jittered response variable: 

𝑍 = 𝑦 + 𝑈,                                             (11) 
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Where 𝑈~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0,1) , then 𝑍 is linearized at the conditional mean of each quantile as 

𝑒𝑥𝑝(𝑋𝑇𝛽𝑞) and apply quantile regression of the form 𝑄𝑍 = (𝑞|𝑋) = 𝑒𝑥𝑝(𝑋𝑇𝛽𝑞).                

Machado and Santos Silva [23] establishing assumptions for deriving the approximate 

distribution of the quantile regression estimator for count model (QRC) as: 

1. 𝑦 is a discrete random variable and nonnegative integers, and 𝑥𝑖 is a random vector in ℛ𝑝; 

the conditional probability function of 𝑦  given 𝑥𝑖  at 𝑄𝑦(𝑞|𝑥𝑖);  𝑓𝑦|𝑥𝑖
(𝑄𝑦(𝑞|𝑥𝑖))  is 

uniformly bounded away from 0 for almost every realization of  𝑥𝑖. 

2. 𝐸(𝑋𝑋𝑇) is finite and nonsingular matrix, where 𝑋 = (𝑥1, . . ., 𝑥𝑝)
𝑇
. 

3. With the achievement of Equation (11), for some known monotone transformation 𝑇(∙; 𝑞), 

possibly depending on 𝑞 ∈ (0,1), so the following restriction on the quantile process of 𝑍 

given 𝑋 holds: 

𝑄𝑇(𝑍;𝑞)(𝑞|𝑋) = 𝑋𝑇𝛾(𝑞)                                          (12) 

where 𝛾(𝑞) ∈ 𝛤, a compact subset of  ℛ𝑝. 

Machado and Santos Silva [23] defined the QRC estimator (𝛾(𝑞)), for random sample of 

(𝑌, 𝑋, 𝑈), by: 

𝑚𝑖𝑛
𝑐∈ℛ𝑝

∑ 𝜌𝑞(𝑇(𝓏𝑖; 𝑞) − 𝑥𝑖
𝑇𝑐)𝑛

𝑖=1 ,                                      (13) 

where 𝜌𝑞(𝜈) = 𝜈(𝑞 − 𝐼(𝜈 < 0)). For more details about the properties of the QRC estimator, 

see [23]. 

 

4. SIMULATION STUDY 

In this section, we investigate the performance of the above-mentioned estimators through a 

Monte Carlo simulation study.  

 

4.1. Simulation Design 

The simulation experiment has been designed to compare the performance of non-robust (MLP, 

MLNB, ZIP and ZINB) and robust estimators (MP, QRC and MNB) for different sample sizes, 

dispersion values, and percentages of outliers. R software is used to perform our Monte Carlo 

simulation study. For additional information on how to make a Monte Carlo simulation study 

using R, see [18, 32]. In the simulation study, the effective factors are chosen to be the dispersion 
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values, the sample size, and the percentages of outliers. The response variable is generated using 

random numbers following the NB distribution with different dispersion parameters. The 

simulated model is carried with the following simulation settings: 

1. The number of independent variables is two, where the independent variables are 

generated from uniform (-1, 1), and the value of true vector is one, i.e., 𝛽 = 1. 

2. The values of sample sizes were chosen to be 100, 200, 300,400, 500, and 1000 to 

represent moderate and large samples. 

3. The percentages of outliers in the response variable, O%, were chosen to be 0%, 5%, 

10%, 15%, 20% and 25%. Following the work of Abonazel and Saber [14], the outliers 

generated from Poisson distribution with mean equal to 4 × 𝐼𝑄𝑅(𝜇); where IQR is the 

interquartile range. 

4. The dispersion parameter, 𝛼 , is chosen to be  0.5, 1, and 2. 

5. The percentages of zeros (ZI%) in the response variable were chosen to be 0% and 50%. 

6. Experiments are conducted on 500 repeats and all the results for the separate experiments 

are using the same series of random numbers. 

To compare the performance of non-robust and robust estimators, the average of mean squared 

error (MSE) and mean absolute error (MAE) of each estimation are computed: 

𝑀𝑆𝐸 =
1

500
∑ (�̂�𝑙 − 𝛽)

2500
𝑙=1 ;  𝑀𝐴𝐸 =

1

500
∑ |�̂�𝑙 − 𝛽|500

𝑙=1 ,                         (14)  

where �̂�𝑙 is the vector of estimated values at lth experiment of 500 Monte Carlo experiments, 

while 𝛽 is the vector of true coefficients.  

 

4.2. Simulation Results 

The results of the Monte Carlo simulation study have been provided in Tables 1 to 8. 

Specifically, Tables 1 to 5 presented the MSE and MAE values of all estimators (non-robust and 

robust) when the percentage of zeros in the response variable is zero (ZI = 0%), while the 

simulation results in the case of the zero inflated (ZI = 50%) are presented in Tables 6 to 8. We 

can summarize the simulation resalts as follows. 

Generally, as 𝑛  increases, MSE and MAE values of all estimators (non-robust and robust) 

decrease for different values of O%, ZI%, and 𝛼. 
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Table 1: Simulation resalts of robust and non-robust estimators when 𝑛 =  100, ZI = 0% 

Estimator 

MSE MAE 

O% O% 

0 5 10 15 20 25 0 5 10 15 20 25 

𝜶 = 𝟎. 𝟓 

MLP 0.089 0.437 0.906 1.412 1.820 2.292 0.397 0.966 1.470 1.881 2.167 2.462 

ZIP 0.107 0.787 1.559 2.230 2.722 3.256 0.456 1.334 1.977 2.423 2.702 2.984 

MLNB 0.070 0.483 0.978 1.455 1.852 2.312 0.354 1.008 1.521 1.896 2.175 2.466 

ZINB 0.071 0.485 0.979 1.456 1.854 2.312 0.358 1.010 1.522 1.896 2.176 2.466 

QRC 0.238 0.187 0.166 0.155 0.159 0.191 0.696 0.611 0.563 0.533 0.536 0.598 

MP 0.119 0.109 0.109 0.134 0.179 0.263 0.476 0.449 0.441 0.498 0.601 0.757 

MNB 0.086 0.097 0.107 0.127 0.181 0.312 0.390 0.419 0.448 0.490 0.591 0.760 

𝜶 = 𝟏 

MLP 0.151 0.435 0.759 1.198 1.608 2.011 0.519 0.932 1.308 1.689 2.000 2.278 

ZIP 0.244 0.924 1.522 2.107 2.661 3.126 0.716 1.435 1.926 2.312 2.634 2.894 

MLNB 0.111 0.452 0.809 1.228 1.647 2.016 0.453 0.933 1.344 1.698 2.019 2.270 

ZINB 0.116 0.459 0.806 1.228 1.651 2.024 0.468 0.945 1.346 1.699 2.022 2.275 

QRC 0.525 0.442 0.390 0.342 0.280 0.309 1.054 0.949 0.897 0.820 0.726 0.752 

MP 0.268 0.239 0.230 0.244 0.237 0.316 0.741 0.691 0.668 0.660 0.635 0.766 

MNB 0.162 0.169 0.174 0.222 0.268 0.420 0.534 0.541 0.566 0.652 0.713 0.910 

𝜶 = 𝟐 

MLP 0.267 0.469 0.844 1.140 1.538 1.906 0.682 0.932 1.334 1.590 1.898 2.138 

ZIP 0.522 1.151 1.860 2.347 2.892 3.304 1.070 1.603 2.096 2.394 2.683 2.890 

MLNB 0.194 0.452 0.822 1.132 1.539 1.924 0.592 0.911 1.314 1.579 1.892 2.144 

ZINB 0.210 0.471 0.841 1.144 1.563 1.941 0.625 0.942 1.336 1.593 1.909 2.155 

QRC 1.413 1.239 1.066 1.063 0.915 0.844 1.685 1.597 1.491 1.490 1.383 1.323 

MP 0.746 0.664 0.604 0.599 0.553 0.576 1.266 1.199 1.148 1.121 1.061 1.058 

MNB 0.319 0.345 0.343 0.414 0.488 0.631 0.751 0.780 0.788 0.872 0.952 1.104 
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Table 2: Simulation resalts of robust and non-robust estimators when 𝑛 =  200, ZI = 0% 

Estimator 

MSE MAE 

O% O% 

0 5 10 15 20 25 0 5 10 15 20 25 

𝜶 = 𝟎. 𝟓 

MLP 0.042 0.239 0.578 0.971 1.334 1.697 0.271 0.737 1.213 1.614 1.911 2.166 

ZIP 0.064 0.515 1.089 1.680 2.133 2.535 0.358 1.125 1.707 2.162 2.452 2.678 

MLNB 0.035 0.276 0.639 1.033 1.382 1.744 0.249 0.788 1.272 1.658 1.942 2.196 

ZINB 0.036 0.276 0.639 1.033 1.382 1.744 0.251 0.789 1.272 1.658 1.942 2.196 

QRC 0.158 0.121 0.090 0.078 0.078 0.112 0.582 0.503 0.422 0.384 0.379 0.462 

MP 0.065 0.053 0.067 0.083 0.126 0.200 0.361 0.316 0.340 0.400 0.522 0.685 

MNB 0.042 0.045 0.057 0.071 0.103 0.176 0.272 0.288 0.329 0.378 0.462 0.596 

𝜶 = 𝟏 

MLP 0.073 0.339 0.757 1.202 1.623 2.062 0.363 0.858 1.363 1.771 2.081 2.361 

ZIP 0.153 0.852 1.573 2.206 2.743 3.236 0.576 1.435 2.026 2.448 2.743 2.991 

MLNB 0.055 0.385 0.831 1.275 1.694 2.111 0.322 0.905 1.425 1.816 2.129 2.390 

ZINB 0.057 0.386 0.831 1.275 1.694 2.111 0.327 0.907 1.425 1.816 2.129 2.390 

QRC 0.377 0.306 0.238 0.188 0.168 0.150 0.875 0.798 0.702 0.624 0.578 0.519 

MP 0.166 0.137 0.127 0.132 0.155 0.201 0.592 0.537 0.499 0.491 0.528 0.626 

MNB 0.076 0.075 0.097 0.118 0.156 0.227 0.369 0.365 0.424 0.479 0.560 0.678 

𝜶 = 𝟐 

MLP 0.131 0.340 0.723 1.045 1.370 1.740 0.482 0.818 1.269 1.596 1.866 2.130 

ZIP 0.392 1.085 1.807 2.309 2.755 3.197 0.937 1.599 2.121 2.449 2.695 2.925 

MLNB 0.097 0.361 0.753 1.088 1.391 1.754 0.422 0.836 1.299 1.625 1.872 2.132 

ZINB 0.106 0.369 0.754 1.091 1.392 1.755 0.450 0.851 1.301 1.628 1.873 2.133 

QRC 1.136 0.995 0.853 0.741 0.647 0.564 1.476 1.387 1.305 1.225 1.156 1.090 

MP 0.536 0.488 0.446 0.414 0.394 0.387 1.060 1.027 0.996 0.968 0.935 0.892 

MNB 0.157 0.168 0.187 0.197 0.268 0.342 0.536 0.546 0.590 0.612 0.732 0.836 

 

In case of the percentage of outliers equal to zero (O = 0%), the non-robust estimators are more 

efficient than robust estimators. Specifically, the MLNB estimator has the smallest values of 

MSE and MAE, compared to other estimators, if O = ZI = 0% and any value of 𝛼 and 𝑛 (as 

shown in Tables 1 to 5). However, when ZI = 0% and O ≥ 10%, the non-robust estimators are 

extremely sensitive to the presence of outliers, this is confirmed by the simulation results; where 

all non-robust estimators have the largest values of MSE and MAE, on the other hand MSE and 
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MAE values of all robust estimators is the smallest. Specifically, the best two robust estimators 

are QRC and MNB. 

But if ZI = 50%  and O = 0%  (as shown in Tables 6 to 8), the ZINB is the best estimator. 

However, when ZI = 50% and the percentage of outliers increases (O ≥ 10% and 𝛼 > 1), the 

best robust estimator is MNB. 

 

Table 3: Simulation resalts of robust and non-robust estimators when 𝑛 =  300, ZI = 0% 

Estimator 

MSE MAE 

O% O% 

0 5 10 15 20 25 0 5 10 15 20 25 

𝜶 = 𝟎. 𝟓 

MLP 0.028 0.232 0.590 0.973 1.401 1.744 0.224 0.742 1.247 1.632 1.975 2.209 

ZIP 0.050 0.494 1.106 1.664 2.205 2.591 0.326 1.122 1.741 2.164 2.505 2.718 

MLNB 0.024 0.290 0.671 1.047 1.481 1.814 0.206 0.825 1.328 1.693 2.033 2.258 

ZINB 0.024 0.290 0.671 1.047 1.481 1.814 0.208 0.826 1.328 1.693 2.033 2.258 

QRC 0.144 0.099 0.064 0.050 0.057 0.082 0.552 0.454 0.358 0.306 0.322 0.403 

MP 0.052 0.041 0.045 0.069 0.113 0.183 0.333 0.278 0.285 0.374 0.506 0.671 

MNB 0.029 0.032 0.038 0.051 0.084 0.135 0.233 0.244 0.267 0.327 0.421 0.522 

𝜶 = 𝟏 

MLP 0.049 0.309 0.662 1.124 1.527 1.924 0.293 0.841 1.301 1.742 2.043 2.303 

ZIP 0.135 0.821 1.450 2.107 2.611 3.042 0.544 1.442 1.978 2.419 2.700 2.918 

MLNB 0.037 0.364 0.746 1.207 1.586 1.990 0.259 0.908 1.379 1.805 2.082 2.346 

ZINB 0.038 0.365 0.746 1.207 1.586 1.990 0.267 0.909 1.380 1.805 2.082 2.346 

QRC 0.348 0.253 0.193 0.137 0.125 0.112 0.846 0.727 0.634 0.532 0.502 0.453 

MP 0.140 0.118 0.094 0.102 0.136 0.178 0.546 0.505 0.435 0.434 0.503 0.605 

MNB 0.049 0.057 0.063 0.081 0.133 0.197 0.298 0.322 0.350 0.406 0.524 0.634 

𝜶 = 𝟐 

MLP 0.088 0.285 0.658 1.001 1.417 1.761 0.392 0.767 1.257 1.590 1.935 2.178 

ZIP 0.348 1.029 1.751 2.283 2.839 3.252 0.875 1.572 2.124 2.450 2.763 2.970 

MLNB 0.064 0.324 0.727 1.069 1.487 1.810 0.341 0.812 1.323 1.643 1.987 2.211 

ZINB 0.069 0.326 0.728 1.070 1.487 1.810 0.358 0.818 1.325 1.644 1.987 2.211 

QRC 1.036 0.881 0.729 0.632 0.525 0.426 1.367 1.282 1.162 1.101 1.026 0.940 

MP 0.478 0.423 0.371 0.350 0.328 0.315 0.994 0.948 0.914 0.896 0.865 0.823 

MNB 0.101 0.114 0.111 0.150 0.187 0.273 0.430 0.446 0.461 0.538 0.615 0.754 

 



14 

MOHAMED R. ABONAZEL, SAYED M. EL-SAYED, OMNIA M. SABER 

If the dispersion parameter is less than or equal one (𝛼 ≤ 1) and the percentage of outliers is 

more than or equal twenty (O ≥ 20% and ZI = 0%), the QRC estimator give the smallest values 

of MSE and MAE, especially when the sample size is increased (𝑛 > 200). On the other hand, 

the MNB estimator has the smallest values of MSE and MAE when the percentage of outliers is 

less than twenty (𝑂 < 20% and ZI = 0%) for different values of 𝑛% and 𝛼. 

 

Table 4: Simulation resalts of robust and non-robust estimators when 𝑛 =  400, ZI = 0% 

Estimator 

MSE MAE 

O% O% 

0 5 10 15 20 25 0 5 10 15 20 25 

𝜶 = 𝟎. 𝟓 

MLP 0.020 0.240 0.613 1.033 1.434 1.814 0.189 0.775 1.291 1.699 2.007 2.257 

ZIP 0.039 0.529 1.169 1.774 2.278 2.696 0.284 1.185 1.807 2.249 2.552 2.775 

MLNB 0.016 0.290 0.698 1.121 1.513 1.885 0.173 0.848 1.379 1.775 2.066 2.307 

ZINB 0.016 0.290 0.698 1.121 1.513 1.885 0.174 0.848 1.379 1.775 2.066 2.307 

QRC 0.130 0.088 0.055 0.041 0.043 0.069 0.523 0.433 0.338 0.280 0.275 0.377 

MP 0.042 0.032 0.038 0.064 0.104 0.172 0.299 0.248 0.259 0.363 0.495 0.655 

MNB 0.020 0.023 0.030 0.045 0.068 0.115 0.191 0.207 0.244 0.305 0.376 0.479 

𝜶 = 𝟏 

MLP 0.036 0.291 0.700 1.143 1.575 2.011 0.251 0.831 1.357 1.765 2.086 2.368 

ZIP 0.117 0.813 1.532 2.160 2.699 3.175 0.513 1.457 2.050 2.455 2.752 2.990 

MLNB 0.027 0.348 0.774 1.233 1.655 2.076 0.221 0.905 1.426 1.839 2.144 2.411 

ZINB 0.028 0.348 0.774 1.233 1.655 2.076 0.225 0.905 1.426 1.839 2.144 2.411 

QRC 0.314 0.241 0.173 0.122 0.095 0.102 0.789 0.703 0.591 0.508 0.443 0.432 

MP 0.124 0.099 0.082 0.089 0.111 0.168 0.511 0.466 0.415 0.408 0.449 0.595 

MNB 0.037 0.040 0.047 0.072 0.109 0.169 0.256 0.273 0.305 0.387 0.477 0.589 

𝜶 = 𝟐 

MLP 0.064 0.275 0.611 0.999 1.389 1.764 0.334 0.774 1.227 1.623 1.931 2.199 

ZIP 0.320 1.052 1.701 2.314 2.841 3.281 0.843 1.613 2.100 2.496 2.773 2.997 

MLNB 0.045 0.317 0.675 1.068 1.458 1.837 0.284 0.827 1.290 1.679 1.982 2.251 

ZINB 0.049 0.318 0.676 1.068 1.458 1.837 0.300 0.830 1.290 1.679 1.982 2.251 

QRC 0.981 0.836 0.704 0.581 0.493 0.410 1.305 1.215 1.132 1.045 0.981 0.926 

MP 0.451 0.390 0.355 0.306 0.300 0.297 0.949 0.906 0.901 0.845 0.839 0.817 

MNB 0.072 0.075 0.093 0.117 0.165 0.226 0.362 0.375 0.426 0.483 0.583 0.693 
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It notes that when ZI = 0%, as in Tables 1 to 5, the ZIP and ZINB estimators have larger values 

of MSE and MAE than MLP and MLNB, respectively, even if the percentage of outliers 

increases. This means that the ZIP and ZINB estimators are not suitable as robust estimators if 

the data nonzero inflated. But if ZI = 50% and O = 0%, as in Tables 6 to 8, the ZIP and ZINB 

estimators are more efficiency than MLP and MLNB, respectively, even if 𝛼 up to 2. 

 

Table 5: Simulation resalts of robust and non-robust estimators when 𝑛 =  500, ZI = 0% 

 

Estimator 

MSE MAE 

O% O% 

0 5 10 15 20 25 0 5 10 15 20 25 

𝜶 = 𝟎. 𝟓 

MLP 0.016 0.219 0.590 1.001 1.372 1.755 0.167 0.746 1.277 1.677 1.968 2.227 

ZIP 0.034 0.499 1.127 1.708 2.181 2.598 0.272 1.156 1.785 2.212 2.502 2.731 

MLNB 0.013 0.276 0.683 1.088 1.456 1.830 0.154 0.836 1.376 1.752 2.034 2.281 

ZINB 0.013 0.276 0.683 1.088 1.456 1.830 0.156 0.836 1.376 1.752 2.034 2.281 

QRC 0.119 0.078 0.047 0.034 0.038 0.062 0.504 0.406 0.315 0.255 0.261 0.359 

MP 0.036 0.029 0.033 0.059 0.096 0.161 0.276 0.238 0.236 0.354 0.484 0.645 

MNB 0.016 0.020 0.026 0.040 0.066 0.115 0.170 0.190 0.227 0.290 0.365 0.473 

𝜶 = 𝟏 

MLP 0.029 0.267 0.653 1.093 1.533 1.904 0.226 0.797 1.316 1.733 2.065 2.304 

ZIP 0.121 0.763 1.453 2.072 2.625 3.022 0.527 1.414 2.002 2.411 2.720 2.917 

MLNB 0.022 0.315 0.726 1.179 1.608 1.965 0.198 0.866 1.391 1.806 2.121 2.345 

ZINB 0.023 0.316 0.726 1.180 1.608 1.965 0.204 0.866 1.391 1.807 2.121 2.345 

QRC 0.302 0.219 0.159 0.108 0.084 0.081 0.764 0.665 0.567 0.478 0.417 0.384 

MP 0.117 0.089 0.075 0.078 0.103 0.149 0.490 0.440 0.401 0.379 0.438 0.566 

MNB 0.031 0.035 0.042 0.062 0.101 0.173 0.239 0.254 0.290 0.360 0.455 0.583 

𝜶 = 𝟐 

MLP 0.052 0.261 0.576 0.989 1.337 1.751 0.306 0.775 1.207 1.617 1.912 2.198 

ZIP 0.327 1.046 1.651 2.300 2.752 3.254 0.852 1.621 2.091 2.491 2.742 2.987 

MLNB 0.039 0.317 0.649 1.068 1.412 1.815 0.265 0.842 1.286 1.686 1.969 2.244 

ZINB 0.042 0.317 0.649 1.069 1.413 1.815 0.281 0.844 1.286 1.686 1.969 2.244 

QRC 0.946 0.803 0.671 0.556 0.460 0.387 1.266 1.166 1.086 1.018 0.941 0.898 

MP 0.427 0.382 0.321 0.296 0.282 0.287 0.909 0.907 0.845 0.836 0.829 0.824 

MNB 0.060 0.063 0.076 0.109 0.141 0.224 0.329 0.345 0.381 0.474 0.541 0.686 
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Table 6: Simulation resalts of robust and non-robust estimators when 𝑛 =  300, ZI = 50% 

Estimator 

MSE MAE 

O% O% 

0 10 20 0 10 20 

𝜶 = 𝟏 

MLP 0.650 0.449 0.692 1.102 0.981 1.247 

ZIP 0.203 0.935 1.574 0.662 1.543 2.070 

MLNB 0.613 0.490 0.759 1.041 1.029 1.313 

ZINB 0.101 0.478 0.967 0.432 1.013 1.561 

QRC 6.205 4.985 3.710 3.380 3.117 2.709 

MP 2.916 2.183 1.675 2.383 2.183 2.026 

MNB 0.406 0.272 0.330 0.909 0.735 0.802 

𝜶 = 𝟐 

MLP 0.747 0.567 0.618 1.212 1.119 1.176 

ZIP 0.449 0.831 1.189 1.000 1.419 1.755 

MLNB 0.674 0.558 0.659 1.126 1.116 1.222 

ZINB 0.196 0.366 0.622 0.596 0.852 1.155 

QRC 7.799 6.961 6.223 3.776 3.714 3.624 

MP 4.209 3.558 3.066 2.853 2.747 2.674 

MNB 0.657 0.525 0.561 1.151 1.034 1.051 

 

 

Table 7: Simulation resalts of robust and non-robust estimators when 𝑛 =  500, ZI = 50% 

Estimator 

MSE MAE 

O% O% 

0 10 20 0 10 20 

𝜶 = 𝟏 

MLP 0.586 0.400 0.667 1.022 0.950 1.229 

ZIP 0.157 0.969 1.616 0.589 1.612 2.134 

MLNB 0.562 0.454 0.736 0.966 1.014 1.295 

ZINB 0.057 0.466 0.974 0.330 1.031 1.606 

QRC 6.082 4.966 3.563 3.395 3.154 2.651 

MP 2.805 2.105 1.579 2.333 2.169 1.999 

MNB 0.455 0.261 0.486 0.901 0.756 1.029 

𝜶 = 𝟐 

MLP 0.629 0.463 0.487 1.090 1.022 1.086 

ZIP 0.400 0.766 1.056 0.952 1.392 1.687 

MLNB 0.595 0.471 0.539 1.027 1.039 1.155 

ZINB 0.117 0.291 0.501 0.463 0.764 1.064 

QRC 7.639 6.789 6.114 3.822 3.734 3.654 

MP 4.115 3.445 2.970 2.844 2.741 2.675 

MNB 0.500 0.383 0.435 0.973 0.916 1.005 
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Table 8: Simulation resalts of robust and non-robust estimators when 𝑛 =  1000, ZI = 50% 

Estimator 

MSE MAE 

O% O% 

0 10 20 0 10 20 

𝜶 = 𝟏 

MLP 0.528 0.344 0.623 0.915 0.915 1.215 

ZIP 0.134 0.969 1.636 0.555 1.641 2.162 

MLNB 0.518 0.413 0.700 0.883 1.004 1.289 

ZINB 0.029 0.446 0.950 0.234 1.060 1.619 

QRC 6.106 4.965 3.485 3.482 3.203 2.617 

MP 2.777 2.067 1.549 2.366 2.184 2.004 

MNB 0.407 0.201 0.441 0.805 0.684 1.006 

𝜶 = 𝟐 

MLP 0.554 0.368 0.419 0.960 0.921 1.052 

ZIP 0.334 0.689 1.024 0.862 1.353 1.701 

MLNB 0.537 0.392 0.494 0.917 0.985 1.148 

ZINB 0.051 0.205 0.448 0.308 0.667 1.026 

QRC 7.546 6.731 6.099 3.821 3.736 3.689 

MP 4.053 3.385 2.946 2.827 2.721 2.698 

MNB 0.430 0.308 0.384 0.853 0.817 0.995 

 

5. APPLICATION TO GERMAN HEALTH DATA 

In this section, we study the efficiency of the non-robust and robust estimators of the count 

regression model based on real dataset. We use the set of data “badhealth” available in the R 

package {COUNT}. They were obtained from the German health survey for the year 1998 

only and consist of 1127 observations on three variables. This data used by [25, 33]. In our 

application, the sample size used is 500 observations: 𝑛 = 500.  

The definition of the three variables is shown in Table 9. While Table 10 presents some 

descriptive statistics of these variables. Table 10 shows that the response variable 

(NUMVISIT) have a large dispersion, since the value of variance more than the value of 

mean. Moreover, there is large difference between the values of mean and median, it is 

indicator of outliers in the data. We will check the outliers by plot the boxplot of NUMVISIT 

variable. Figure 2 shows that the response variable (NUMVISIT) contains large number of 

zeros (based on frequency distribution plot) and some outlier values (based on boxplot). 



18 

MOHAMED R. ABONAZEL, SAYED M. EL-SAYED, OMNIA M. SABER 

Table 9: Definition of variables 

Variable Definition 

NUMVISIT Number of visits to doctor during 1998. 

NUMVISIT is the response variable. 

BADH The patient's condition (dummy variable): 

1 if the patient claims to be in bad health, 

or 0 if is not in bad health. 

AGE The age of patient: from 20 to 60 years old. 

 

 

Table 10: Descriptive Statistics (sample size = 500) 

Variable Minimum Maximum Mean Median Variance 

NUMVISIT 0 40 2.41 1.00 14.54 

AGE 20 60 37.43 35.00 111.83 

BADH 

Coding Level Count % 

0 Not in bad health 460 92 

1 Bad health 40 8 

 

 

 

Figure 2: Frequency distribution and boxplot of NUMVISIT variable. 
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To check multicollinearity problem, we calculate the Pearson correlation coefficient between 

BADH and AGE, the coefficient is 0.156, this is a weak positive correlation; it indicates that is 

no multicollinearity problem. See e.g., [4, 5, 34, 35, 36] for handling and solving this problem in 

GLM if this problem exists. Moreover, we applied the Z-score test to check overdispersion: 𝐻0: 

Equidispersion vs. 𝐻1: True dispersion is greater than one. The Z-score statistic 3.94 with P-

value < 0.001, then we can reject 𝐻0, this means that the true dispersion is greater than one. And 

the estimated value of the dispersion of the Z-score test is 4.26. This indicates that the dataset 

has overdispersion problem.  

 

Figure 3: Residual diagnostics  

 

Figure 3 indicates that the residuals are not distributed normal, and the residuals contains some 

outlier values (based on boxplot). This is confirmed by Shapiro-Wilk test results of the residuals: 

W-statistic = 0.693 with P-value < 0.0001. Since the P-value less then 0.05, then reject 𝐻0, this 

means that the residuals are not assumed to be normally distributed.  

It is verified that there are overdispersion problem, zero inflated, and outlier values in this data. 

Next, we will estimate the coeffects of the count regression model using non-robust and robust 

estimators. The estimation results are presented in Table 11. 
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Table 11: Non-robust and Robust Count Estimation Results 

Estimator Intercept BADH AGE 

Non-robust 

MLP 0.542*** 

(0.108) 

1.262*** 

(0.069) 

0.0039 

(0.003) 

ZIP 0.681*** 

(0.118) 

1.035*** 

(0.072) 

0.009** 

(0.003) 

MLNB 0.525** 

(0.206) 

1.26*** 

(0.187) 

0.0043 

(0.005) 

ZINB 0.377. 

(0.215) 

1.19*** 

(0.187) 

0.010. 

(0.005) 

Robust 

QRC 0.542 

(0.290) 

1.26*** 

(0.263) 

-0.009 

(0.007) 

MP 0.603*** 

(0.130) 

1.22*** 

(0.086) 

-0.005. 

(0.003) 

MNB 0.922* 

(0.219) 

1.37*** 

(0.192) 

-0.009 

(0.005) 

Note: *** if P-value < 0.001, **if P-value < 0.01 and * if P-value < 0.05. And standard error of 

the coefficient in parentheses. 

 

From Table 11, it is indicated that all values of estimates are close together. And the BADH 

variable is significant in all estimators, but the AGE variable is not significant in all estimators, 

except ZIP estimator. To select the suitable estimator for this data, we check the values of MAE, 

MSE and root mean standard error (RMSE) of all estimators that listed in Table 12. 

 

Table 12: Goodness of fit criterion 

Estimator MAE MSE RMSE 

Non-robust 

MLP 2.406 13.61 3.69 

ZIP 2.404 7.778 2.788 

MLNB 2.406 13.62 3.691 

ZINB 2.407 7.854 2.802 

Robust 

QRC 0.289 0.1999 0.447 

MP 1.922 7.004 2.646 

MNB 2.279 12.775 3.574 
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Table 12 shows that the QRC estimator has the smallest MAE, MSE, and RMSE compared to all 

estimators, this is due to large sample size (500) and small dispersion value (the estimated value 

of the dispersion of MLNB is 0.918), note that the difference between this value and the 

estimated value of the dispersion from the Z-score test can be explained by presence of outliers 

in the data. 

 

6. CONCLUSION 

In this paper, seven robust and non-robust estimators (three robust estimators and four non-

robust estimators) of four count regression models (two Poisson models and two NB models) 

have been studied, under the assumption that the dataset contains overdispersion problem, many 

zeros, and outliers. We studied the efficiency of these estimators under this assumption by 

making the Monte Carlo simulation study for different sample sizes, percentages of outlier 

values, dispersion values, and zero values. Moreover, we used the German health survey data as 

an empirical application. 

Simulation results showed that all robust estimators perform well against all non-robust 

estimators when the dataset contains outliers, regardless of the sample size and the dispersion 

value. QRC and MNB are the best two robust estimators, specifically when the dataset contains 

the overdispersion problem (dispersion parameter more than one), many zeros (the half of the 

data is zeros), and many outliers (the percentage of outlier values more than 15%). The results of 

the application indicate that the QRC estimator is the best for this data, and the significant 

variable that effect on the number of visits to doctor is the patient's condition (bad health or not 

in bad health), however the patient's age variable is not significant. As a future work, one may 

extend the robust count estimators mentioned in this paper to longitudinal and panel data models, 

see [37, 38, 39]. 
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