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Abstract. The health reported data shows that the risk of tuberculosis among children aged 0-14 years is still a 

significant health problem in developing countries such as Indonesia in terms of case detection, control, and effective 

treatment. However, some information is available about the burden of tuberculosis and its risk factors (e.g., 

malnutrition, population density, healthy behaviours, and AFB smear-positive tuberculosis) which can be very useful. 

This study aimed to identify the hotspot of tuberculosis among children aged 0-14 years in Bandung city, Indonesia. 

Using Bandung health profile database of tuberculosis notification for 2016 – 2018, we estimated the burden of 

tuberculosis among children aged 0-14 years by districts. We estimate that incidence rates vary over space and time, 

with the hotspots centred in the western and central regions of Bandung city. Population density has a significant effect 

on burden tuberculosis among aged 0-14 years over districts.  

Keywords: Bandung; tuberculosis; malnutrition; population density; healthy behaviors; AFB smear-positive 

tuberculosis. 
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1. INTRODUCTION 

Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis ([1], 

[2]). TB is a significant cause of ill health and death worldwide. It spreads when people who are 

sick with TB expel bacteria into the air via coughing. Following WHO report (2020), a quarter of 

the world’s population is infected with M. tuberculosis. Anyone anywhere can be affected by TB, 

and most adults have a higher risk. But, children aged 0-14 years still have a high risk, particularly 

in developing countries. 

Nevertheless, the research interest in childhood TB was limited. It is often regarded as 

unimportant because 95% of cases are sputum smear-negative with a low transmission rate [3]. 

However, the transmission rate within the community could arise if there is no serious attention to 

childhood TB, in developing countries, WHO estimated that 1.3 millions cases of TB and 450,000 

death annually [3]. According to [3], the youngest children carry the most significant burden 

because they are more prone to develop severe extrapulmonary TB and likely develop the disease 

after being infected.  

There are several problems in childhood TB prevention. Firstly, the diagnosis is much less 

accurate than adult and tracing. More than 50% of childhood TB cases will not be diagnosed in 

developing countries because of the lack of radiographic facilities [3].  

Several factors thought to affect childhood TB, such as malnutrition, Acid-Fast Bacillus (AFB) 

smear TB (+), healthy behaviour, and population density ([4], [5]).  

To control childhood TB transmission, the government needs to know how the risk factors can 

influence the incidence rate of childhood TB. The spatiotemporal model is the most popular in 

epidemiology that usually use to model disease data such as Dengue disease ([6]-[8]), Tuberculosis 

[9], Malaria [10], COVID-19 [11] etc.  

This study considers a Bayesian spatiotemporal autoregressive model with constant and 

temporally varying coefficients to identify the hotspot area of childhood tuberculosis in Bandung 

city, Indonesia.  

The structure of the remainder of this paper is as follows. Section 2 presents the method 

including test for spatiotemporal autocorrelation using spatial and spatiotemporal Moran’s, 

introducing spatiotemporal autoregressive mode and summarizes its estimation by INLA. Section 
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3 applies the method to Bandung, Indonesia. Section 4 presents the conclusions.   

 

2. METHOD 

2.1 Test for spatiotemporal autocorrelation  

The spatiotemporal autocorrelation of the dependent variable can be evaluated using an 

extension of Moran’s 𝐼, called Moran’s spatiotemporal autocorrelation statistic (MoranST). It is 

defined as [6]: 

MoranST =
𝑛𝑇 ∑ ∑ ∑ ∑ �̃�(𝑖𝑡,𝑗𝑠)(𝑦𝑖𝑡 − �̅�)(𝑦𝑗𝑠 − �̅�)𝑇

𝑠=1
𝑛
𝑗=1

𝑇
𝑡=1

𝑛
𝑖=1

∑ ∑ ∑ ∑ �̃�(𝑖𝑡,𝑗𝑠) ∑ ∑ (𝑦𝑖𝑡 − �̅�)2𝑇
𝑡

𝑛
𝑖=1

𝑇
𝑠=1

𝑛
𝑗=1

𝑇
𝑡=1

𝑛
𝑖=1

 
 

(1) 

where �̅�  is the mean of the observed residuals  𝑦𝑖𝑡  over 𝑇  periods and 𝑛  spatial units, and 

�̃�(𝑖𝑡,𝑗𝑠)  is the weight accounting for the spatiotemporal autocorrelation between 𝑟𝑖𝑡  and 𝑟𝑗𝑠 , 

defined as [6]:  

�̃�(𝑖𝑡,𝑗𝑡′) = {

𝑤𝑖𝑗,   if 𝑡 = 𝑡′                             

1,       if 𝑖 = 𝑗 dan |𝑡 − 𝑡′| = 1
0,        otherwise                      

 
 

(2) 

where 𝑤𝑖𝑗 is one if regions 𝑖 and 𝑗 are neighbours, and zero otherwise i.e.,. 

𝑤𝑖𝑗 = {
1 if 𝑖 and 𝑗 contiguous
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                

 

 

Here we use queen definition of spatial weight matrix [2] [6].  

A MoranST which is close to one indicates a strong positive spatiotemporal autocorrelation of the 

spatiotemporal residuals. A value close to zero indicates white noise.   

2.2. Bayesian spatiotemporal autoregressive 

In order to model incidence rate of childhood TB we consider spatiotemporal regression model. 

The most common model that usually used is spatiotemporal autoregressive model. Here, the 

spatiotemporal autoregressive model is extension of standard linear regression model. It allows 

observations of dependent variable 𝑦 in area 𝑖 (𝑖 = 1,… , 𝑛) at time 𝑇 (𝑡 = 1, . . , 𝑇) to depend 

on observations in neighboring areas 𝑗, 𝑗 ≠ 𝑖 and 𝑡 + 1. The model takes form [2] [13]: 

𝒚 = 𝜌�̃�𝒚 + 𝑿𝜷 + 𝜺 (3) 

where 𝒚 = (𝑦11, … , 𝑦𝑛𝑇)′  denote an (𝑛𝑇 × 1)  vector of dependent variable, 𝜌  is 

spatiotemporal autoregressive coefficients with |𝜌| < 1 , �̃�  is (𝑛𝑇 × 𝑛𝑇)  spatiotemporal 

weight matrix. It defines as follows (2). The  𝑿 = (𝟏, 𝒙𝟏, … , 𝒙𝑲) denote the design matrix which 
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is corresponding to vector of regression coefficient including intercept and slop coefficients 𝜷 =

(𝛽0, 𝛽1, … 𝛽𝐾)′, with 𝜺 denotes an (𝑛𝑇 × 1) vector of error term that follows zero-mean Gaussian 

distribution with constant variance 𝜎2𝑰  i.e., 𝜺~𝒩(0, 𝜎2𝑰)  with 𝑰  is an (𝑛𝑇 × 𝑛𝑇)  identity 

matrix. Model (3) can be extended to cover constant (global) and temporally varying index as 

follows: 

𝒚 = 𝜌�̃�𝒚 + 𝑿𝟏𝜷𝟏 + 𝑿𝟐𝜷𝟐 + 𝜺 (4) 

where 𝑿𝟏 = (𝒙𝟏, … , 𝒙𝑲−𝑹) with 𝜷𝟏 = (𝛽1, . . , 𝛽𝑙)′ are the covariates and its coefficients which  

constant over time, and   

𝑿𝟐 =

[
 
 
 
 
 
 
 
 
 
 
 
𝑥𝑙+1,11 0 … 0

⋮ ⋮ … ⋮
𝑥𝑙+1,𝑛1 0 … 0

0 𝑥𝑙+1,12 … 0
⋮ ⋮ … ⋮
0 𝑥𝑙+1,𝑛2 … 0

0 0 … 0
⋮ ⋮ ⋱ ⋮
0 0 … 𝑥𝐾,1𝑇

⋮ ⋮ … ⋮
0 0 0 𝑥𝐾,𝑛𝑇]

 
 
 
 
 
 
 
 
 
 
 

(𝑛×𝑲𝑇)

  with 𝜷𝟐 =

[
 
 
 
 
 
 
𝛽𝑙+1,1

⋮
𝛽𝑙+1,𝑇

⋮
𝛽𝐾,1

⋮
𝛽𝐾,𝑇 ]

 
 
 
 
 
 

(𝑙×𝑇)

 

are the covariates and its coefficients which vary over time.   

2.3. Bayesian approach  

To estimate the parameter model (1) we may use Bayesian approach. Bayesian setting provide 

flexible alternative in order to obtain the standard error estimate of spatial autoregressive 

parameters model. The most popular Bayesian approach in recent year is Integrated Nested 

Laplace Approach (INLA). INLA provides an alternative to the simulation methods for running 

Bayesian inference. It is based on numerical approach. INLA be able to modeling general models 

that belong to exponential family.  

𝒚~Exponential Familiy 

𝜇~E[𝑦] 

𝑔(𝜇) = 𝜂 = 𝛽0 + ∑ 𝛽𝑘𝑋𝑘

𝐾

𝑘=1

+ ∑𝑓𝑙

𝐿

𝑙=1

 

 

(5) 

 

where 𝑓𝑙  are random effects. INLA implemented in R-INLA. Although INLA can be used to 
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model many types of models, however, in practice there are still some models not implemented in 

R-INLA such as spatiotemporal autoregressive model. For the particular cases of Gaussian models, 

the spatiotemporal autoregressive model (3) can be rewritten as: 

𝒚 = (𝑰𝑛𝑇 − 𝜌�̃�)
−1

(𝑿𝜷 + 𝜺) 
(6) 

which is the basis for INLA formulation (5). In relation to INLA, the expression can be written as: 

𝒛 = (𝑰𝑛𝑇 − 𝜌�̃�)
−1

(𝑿𝜷 + 𝜺) 
(7) 

Where 𝒛 is assumed as vector of 𝑛𝑇 random effects,  𝑰𝑛𝑇 is an identity matrix with dimension 

𝑰𝑛𝑇, and the other components similar with definition in (3). With observations 𝒚, than we have: 

𝒚 = 𝑧 + 𝒆 (8) 

with 𝒆  is a tiny error that introduce to fit the model. This error is assumed follow Gaussian 

distribution and do not appear in likelihood function. To apply Bayesian inference, we need a prior 

distribution for each parameter interest. We assign Gaussian vague prior for 𝜷 , i.e., 

𝜷~𝑀𝑉𝑁(𝟎, 106𝑰𝐾+1), 𝑙𝑜𝑔𝑖𝑡(𝜌)~𝑁(0,10) and 𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎(1,0.00005). 

2.4. Bayesian model averaging with INLA 

INLA can be used to estimate the wide class of the conditional models by setting some 

hyperparameters (𝜓𝑑 ) to fixed values [14]. However, we cannot obtain the uncertainty of the 

hyperparameters (𝜓𝑑 ). Following Gmmez-Rubio et al. (2020), the uncertainty can be obtained 

using Bayesian model averaging (BMA). INLA does not provide direct function to BMA. Using 

some modifications, BMA can be done in INLA setting. For the spatial model, models are fit 

conditional on 𝜓𝑑 = (𝜌, 𝜆) so that 𝜓−𝑑 = (𝛽, 𝜎𝜀
2), and 𝜎𝜀

2 is fixed to remove the Gaussian error 

term. The posterior of complete spatial model can be written as: 

𝑝(. |𝒟) = ∫𝑝(. , 𝜓𝑑|𝒟)𝑑𝜓𝑑 = ∫𝑝(. |𝒟, 𝜓𝑑)𝑝(𝜓𝑑|𝒟)𝑑𝜓𝑑 (9) 

where 𝑝(. |𝒟, 𝜓𝑑) denotes the conditional posterior marginal given 𝜓𝑑, while 𝑝(𝜓𝑑|𝒟) is the 

joint posterior distribution of 𝜓𝑑 and it can be written as: 

𝑝(𝜓𝑑|𝒟) ∝ 𝑝(𝒟|𝜓𝑑)𝑝(𝜓𝑑) (10) 

Following Bivand et al. (2014) when 𝜓𝑑 is unidimensional, numerical integration through a 

regular grid of K values {𝜓𝑑
(𝑘)

}
𝑘=1

𝐾

 can be used to estimate the posterior marginal 𝑝(𝜓𝑑|𝒟). Then 

the posterior marginal of the reminder of the hyperparameter and latent effects can obtained as: 



6 

NENENG SUNENGSIH, I.G.N.M JAYA 

𝑝(. |𝒟) ≅ ∑ 𝑝(. |𝒟, 𝜓𝑑
(𝑘)

)𝑤𝑘

𝐾

𝑘=1

 
(11) 

with weights 𝑤𝑘 defined as: 

𝑤𝑘 =
𝑝(𝒟|𝜓𝑑

(𝑘)
)𝑝(𝜓𝑑

(𝑘)
)

∑ 𝑝(𝒟|𝜓𝑑
(𝑘)

)𝑝(𝜓𝑑
(𝑘)

)𝐾
𝑘=1

 

 

(12) 

The posterior marginal 𝑝(. |𝒟, 𝜓𝑑
(𝑘)

) now is expressed as a BMA using the conditional posterior 

marginal of all the fit models. Hyperparameter inference is based on the values {𝜓𝑑
(𝑘)

}
𝑘=1

𝐾

 and 

weight {𝑤𝑘}𝑘=1
𝐾 . For example, for inference 𝜓𝑖𝑑

(𝑘)
= ∑ 𝜓𝑑𝑖

(𝑘)
𝑤𝑘

𝐾
𝑘=1  

2.5. Model comparison criterion 

2.5.1. Deviance information criterion (DIC) 

𝐷𝐼𝐶 = �̅� + 𝑝𝐷 (13) 

where �̅� the posterior means of the deviance and 𝑝𝐷 the effective number of parameter, i.e.,  

𝑝𝐷 = 𝐸𝝍|𝑦[𝐷(𝝍)] − 𝐷(𝐸𝝍|𝑦[𝝍]) = �̅� − 𝐷(�̅�) 

 

2.5.2. Watanabe Akaike information criterion (WAIC) 

𝑊𝐴𝐼𝐶 = −2∑∑log𝐸𝝍|𝑦 [𝑓(𝑦𝑖𝑡|𝝍)]

𝑛

𝑖=1

+ 2𝑝𝑊

𝑇

𝑡=1

 
(14) 

where  

𝑝𝑊 = ∑∑𝑉𝑎𝑟𝝍|𝑦 𝑙𝑜𝑔 [𝑓(𝑦𝑖𝑡|𝝍)]

𝑛

𝑖=1

𝑇

𝑡=1

 

 

The smaller DIC and WAIC correspond to the better model predictive performance. 

2.6 Hotspot identification  

Spatiotemporal hotspots are identified using exceedance probability criteria [15] .  It is 

estimated as: 
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Pr̂(�̂�𝑖𝑡 > 𝑐|𝐲) = 1 − ∫ 𝑝(�̂�𝑖𝑡|𝐲)
�̂�𝑖𝑡≤𝑐

𝑑�̂�𝑖𝑡 (15) 

where ∫ 𝑝(�̂�𝑖𝑡|𝐲)
�̂�𝑖𝑡≤𝑐

 is  the cumulative probability of fitted values �̂�𝑖𝑡 with threshold value 𝑐.  

It can be estimated using the Laplace approximation [16] 

 

3. MODELING CHILDHOOD TB IN BANDUNG CITY 

3.1. Data Exploration  

The data health data used in this study were obtained from Bandung health office and can be 

accessed from http://data.bandung.go.id/organization/dinas-kesehatan. It is comprehensive data 

set of childhood tuberculosis including incidence rate of childhood tuberculosis, malnutrition, 

healthy behaviour and population density. The statistics descriptive of each variable can be seen 

in Table 1. The highest incidence rate of childhood TB occurs in 2017 and lowest in 2018 (see 

Figure 1). It is consistent with malnutrition. The health behaviour index, population density and 

AFB smear-positive tuberculosis relatively constant over time. and  their spatiotemporal 

distributions are presented in Figure 2.  

 

 

Figure 1. Temporal distribution of  childhood TB, malnutrition, population density, healthy 

behaviors, and AFB smear TB (+) 

 

http://data.bandung.go.id/organization/dinas-kesehatan
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Table 1. Statistics descriptive  

 

Variables Statistic 
Year 

2016 2017 2018 

Childhood TB Mean 83.33 122.63 54.41 

Min 17.10 15.53 6.71 

Max 211.70 252.21 141.02 

Malnutrition Mean 86.88 223.39 133.11 

Min 0.00 8.89 17.63 

Max 520.00 1100.63 862.34 

Healthy 

Behavior 

Mean 56.03 56.03 55.01 

Min 15.13 15.13 13.13 

Max 83.33 83.33 87.66 

AFB smear TB 

(+) 

Mean 23.80 17.65 23.90 

Min 5.33 1.92 9.75 

Max 49.03 37.34 48.59 

Population 

Density 

Mean 152.31 152.93 155.40 

Min 37.65 38.00 40.00 

Max 388.17 387.00 394.00 
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Figure 2. Spatiotemporal distribution of (a) incidence rate childhood TB, (b) incidence rate  

malnutrition, (c) percentage healthy behaviors, (d) AFB smear smear TB (+), and (c) 

population density, 2016-2018 

 



10 

NENENG SUNENGSIH, I.G.N.M JAYA 

Figure 2 (a) shows the incidence rate of childhood TB for 3 years (2016-2018). The incidence rate 

of childhood TB seems have spatiotemporal clusters. The data of incidence rate of malnutrition in 

Figure 2 (b) has a similar pattern with the incidence rate of childhood TB. It indicates there is a 

strong correlation between the incidence rate of childhood TB. The healthy behavior index seems 

to have a spatiotemporal pattern also. The index was almost similar over 3 years. Figure 2 (d) 

shows the spatiotemporal pattern of FBA smear TB (+) which is commonly found in adults. The 

last variable is population density (in Figure 2 (e)) shows there is a similar pattern of population 

density over 3 years. There is no variation in the population in Bandung city over 3 years. 

 

 

Figure 3. Spatial Moran’s I for incidence rate of childhood TB 

 

To evaluate the spatial autoregressive model is a good candidate model for a modeling incidence 

rate of childhood TB, we estimate the spatial Moran’s I and spatiotemporal Moran’s I. The spatial 

Moran’s I have high positive values for the period 2016 and 2017. However, negative in 2018. We 

also considered spatiotemporal Moran’s I. We found high positive spatiotemporal autocorrelation 

0.494 (p-value =0.002) (see Figure 4). It indicates, there is a strong spatiotemporal autocorrelation 

in the incidence rate of childhood TB data. 
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Figure 4. Spatiotemporal Moran’s I 

 

3.2. Spatial autoregressive model 

We estimate two different models to find the best model for a modeling incidence rate of childhood 

TB with its risk factors. First, we assume the risk factors have a constant effect on the incidence 

rate of childhood TB, and second, we considered the constant and temporally coefficients model. 

We use deviance information criteria (DIC) and Watanabe Akaike information criteria (WAIC) to 

evaluate the model's predictive performance. The model that has the smallest values of DIC and 

WAIC will be selected as the best model to explain the effect of risk factors on the incidence rate 

of childhood TB. 

 

Table 2. Model Comparison  

 

Model DIC WAIC 

M1: Constant  967.96 968.90 

M2: Constant + Temporally varying 923.05 922.14 
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Table 2 shows the model comparison between the constant-coefficient model and the constant and 

temporally coefficients model. The second model has the smallest values of DIC and WAIC which 

indicates the best model is the model with constant and temporally varying coefficients. 

The regression coefficients of first and second models are presented in Tables 3 and 4 respectively.  

 

Table 3. Constant coefficients model 

 

 
mean sd 0.025quant 0.5quant 0.975quant 

Malnutrition 0.0242 0.0335 -0.0416 0.0241 0.0899 

AFB smear TB(+) -0.9621 0.8007 -2.5341 -0.9621 0.6087 

Healthy behaviour 0.6016 0.7022 -0.7771 0.6015 1.9791 

Population density 0.4267 0.2648 -0.0932 0.4267 0.9461 

Autoregressive 

coefficient 0.5298 0.0333 0.4804 0.5245 0.6063 

 

Table 4. Constant and temporally coefficients model 

 

 
mean sd 0.025quant 0.5quant 0.975quant 

Malnutrition 0.0077 0.0274 -0.0461 0.0077 0.0614 

AFB smear TB(+) 0.4522 0.6982 -0.9185 0.4522 1.8218 

Healthy behaviour -0.0399 0.6351 -1.2868 -0.0399 1.2059 

Population density 

(2016) 0.4591 0.2453 -0.0224 0.4591 0.9402 

Population density 

(2017) 0.7253 0.2413 0.2515 0.7253 1.1987 

Population density 

(2018) 0.2738 0.2376 -0.1928 0.2738 0.7399 

Autoregressive 

coefficient 0.5153 0.0362 0.4517 0.5122 0.5932 
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The regression coefficients of the first and second models have the different sign of impact effects. 

In the theoretical framework, malnutrition, AFB smear TB(+),  and Population density should 

have positive signs of impact effects, and  Healthy behavior should have negative signs. The 

majority of the signs of impact effects of the first model (constant-coefficient) have wrong signs. 

Conversely, the model with constant and temporally varying coefficients has a correct sign of 

impact effects. The result describes that we have to be aware of the model specification to avoid 

making a wrong conclusion. 

3.3 Identifying hotspot 

To identify hotspot of the childhood TB in Bandung city, we estimate the posterior exceedance 

probability with two different thresholds 50 and 100 using the second model.  

 

Figure 5. Posterior exceedance probability for 𝒄 = 𝟓𝟎 

 

Using threshold 𝑐 = 50, Figure 5 shows the hotspot area in 2016 are found in the northern and 

western areas of Bandung, and one area in the eastern area. While in 2017 the hotspot area spread 

to central and eastern Bandung. Majority of districts are categorized as a hotspot. In 2018, the 

number of hotspots decreased significantly.  

 

Figure 6. Posterior exceedance probability for 𝒄 = 𝟏𝟎𝟎 
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Using threshold 𝑐 = 100, the hotspot area in 2016 are found in the northern and western areas of 

Bandung. The number of hotspots increased significantly in 2017. The hotspot area spread to the 

other western areas and central Bandung. Majority of districts are categorized as a hotspot. In 2018, 

the number of hotspots decreased significantly. Only one district was categorized as hotspot.   

Different values of thresholds present different number of hotspot areas. The threshold 𝑐 =

50 should be considered if the government have unlimited resources to control childhood TB and 

𝑐 = 100 for limited resources.   

 

4. CONCLUSION 

In this paper, a Bayesian spatiotemporal autoregressive model is employed to model 

spatiotemporal tuberculosis in children 0-14 years old. The models for the data at hand included 

two components: the first, covariates effects, and the second is an autoregressive effect with spatial 

autoregressive. We applied INLA using R-INLA for parameter estimation, providing the fast and 

flexibility to include constant and temporally coefficients. There are a few examples varying 

coefficients model ([8], [17]). 

Our finding can be summarized as follows: we observed high differences between the constant-

coefficient and mixed coefficients (constant and temporally varying coefficients) models. The 

Bayesian spatiotemporal autoregressive model with constant coefficients provides wrong 

coefficients. The regression coefficients have wrong sign effects with less predictive performance. 

By considering the mixed coefficients, the model much better with higher predictive performance. 

The malnutrition, population density, AFB smear TB (+) has a positive impact on tuberculosis, and 

the healthy behaviour index has a negative impact. It is consistent with the increasing incidence 

rate of malnutrition, population density, and AFB smear TB (+), leading to an increasing incidence 

rate of tuberculosis. 

Furthermore, increasing the healthy behaviour index will decreasing the incidence rate of 

tuberculosis. The findings are significant because the constant coefficients model for covariate 

area statistical method is commonly employed to model incidence rate. We need to be careful to 

make a wrong model with the constant coefficients due to the temporal heterogeneity. 

 



15 

SPATIOTEMPORAL AUTOREGRESSIVE MODEL 

ACKNOWLEDGEMENTS 

We thank the health office, city of Bandung, for supplying the aggregated dengue and population 

data per district. The authors thank Rector Padjadjaran University (Unpad).   

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

REFERENCES 

[1] WHO, Global Tuberculosis Report, WHO, Geneva, 2020. 

[2] I.G.N.M. Jaya, B. Ruchjana, A. Abdullah, T. Toharudin, Spatial distribution of tuberculosis disease among 

men and women in Bandung city, Indonesia, Commun. Math. Biol. Neurosci. 2020 (2020), Article ID 53.  

[3] A. van Rie, N. Beyers, R.P. Gie, M. Kunneke, L. Zietsman, P.R. Donald, Childhood tuberculosis in an urban 

population in South Africa: burden and risk factor, Arch. Dis. Childhood. 80 (1999), 433–437. 

[4] P. Narasimhan, J. Wood, C.R. MacIntyre, D. Mathai, Risk Factors for Tuberculosis, Pulmonary Med. 2013 

(2013), 828939. 

[5] WHO, TB comorbidities and risk factors, WHO, 2020. Available: https://www.who.int/tb/areas-of-

work/treatment/risk-factors/en/. [Accessed 30-04-2021]. 

[6] I.G.N.M. Jaya, H. Folmer, Bayesian spatiotemporal mapping of relative dengue disease risk in Bandung, 

Indonesia, J. Geogr. Syst. 22 (2020), 105–142. 

[7] I.G.N.M. Jaya, F. Kristiani, Y. Andriyana, B.N. Ruchjana, Modeling dengue disease transmission for juvenile 

in Bandung, Indonesia, Commun. Math. Biol. Neurosci. 2021 (2021), Article ID 23. 

[8] I.G.N.M. Jaya, H. Folmer, Identifying spatiotemporal clusters by means of agglomerative hierarchical 

clustering and Bayesian regression analysis with spatiotemporally varying coefficients: methodology and 

application to dengue disease in Bandung, Indonesia, Geogr. Anal. (2020), https://doi.org/10.1111/gean.12264. 

[9] D. Wardani, E. Wahono, Spatio-temporal dynamics of tuberculosis clusters in Indonesia, Indian J. Commun. 

Med. 45 (2020), 43–47.  

[10] D.S.S. Rejeki, A. Fuad, B.S. Widartono, E.E.H. Murhandarwati, H. Kusnanto, Spatiotemporal patterns of 

malaria at cross-boundaries area in Menoreh Hills, Java, Indonesia, Malar J. 18 (2019), 80. 



16 

NENENG SUNENGSIH, I.G.N.M JAYA 

[11] I.G.N.M. Jaya, H. Folmer, Bayesian spatiotemporal forecasting and mapping of COVID‐19 risk with 

application to West Java Province, Indonesia, J. Regional Sci. (2021), https://doi.org/10.1111/jors.12533. 

[12] I.G.N.M. Jaya, H. Folmer, B.N. Ruchjana, F. Kristiani, Y. Andriyana, Modeling of Infectious Diseases: A Core 

Research Topic for the Next Hundred Years, in: R. Jackson, P. Schaeffer (Eds.), Regional Research Frontiers - 

Vol. 2, Springer International Publishing, Cham, 2017: pp. 239–255. 

[13] I.G.N.M. Jaya, B.N. Ruchjana, B. Tantular, Zulhanif, A. Yudhie, Simulation and application of the spatial 

autoregressive geographically weighted regression model (SAR-GWR), ARPN J. Eng. Appl. Sci. 13 (2018), 

337-387.  

[14] V. Gómez-Rubio, R.S. Bivand, H. Rue, Bayesian model averaging with the integrated nested Laplace 

approximation, Econometrics. 8 (2020), 23. 

[15] A.B. Lawson, C. Rotejanaprasert, Childhood Brain Cancer in Florida: A Bayesian Clustering Approach, Stat. 

Public Policy. 1 (2014), 99–107. 

[16] M. Blangiardo, M. Cameletti, Spatial and spatio-temporal Bayesian models with R - INLA, John Wiley & 

Sons, Chichester, 2015.  

[17] D.A. Martınez-Bello, A. Lopez-Quılez, A. Torres-Prieto, Bayesian dynamic modeling of time series of dengue 

disease case counts, PLOS Neglect. Trop. Dis. 11 (2017), e0005696.  

 


