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Abstract: In this study, we present a mathematical model of malaria transmission with a seasonality effect to describe 

the dynamics of the infection. In the absent seasonality effect, we prove the local stability of the malaria-free 

equilibrium point. The parameters of the model are fitted to the cumulative number of malaria cases of Papua province, 

Indonesia for the year 2018 and parameterized using the least-squares technique. The sensitivity analysis of the model 

to changes in the parameters is explored. Further, the malaria model with the seasonality effect via a periodic mosquito 

birth rate is investigated numerically. Finally, we formulate an optimal control problem with a control function and 

obtain the optimal control characterization. The optimal control problem is solved numerically, and the results 

comprised of a controls system for different strategies. 
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1. INTRODUCTION 

Malaria is a contagious disease that is very dominant in the tropics and sub-tropics. This disease 

is caused by the protozoan parasite of the genus plasmodium which is transmitted by Anopheles 

mosquito bites. Malaria is still one problem of public health because it affects high morbidity and 

mortality. If malaria patient is untreated, the patient can progress rapidly to convulsions, coma, 

and death. Nowadays, malaria is found in almost all parts of the world. In 2019, almost half of the 

world's population is at high risk of contracting malaria. WHO recorded the incident malaria in 

2019 around 229 million cases with a death toll of around 409,000 cases. The highest risk of 

transmission occurs in sub-Saharan Africa. Even the regions in Southeast Asia, the Eastern 

Mediterranean, the Western Pacific and America are also at risk [1]. 

Indonesia is one of the contributing countries for malaria sufferers in the world. High-endemic 

malaria districts/cities are still concentrated in eastern Indonesia, including Papua Province, West 

Papua Province, and East Nusa Tenggara Province. The total number of malaria cases in Indonesia 

in 2019 was 250,644. About 86% occurred in Papua (216,380 cases). Then, followed by East Nusa 

Tenggara with 12,909 cases and West Papua with 7,079 cases. Meanwhile, 300 districts/cities 

(58%) have eliminated malaria in Indonesia [2].  

Malaria as one of the diseases transmitted by mosquitoes is strongly influenced by climatic 

conditions (temperature, rainfall, and humidity). Specifically, rainfall and temperature affect 

mosquito reproduction and development and parasitic survival in mosquitoes [3, 4]. Indonesia as 

a tropical country, of course, breeding mosquitoes influenced by two seasons namely the rainy 

season and the dry season. Thus, it is very important to be included in seasonal factors of malaria 

transmission in Indonesia. 
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The mathematical model approach has been used by the researcher to capture the complexities 

of the phenomenon on the transmission dynamics of mosquito-borne diseases, such as malaria. 

Numerous mathematical models have been constructed to assess the dynamics of malaria 

transmission in population [5-10]. In recent years, research investigating the climate factors on the 

malaria transmission model has been reported [11-15]. For instance, the authors in [11] have 

developed a malaria model involving the impact of climate variables on population of Anopheles 

arabiensis, and the effect of rainfall and temperature on mosquito breeding. An age-structured 

mathematical model to assess the impact of temperature and rainfall variability on the dynamics 

of malaria transmission in a population was studied in [12]. A deterministic malaria model to 

examine the impact of temperature and rainfall on malaria epidemics over Limpopo province, 

South Africa can be found in [13]. The authors in [14] have explored the Plasmodium vivax malaria 

transmission model associated with climate-dependent and climate-independent parameters, 

which are estimated by using previous articles and actual data. Recent study on developing a 

malaria model that take into account temperature- and rainfall-dependent parameters has been 

studied in [15]. 

In this work, we extend the malaria model in [10, 16] by incorporating the seasonal factors 

based on the real data of malaria cases in Indonesia. We estimate the parameter model using the 

cumulative monthly number of the malaria cases in Papua province, Indonesia in 2018. To examine 

the impact of the optimal level of intervention in the form of insecticides, prevention, and treatment 

effort, we carry out the malaria model to be the optimal control problem. 

 

2. MALARIA MODEL TRANSMISSION 

In this section, we describe a host-vector model for malaria transmission. The host population 

is divided into two subpopulations, namely, the susceptible subpopulation 𝑆ℎ and the infectious 

subpopulation 𝐼ℎ.  Moreover, the vector population is also divided into the susceptible 

subpopulation 𝑆𝑉  and the infectious subpopulation  𝐼𝑣.  The total human and mosquito 

populations are denoted by 𝑁ℎ and 𝑁𝑣 where 𝑁ℎ = 𝑆ℎ + 𝐼ℎ and 𝑁𝑣 = 𝑆𝑣 + 𝐼𝑣, respectively. 
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The system of differential equations describing the host-vector model is as following 

(1)

{
  
 

  
 
𝑑𝑆ℎ

𝑑𝑡
= Λℎ − 𝑝1 𝛽 𝐼𝑣

𝑆ℎ

𝑁ℎ
+ 𝛾ℎ 𝐼ℎ − 𝜇ℎ 𝑆ℎ,    

𝑑𝐼ℎ

𝑑𝑡
= 𝑝1 𝛽 𝐼𝑣

𝑆ℎ

𝑁ℎ
− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ,       

𝑑𝑆𝑣

𝑑𝑡
= 𝜇𝑣 𝑁𝑣 − 𝑝2 𝛽 𝑆𝑣

𝐼ℎ

𝑁ℎ
− 𝜇𝑣 𝑆𝑣,          

𝑑𝐼𝑣

𝑑𝑡
= 𝑝2 𝛽 𝑆𝑣

𝐼ℎ

𝑁ℎ
− 𝜇𝑣 𝐼𝑣.                  

 

Description of parameters of model (1) could be seen in Table 1. 

TABLE 1. Description of parameter for model (1)  

Parameter Description 

Λℎ Recruitment rate of human 

𝑝1 Transmission probability from 𝐼𝑣 to 𝑆ℎ 

𝛽 Contact rate of mosquito and human 

𝛾ℎ Recovery rate of infectious human 

𝜇ℎ Per capita natural death rate of human 

𝛿ℎ Disease induced death rate of human 

𝜇𝑣 Per capita birth/death rate of mosquito 

𝑝2 Transmission probability from 𝐼ℎ to 𝑆𝑣 

 

In the malaria model (1) all of the parameters are positive and constant. Moreover, all of the 

state variables are non-negative. It can also be confirmed that the solution of the malaria model 

with non-negative initial conditions will remain non-negative for 𝑡 ≥ 0. 

The feasible region of model (1) is given by Ω = Ω𝑣 × Ωℎ ⊂ ℝ+
4 , where      

      Ωℎ = {(𝑆ℎ(𝑡), 𝐼ℎ(𝑡)) ∈ ℝ+
2 : 𝑁ℎ(𝑡) ≤

Λℎ

𝜇ℎ
} and 

      Ω𝑣 = {(𝑆𝑣(𝑡), 𝐼𝑣(𝑡)) ∈ ℝ+
2 : 𝑆𝑣 + 𝐼𝑣 = 𝑁𝑣}.  

Here, parameter 𝑁𝑣 is constant because the mosquito population is constant. The model (1) is 

well-posed in the region Ω due to all the solutions of model (1) with initial conditions in the region 

remains in the region for all 𝑡 ≥ 0. 
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3. STABILITY ANALYSIS  

This section examines the equilibria of model (1) and analyze their local stability. Model (1) 

has two equilibria, namely the disease-free equilibrium and the endemic equilibrium. The disease-

free equilibrium is a condition when there is no spread of malaria in the population. In model (1), 

the disease-free equilibrium (DFE) is 

(2) 𝐸0 = (𝑆ℎ
0, 𝐼ℎ

0, 𝑆𝑣
0, 𝐼𝑣

0) = (
Λℎ

𝜇ℎ
, 0, 𝑁𝑣, 0).  

Next, we determine the basic reproduction number 𝑅0 which represents the expected average 

number of new malaria infections due to contact between infected mosquitoes and susceptible 

humans as well as infected humans and susceptible mosquitoes [17, 18]. In this study, the Next 

Generation Matrix (NGM) method developed by [19] is used to obtain 𝑅0. The basic reproduction 

number 𝑅0 of the model (1) is given by 

(3) 𝑅0 = √
𝑝1 𝑝2 𝛽2 𝜇ℎ 𝑁𝑣

Λℎ 𝜇𝑣 (𝜇ℎ + 𝛾ℎ + 𝛿ℎ)
.  

Endemic equilibrium is a condition when malaria has been endemic in the population. The 

system of equation (1) can be solved using the strength of infection during steady-state conditions 

(𝜅1
∗ dan 𝜅2

∗), where 

(4) 𝜅1
∗ = 𝛽

𝐼𝑣
∗

𝑁ℎ
∗  dan 𝜅2

∗ = 𝛽
𝐼ℎ
∗

𝑁ℎ
∗ .  

By making the right-hand side of model (1) zero and noticing that 𝜅1 = 𝜅1
∗ dand 𝜅2 = 𝜅2

∗ at 

equilibrium conditions, it is obtained 

(5) 

{
  
 

  
 𝑆ℎ

∗ =
Λℎ + 𝛾ℎ 𝐼ℎ

∗

𝑝1 𝜅1
∗  + 𝜇ℎ

,                                       

𝐼ℎ
∗ =

𝑝1 𝜅1
∗  Λℎ

𝑝1 𝜅1
∗  (𝜇ℎ + 𝛿ℎ) + 𝜇ℎ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ)

,                  

𝑆𝑣
∗ =

𝜇𝑣 𝑁𝑣

𝑝2 𝜅2
∗  + 𝜇𝑣

,                                       

𝐼𝑣
∗ =

𝑝2 𝜅2
∗  𝑁𝑣

𝑝2 𝜅2
∗  + 𝜇𝑣

.                                      

 

By using equation (5) to obtain 𝜅1
∗  and 𝜅2

∗  of equation (4), it shows that the endemic 

equilibrium of model (1) satisfying  

(6) {
𝜅1
∗ =

𝛽 𝑝2 𝜅2
∗  𝑁𝑣 𝜇ℎ

Λℎ (𝑝2 𝜅2
∗  + 𝜇𝑣)

,                                           

𝜅2
∗ =

Λℎ 𝜇𝑣 (𝜇ℎ + 𝛾ℎ + 𝛿ℎ)(𝑅0
2 − 1)

𝑝1 𝑝2 𝛽 𝑁𝑣 (𝜇ℎ + 𝛿ℎ) + 𝑝2 Λℎ (𝜇ℎ + 𝛾ℎ + 𝛿ℎ)
.                    
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Based on equation (5), 𝑆ℎ
∗ , 𝐼ℎ

∗ , 𝑆𝑣
∗, 𝐼𝑣

∗ > 0 whenever 𝜅1
∗, 𝜅2

∗ > 0. Next on the equation (6), 𝜅1
∗ >

0 whenever 𝜅2
∗ > 0 and also 𝜅2

∗ > 0 if 𝑅0 > 1. Hence, the endemic equilibrium 𝐸∗ exists when 

𝑅0 > 1.  

Next, we analyze the local stability of DFE. The Jacobian matrix of model (1) at the DFE in 

equation (2) is as follows. 

 (7) 𝐽𝐸
0 =

(

  
 

−𝜇ℎ 𝛾ℎ 0 −𝑝1𝛽

0 −(𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 0 𝑝1𝛽

0 −
𝑝2𝛽𝑁𝑣𝜇ℎ

Λℎ
−𝜇𝑣 0

0
𝑝2𝛽𝑁𝑣𝜇ℎ

Λℎ
0 −𝜇𝑣 )

  
 
. 

The local stability of the DFE can be found through the eigenvalues of matrix 𝐽𝐸
0 . The 

characteristic equation of matrix 𝐽𝐸
0 is 

(𝜆 + 𝜇ℎ)(𝜆 + 𝜇𝑣)(𝜆
2 + 𝑎1𝜆 + 𝑎2) = 0, 

where 𝑎1 = 𝜇𝑣 + 𝜇ℎ + 𝛾ℎ + 𝛿ℎ and 𝑎2 = 𝜇𝑣(𝜇ℎ + 𝛾ℎ + 𝛿ℎ)(1 − 𝑅0
2). 

Further, we obtain the eigenvalues 𝜆1 = −𝜇ℎ, 𝜆2 = −𝜇𝑣, and the remainder are the roots of 

the following equation: 

(8) 𝜆2 + 𝑎1 𝜆 + 𝑎2 = 0. 

Based on the Routh-Hurwitz criteria, equation (8) has roots whose real part is negative if 

𝑎1, 𝑎2 > 0. It is clear that 𝑎1 > 0 because all parameters are assumed to be positive. Moreover, 

𝑎2 > 0 when 𝑅0
2 < 1 ⇔ 𝑅0 < 1. Thus the DFE 𝐸0 is local asymptotically stable when 𝑅0 < 1 

and unstable when 𝑅0 > 1.  

 

4. PARAMETER ESTIMATION OF MALARIA MODEL 

Next, we estimate the parameters of model (1) based on data on malaria infective in Papua 

province in 2018. The data for individuals infected with malaria discussed here are data from 

people who have been confirmed in the laboratory and tested positive for malaria. Data obtained 

from Papua Health Office from January-December 2018 [20]. We used cumulative data on malaria 

cases per month from January to December 2018. 

In this study, we used the least squares method to estimate parameters of model (1) except for 

parameters 𝜇ℎ obtained from demographic conditions in Papua. Natural human mortality rate 𝜇ℎ 

is obtained from the inverse of the average life expectancy in Papua. The average life expectancy 
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in Papua is 65.36 years [21], then 𝜇ℎ =
1

65.36
 per year. For parameter 𝛬ℎ, the human recruitment 

rate is calculated as follows. The total population of Papua province in 2018, which is equal to 

2,264,615 [20]. Hence, we have 
Λℎ

𝜇ℎ
= 2,264,615, which is the total human population without 

disease, so that 𝛬ℎ = 34,648.3323 per year. The remainder of the parameters of model (1) are 

estimated using the least squares method [22].  

Based on the least squares method, the results of parameter estimation of model (1) are given 

in Table 2. The comparison of the solution of model (1) and data on malaria patients is given in 

Figure 1. Using the parameter values stated in Table 2, the basic reproduction number in Papua is 

𝑅0 ≈ 1.3141 which mean the malaria disease will persist in the province. 

Table 2. Estimated parameter values. Time unit is day. 

Parameter Value Source 

𝜦𝒉 94.9269 Estimated 

𝜸𝒉 0.0972 Fitted 

𝝁𝒉 
1

65.36 × 365
 Estimated 

𝜹𝒉 0.0244 Fitted 

𝜷 0.6910 Fitted 

𝝁𝒗 0.0591 Fitted 

𝒑𝟏 0.5841 Fitted 

𝒑𝟐 0.9981 Fitted 

 

 

Figure 1. Comparison of dynamics 𝐼ℎ(𝑡) of model (1) and real data 
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5. SENSITIVITY ANALYSIS 

In this section, we carry out the local sensitivity in order to investigate the model’s parameters that 

are sensitive or significant (positive or negative) to the basic reproduction number of system (1) 

by calculating their sensitivity indices. To achieve this, we apply the following elasticity formula  

(9) ΓΨ
𝑅0 =

𝜕𝑅0

𝜕Ψ
×

Ψ

𝑅0
,  

to equation (3) as defined in [23], where Ψ  represents each parameter of interest. Applying 

equation (9) to (3) we obtain   

 (10)

{
 

 ΓΛℎ
𝑅0 = −

1

2
,    Γ𝛾ℎ

𝑅0 = −
𝛾ℎ

2(𝛾ℎ+𝛿ℎ+𝜇ℎ)
,    Γ𝜇ℎ

𝑅0 =
𝛾ℎ+𝛿ℎ

2(𝛾ℎ+𝛿ℎ+𝜇ℎ)
,

Γ𝛿ℎ
𝑅0 = −

𝛿ℎ

2(𝛾ℎ+𝛿ℎ+𝜇ℎ)
, Γ𝛽

𝑅0 = 1,   Γ𝜇𝑣
𝑅0 = −

1

2
,    Γ𝜌1

𝑅0 =
1

2
,    Γ𝜌2

𝑅0 =
1

2
.

  

Next, we evaluate (10) by substituting the parameter values from Table 2 and obtain the sensitivity 

indices with respect to each parameter as summarised in Table 3. 

TABLE 3. Sensitivity indices 

Parameter Sensitivity index 

Λℎ -0.5000 

𝑝1 +0.5000 

𝛽 +1.000 

𝛾ℎ -0.3995 

𝜇ℎ +0.4998 

𝛿ℎ -0.10029 

𝜇𝑣 -0.5000 

𝑝2 +0.5000 

 From Table 3, we observe that the parameters Λℎ and 𝜇𝑣 have a great negative impact on 𝑅0, 

while the parameters 𝛽, 𝑝1 and 𝑝2 have a strong positive impact on 𝑅0. Further, parameter 𝛽 

is the most sensitive parameter to 𝑅0 with a positive sign and 100% index value. An increase in 

𝛽  will lead to an increase in the malaria infections. Also, parameters Λℎ  and 𝜇𝑣  are less 

significant with negative signs and a decrease (increase) by 50% will decrease the value of 𝑅0 

respectively. 
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6. MALARIA MODEL WITH SEASONALITY EFFECT 

In this section, we develop the malaria transmission model given in equation (1) considering 

climatic factors. Climatic factors that are considered in this study are limited to temperature and 

rainfall factors. The temperature factor can determine the speed of growth and development of 

mosquitoes and the resistance of adult mosquitoes. This of course affects the rate of transmission 

of malaria from mosquitoes to humans and vice versa. Meanwhile, the rainfall factor also affects 

the development of mosquitoes and the malaria epidemic. From this, we included the effect of 

rainfall on the reproductive patterns of the mosquitoes so that seasonal effects in the modeling of 

malaria transmission were considered, allowing the total number of mosquitoes to vary 

periodically over time. Referring to [24, 25], we included this seasonal effect in model (1) by 

modifying the mosquito birth rate to periodic as given in the following system of differential 

equations.  

 

(11)

{
 
 
 
 

 
 
 
 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ − 𝑝1 𝛽 𝐼𝑣
𝑆ℎ
𝑁ℎ

+ 𝛾ℎ  𝐼ℎ − 𝜇ℎ  𝑆ℎ,                                           

𝑑𝐼ℎ
𝑑𝑡

= 𝑝1 𝛽 𝐼𝑣  
𝑆ℎ
𝑁ℎ

− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ,                                            

𝑑𝑆𝑣
𝑑𝑡

= 𝜇𝑣 (1 + 𝛼 cos (
2 𝜋 𝑡

365
+ 𝜑))𝑁𝑣 − 𝑝2 𝛽 𝑆𝑣

𝐼ℎ
𝑁ℎ

− 𝜇𝑣  𝑆𝑣,                              

𝑑𝐼𝑣
𝑑𝑡

= 𝑝2 𝛽 𝑆𝑣
𝐼ℎ
𝑁ℎ

− 𝜇𝑣  𝐼𝑣.                                                            

 

where 𝛼 is the amplitude of the seasonal variation (0 ≤ 𝛼 < 1), and 𝜑 is the periodic phase of 

the birth of mosquito. Figure 2 gives some simulation results of model (1) and model (10). The 

simulation is carried out using the Runge-Kutta method. The parameter values used refer to the 

parameter values given in Table 2 and it is also assumed that 𝛼 = 0.3 and 𝜑 = 0. From Figure 

2(a) - (d), it can be seen that the model without seasonal effects (solid blue curves) for the 

susceptible humans and the susceptible mosquitoes tends to decline, whereas the infected humans 

tend to rise and then fall, and the infected mosquitoes tend to increase. Meanwhile, the model with 

seasonal effects (periodic) tends to fluctuate depending on the current season phase. 
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(a)                            (b) 

 

         (c)                            (d) 

       FIGURE 2. Seasonal effects on the malaria model 
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community. Meanwhile, strategies to increase mosquito mortality and cure infected humans will 

provide benefits in order to reduce the incidence of malaria. Therefore, three control variables are 

applied to model (11), namely the malaria prevention control 𝑢1, malaria treatment control 𝑢2, 

and insecticide control 𝑢3. The efforts of the malaria prevention can be in the form of using anti-

mosquito lotion and the use of insecticide-treated mosquito net, while the efforts of the malaria 
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and fogging to reduce mosquitoes. The malaria model (11) by incorporated the control variables 

is given as follows 

(12)

{
 
 
 
 

 
 
 
 

𝑑𝑆ℎ
𝑑𝑡

= Λℎ − (1 − 𝑢1) 𝑝1 𝛽 𝐼𝑣  
𝑆ℎ
𝑁ℎ

+ 𝛾ℎ 𝐼ℎ − 𝜇ℎ 𝑆ℎ + 𝜃 𝑢2 𝐼ℎ,                                     

𝑑𝐼ℎ
𝑑𝑡

= (1 − 𝑢1) 𝑝1 𝛽 𝐼𝑣  
𝑆ℎ
𝑁ℎ

− (𝜇ℎ + 𝛾ℎ + 𝛿ℎ) 𝐼ℎ − 𝜃 𝑢2 𝐼ℎ,                                        

𝑑𝑆𝑣
𝑑𝑡

= 𝜇𝑣 (1 + 𝛼 cos (
2 𝜋 𝑡

365
+ 𝜑))𝑁𝑣 − (1 − 𝑢1) 𝑝2 𝛽 𝑆𝑣  

𝐼ℎ
𝑁ℎ

− 𝜇𝑣 𝑆𝑣 − 𝛼𝑣𝑢3                   𝑆𝑣,

𝑑𝐼𝑣
𝑑𝑡

= (1 − 𝑢1) 𝑝2 𝛽 𝑆𝑣  
𝐼ℎ
𝑁ℎ

− 𝜇𝑣 𝐼𝑣 − 𝛼𝑣 𝑢3𝐼𝑣.                                                   

 

The parameters 𝜃  and 𝛼𝑣  represent the malaria cure rate due to treatment and the mosquito 

mortality rate due to insecticide, respectively.  

The objective function of model (12) that minimized the infected human and infected mosquito 

populations on the time interval [0, 𝑡𝑓] is formulated as  

(13) min 𝐽 = ∫  𝑏1 𝐼ℎ + 𝑏2 𝐼𝑣 +
1

2
 𝑐1 𝑢1

2 +
1

2
 𝑐2 𝑢2

2 +
1

2
 𝑐3 𝑢3

2 𝑑𝑡
𝑡𝑓
0

,  

where 𝑢1, 𝑢2, 𝑢3 ∈ [0,1] and 𝑏1 , 𝑏2 , 𝑐1, 𝑐2, dan 𝑐3  respectively state weighting constants for 

infected human, infected mosquito, costs for malaria prevention, malaria treatment, and insecticide, 

respectively. The terms 𝑐1𝑢1
2, 𝑐2𝑢2

2, and 𝑐3𝑢3
2 were described as measures of control costs for 

malaria prevention, malaria treatment, and insecticide, respectively. 

The optimal control strategy problem in model (12) is solved by applying the Pontryagin 

Maximum Principle [26]. The first step in analyzing the optimal control strategy problem is to 

form the Hamiltonian (𝐻) function as follows 

(14) 𝐻 = 𝑏1 𝐼ℎ + 𝑏2 𝐼𝑣 +
𝑐1

2
 𝑢1
2 +

𝑐2

2
 𝑢2
2 +

𝑐3

2
 𝑢3
2 + ∑ 𝜆𝑖 𝑓𝑖  ,

4
𝑖=1       

where 𝑓𝑖  is the right-hand side of model (12) which represents the 𝑖 -th variable, while 𝜆𝑖 

represents the co-state variable with 𝑖 = 1, 2, 3, 4. The existence of the optimal controls 𝑢1, 𝑢2, 

and 𝑢3 are established by using the convexity of the objective function (13) with respect to the 

controls and the boundedness and Lipschitz property of the state system (12) [27]. 
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The optimal controls 𝑢1, 𝑢2, and 𝑢3 are obtained as stationary conditions 
𝜕𝐻

𝜕𝑢
= 0, where 𝑢 =

(𝑢1, 𝑢2, 𝑢3). Hence, we have the following the optimal controls of system (12). 

(15) 

{
 
 
 

 
 
 𝑢1

∗ = min(1,max (0,
(𝜆2−𝜆1) 𝛽 𝑝1 𝑆ℎ 𝐼𝑣+(𝜆4−𝜆3) 𝛽 𝑝2 𝑆𝑣 𝐼ℎ

𝑐1 𝑁ℎ
)),                   

𝑢2
∗ = min(1,max (0,

(𝜆2−𝜆1) 𝜃 𝐼ℎ

𝑐2
)),                                       

𝑢3
∗ = min(1,max (0,

(𝐼𝑣 𝜆4+𝑆𝑣  𝜆3) 𝛼𝑣

𝑐3
)).                                   

 

Differentiating the Hamiltonian function with respect to the state variables provide the co-state 

variables corresponding to the system given as follows 

 

(16)

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜆1̇ = −

𝜕𝐻

𝜕𝑆ℎ
= (𝜆2 − 𝜆1) (

(1−𝑢1) 𝑝1 𝛽 𝐼𝑣 𝑆ℎ

𝑁ℎ
2 −

(1−𝑢1) 𝑝1 𝛽 𝐼𝑣

𝑁ℎ
) + 𝜆1 𝜇ℎ                                      

+(𝜆4 − 𝜆3) (
(1−𝑢1) 𝑝2 𝛽 𝑆𝑣 𝐼ℎ

𝑁ℎ
2 ) ,

𝜆2̇ = −
𝜕𝐻

𝜕𝐼ℎ
= −𝑏1 + (𝜆2 − 𝜆1) (

(1−𝑢1) 𝑝1 𝛽 𝐼𝑣 𝑆ℎ

𝑁ℎ
2 + 𝛾ℎ + 𝜃 𝑢2) + 𝜆2(𝜇ℎ + 𝛿ℎ)                                   

+(𝜆4 − 𝜆3) (
(1−𝑢1) 𝑝2 𝛽 𝑆𝑣 𝐼ℎ

𝑁ℎ
2 −

(1−𝑢1) 𝑝2 𝛽 𝑆𝑣

𝑁ℎ
) ,

𝜆3̇ = −
𝜕𝐻

𝜕𝑆𝑣
= (𝜆3 − 𝜆4) (

(1−𝑢1) 𝑝2 𝛽 𝐼ℎ

𝑁ℎ
) +                                                                  

𝜆3 (−𝜇𝑣 (1 + 𝛼 cos (
2 𝜋 𝑡

365
+ 𝜑)) + 𝜇𝑣 + 𝛼𝑣 𝑢3) ,

𝜆4̇ = −
𝜕𝐻

𝜕𝐼𝑣
= −𝑏2 + (𝜆1 − 𝜆2) (

(1−𝑢1) 𝑝1 𝛽 𝑆ℎ

𝑁ℎ
) + 𝜆3 (−𝜇𝑣 (1 + 𝛼 cos (

2 𝜋 𝑡

365
+ 𝜑)))                          

+𝜆4 (𝜇𝑣 + 𝛼𝑣 𝑢3).

  

with transversality condition 𝜆𝑖(𝑡𝑓) = 0, for 𝑖 = 1, 2, 3, 4. 

The solutions of 𝑆ℎ, 𝐼ℎ, 𝑆𝑣, and 𝐼𝑣 from the optimal control 𝑢∗ = (𝑢1
∗, 𝑢2

∗ , 𝑢3
∗) will be solved 

numerically. 

 

8. NUMERICAL RESULTS 

To examine the effectiveness of the optimal control implementation strategy, numerical 

simulations were carried out. In this study, simulations were conducted by using the forward–
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backward scheme [28] to solve the numerical solutions of model (12). A comparison of the 

dynamics of the malaria transmission without the control variables in model (11) and with the 

control variables in model (12) will be demonstrated to investigate the behavior of both models. 

The parameter values used for the numerical simulation refer to the parameter values given in 

Table 2. The initial values used in this simulation refer to the malaria incidence data in January 

2018 in Papua with 𝑆ℎ(0) = 2,223,198 and 𝐼ℎ(0) = 20,711 with five people dying from malaria. 

Furthermore, it is assumed that the initial value of the mosquito population is 𝑆𝑣(0) = 100,000 

and 𝐼𝑣(0) = 1,000. The time horizon for the simulation is 200 days. Weighting constants for 

infected human populations, infected mosquitoes, costs for prevention, malaria treatment and 

insecticides are 𝑏1 = 𝑏2 = 1, 𝑐1 = 1, 𝑐2 = 10, and 𝑐3 = 3, respectively. It is also assumed that 

the parameter values 𝜃 = 0.0035, 𝛼𝑣 =  0.1, 𝛼 =  0.5 and 𝜑 =  0. Next, we investigate the 

following four control scenarios as follows 

1. Combination of malaria prevention (𝑢1) and malaria treatment (𝑢2). 

2. Combination of malaria prevention (𝑢1) and insecticide (𝑢3). 

3. Combination of malaria treatment (𝑢2) and insecticide (𝑢3). 

4. Combination of malaria prevention (𝑢1), malaria treatment (𝑢2), and insecticide (𝑢3). 

 

8.1 FIRST SCENARIO 

In the first scenario, the combination of malaria prevention 𝑢1 and malaria treatment 𝑢2 is 

applied, meanwhile, the insecticide was not used (𝑢3 = 0). The optimal control profiles for 𝑢1 

and 𝑢2 are presented in Figure 3. Malaria prevention should be given intensively for 141 days, 

whereas malaria treatment should be done intensively for 32 days. 

The dynamics of infected humans and infected mosquitoes are presented in Figure 4(a)-(b). 

From Figure 4, it can be seen that malaria prevention and malaria treatment controls provide a 

significant reduction in infected human and infected mosquito populations compared to having no 

controls. 
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FIGURE 3. Optimal control profiles of 𝑢1
∗ and 𝑢2

∗ . 

 

(a)                            (b) 

FIGURE 4. The dynamics of 𝐼ℎ (a) and 𝐼𝑣 (b) without and with controls 𝑢1
∗ and 𝑢2

∗ . 

 

8.2 SECOND SCENARIO 

In the second scenario, the combination of malaria prevention 𝑢1  and insecticide 𝑢3  is 

employed, while malaria treatment was not used (𝑢2 = 0). The optimal control profiles for 𝑢1 

and 𝑢3 are displayed in Figure 5. Based on Figure 5, it can be seen that malaria prevention is 

implemented intensively for 57 days, whereas insecticide should be kept intensively for 36 days. 

The dynamics of infected humans and infected mosquitoes are presented in Figure 6(a)-(b). 

From Figure 6, it can be seen that malaria prevention and insecticide controls provide a significant 

reduction in infected human and infected mosquito populations compared to those without controls. 
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FIGURE 5. Optimal control profiles of 𝑢1
∗ and 𝑢3

∗ . 

 

 

(a)                                (b) 

FIGURE 6. The dynamics of 𝐼ℎ (a) and 𝐼𝑣 (b) without and with controls 𝑢1
∗ and 𝑢3

∗ . 

 

8.3 THIRD SCENARIO 

In the third scenario, the combination of malaria treatment 𝑢2 and insecticide 𝑢3 are utilized, 

while malaria prevention was not used (𝑢1 = 0). The optimal control profiles for 𝑢2 and 𝑢3 are 

summarized in Figure 7. The malaria treatment should be adopted intensively for 47 days, whereas 

insecticide should be done intensively for 65 days. 
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The dynamics of infected humans and infected mosquitoes are set out in Figure 8(a)-(b). From 

this figure, it is apparent that malaria treatment and insecticide controls provide a significant 

reduction in infected human and infected mosquito populations compared to having no controls. 

 

FIGURE 7. Control profiles of 𝑢2
∗  and 𝑢3

∗  

 

       (a)                               (b) 

FIGURE 8. The dynamics of 𝐼ℎ (a) and 𝐼𝑣 (b) without and with controls 𝑢2
∗  and 𝑢3

∗ . 

 

8.4 FOURTH SCENARIO 

In the fourth scenario, the combination of malaria prevention 𝑢1, malaria treatment 𝑢2, and 

insecticide 𝑢3 is implemented. The optimal control profiles for 𝑢1, 𝑢2, and 𝑢3 are depicted in 

Figure 9. Malaria prevention should be given intensively for 57 days, malaria treatment should be 

kept intensively for 32 days, whereas insecticide should be preserved intensively for 36 days. 
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The dynamics of infected humans and infected mosquitoes are shown in Figure 10(a)-(b). From 

this figure, we can see that malaria prevention, malaria treatment, and insecticide controls provide 

a significant reduction in infected humans and infected mosquitoes compared to the scenario 

without controls. 

 

 

FIGURE 9. Optimal control profiles of 𝑢1
∗, 𝑢2

∗ , and 𝑢3
∗ . 

 

 

 

       (a)                               (b) 

FIGURE 10. The dynamics of 𝐼ℎ (a) and 𝐼𝑣 (b) without and with controls 𝑢1
∗, 𝑢2

∗ , and 𝑢3
∗ . 
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Table 4 presents a comparison of the cost functions required for various scenarios of applying 

the controls used. 

TABLE 4. Cost function of every scenario 

Scenario Cost Function 

Controls 𝑢1 and 𝑢2 182,740  

Controls 𝑢1 and 𝑢3 176,670 

Controls 𝑢2 and 𝑢3 299,210 

Controls 𝑢1, 𝑢2, and 𝑢3 172,130 

 

From Table 4, it is shown that of the four simulated scenarios, the implementation of control 

in the form of prevention control 𝑢1, treatment control 𝑢2, and insecticide control 𝑢3 which 

are utilized simultaneously have the minimum value of the cost function. Hence, it can be 

observed that scenario four is the best strategy to minimize the infected human and the infected 

mosquito populations, as well as the costs of the implementation for the controls. 

 

9. CONCLUSION  

In this work, we have analyzed the host-vector model with seasonality effect to depict the 

dynamics of malaria transmission. Initially, we briefly present the stability of the malaria model 

without the seasonality effect. The disease-free equilibrium is locally asymptotically stable if 

the basic reproduction number is less than one. Thus, the parameters of the model are estimated 

by using the malaria cases of Papua province, Indonesia for the year 2018. From the result of 

the estimation of the parameters, we obtain the basic reproduction number that is 𝑅0 ≈ 1.3141. 

This finding indicates that malaria infection persists in the province. Thus, we developed the 

malaria model by incorporating the seasonal effects to capture the climate factor in Indonesia. 

The simulation results suggest the seasonal effects very influential on the dynamics of infected 

humans and both susceptible and infected mosquitoes. Next, we present an optimal control 

problem with a control function and obtain the optimal control characterization. The optimal 
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control problem is solved numerically, and the results comprised of the control system for 

different strategies. Finally, we concluded that the best control strategy is the fourth scenario 

i.e., activating all control variables at the same time is more prominent to reduce malaria disease 

in the community. 
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