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Abstract. Lyapunov function gives a major contribution in studying the dynamics of biological models. In this

paper, we study the global stability of a fractional-order Gause-type predator-prey model with threshold harvesting

policy in predator by using Lyapunov function. We initiate our work by investigating the existence and uniqueness

of solution, and then prove the non-negativity and boundedness of solution. Furthermore, we show that the model

has four equilibrium points, where the non-trivial equilibrium points are conditionally globally asymptotically

stable. At the end, we demonstrate some numerical simulations by using the generalized Adam–Basforth–Moulton

method to support theoretical results. We show numerically that the conversion efficiency rate of predation and

the order of the derivative influence the dynamics of the model. We also present the existence of forward and

Hopf bifurcation numerically driven by conversion efficiency rate of predation and the order of the derivative

respectively.
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1. INTRODUCTION

Mathematical modeling is considered as an efficacious scientific tool in learning the most of

biological process. One of the exceedingly famous among scientists is modeling the interaction

between two populations where a population acts as a prey while the other carries out its role

as a predator. This mathematical model is usually known as the predator-prey model and has

been used by many researchers to better understand the complex biological phenomena in a

meaningful way [1, 2, 3, 4]. There are at least two inventions that have become the foundation in

predator-prey modeling nowadays, namely Lotka-Volterra [5] and Leslie-Gower [6, 7] models,

see the fundamental evolution of predator-prey model in Berryman [8] and references therein.

The predator-prey model is tremendously developed and successfully applied in various fields

such as plantations, agriculture, forestry, and fisheries [9, 10, 11, 12, 13]. In this fields, the

modeling is focused in developing the biocontrol strategies to preserve the sustainable biological

resources such as the pest management [14, 15, 16, 17, 18, 19, 20, 21, 22] as well as the optimal

harvesting policy [23, 24, 25, 26, 27, 28].

If we review further, harvesting management holds a vital role in predator-prey interaction

since it is directly related to the demands of human needs. Therefore, optimal harvesting must

also consider the sustainability of biological resources. There are several types of research

studies about harvesting in predator-prey interaction as in [29, 30, 31, 32, 33], which investigate

the dynamics of the models and examine the biological conditions so that the population exists

or extinct. Nevertheless, their model assumes that the harvesting still exists for all conditions

of the population density. Therefore, for relatively small population densities, harvesting would

logically threaten the existence of the population. To solve this problem, several researchers

have developed a harvesting management called the threshold harvesting policy (THP) [34, 35,

36, 37, 9, 38, 2, 39, 40, 41, 13]. THP is considered capable of maintaining a balance between

large yields and protect the exploited biological resources [38]. Such policy is generally applied

to prevent overexploitation on the renewable resources while still maximizing the harvesting

profits [35]. The policy works as follows: when the population density higher than a determined

positive threshold level, the harvesting is permissible; when the population density lower than

a determined positive threshold level, the harvesting is not allowed.
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In [37], the authors study the impact of THP on the dynamics of a Rosenzweig-MacArthur

predator-prey model. They use the integer-order derivative as the operator of the model. Various

phenomena are presented such as the stability of equilibrium points and the existence of several

bifurcations. In [13], the authors investigate a similar model as in [37] but using fractional-order

derivative as the operator to take into account the effects of time memory and transmissible

properties which exists in most of the biological process [42, 43, 44, 45, 46]. The model with

fractional-order derivative is considered capable of expressing the current condition as a result

of capturing the whole time state of the biological process which cannot be provided by the

integer-order derivative’s model [47]. In [41], the authors study the local stability of a fractional-

order predator-prey model with THP in predator as in [37, 13], but assume that the predation

process proportional to the density of prey. This model is defined as follows.

CDα
t x =rx

(
1− x

K

)
−mxy≡ F1,

CDα
t y =nxy−dy−H(y)≡ F2,

(1)

where

H(y) =


0 , if y < T,

h(y−T )
c+(y−T )

, if y≥ T.

The biological interpretations of variables and parameters are given in Table 1. The Caputo

fractional-order derivative CDα
t is used as the operator defined by

(2) CDα
t f (t) =

1
Γ(1−α)

∫ t

0
(t− s)−α f ′(s)ds,

where 0 < α ≤ 1, t ≥ 0, f ∈Cn([0,+∞),R), and Γ is the Gamma function [48].

In [41], the equilibrium points of the model (1) and their local dynamics have been studied.

Since the asymptotic stability is defined locally, then there exists a region so that for any initial

condition in this region, the solution evolves to a specific equilibrium point. This explains that

although the equilibrium point is locally asymptotically stable, it is not guaranteed that all of

the solutions convergent to it. In fact, we need to describe the dynamics for any initial condition

so that all the orbit of the solution can be described globally. So far, the global dynamics of

model (1) have not been investigated. Therefore, we interest to investigate the global stability

condition of equilibrium points of the model (1) by employing a Lyapunov function.
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TABLE 1. Description of variables and parameters.

Variable/Parameter Description

x(t) Density of prey at time t

y(t) Density of predator at time t

r Intrinsic growth rate of prey

K Environmental carrying capacity of prey

m Attack rate of predator on prey

n Conversion efficiency rate of predation

d Natural death rate of predator

h Harvesting rate on predator

c Half saturation constant of harvesting

T Harvesting threshold on predator

This paper is organized as follows. To support our analytical study, in Section 2, we present

some previous theoretical results in fractional calculus. For the biological purpose, we investi-

gate the existence and uniqueness of solutions, and the non-negativity and boundedness of so-

lutions of the model (1) in Sections 3 and 4. In Section 5, we give the global stability condition

of equilibrium points. In Section 6, some numerical simulations including the phase-portraits,

time series, and bifurcation diagram of the model (1) are presented to illustrate the theoretical

results. We end our works by giving the conclusion in Section 7.

2. PRELIMINARIES

In this section, we present some important results in fractional calculus which are associated

with our analytical study.

Lemma 1. [49] Suppose that CDα
t u(t) ∈C[a,b] where 0 < α ≤ 1 and u(t) ∈C[a,b].

(i) If CDα
t u(t)≥ 0, ∀t ∈ (a,b), then u(t) is a non-decreasing function for each t ∈ [a,b].

(ii) If CDα
t u(t)≤ 0, ∀t ∈ (a,b), then u(t) is a non-increasing function for each t ∈ [a,b].

Lemma 2. [50] Consider a Caputo fractional-order equation

(3) CDα
t u(t) = f (t,u(t)), t > 0, u(0)≥ 0, α ∈ (0,1],
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where f : (0,∞)×Ω→Rn,Ω⊆Rn. A unique solution of eq. (3) on (0,∞)×Ω exists if f (t,u(t))

satisfies the locally Lipschitz condition with respect to u.

Lemma 3. (Standard comparison theorem for Caputo fractional-order derivative [51]). Let

u(t)∈C ([0,+∞)). If u(t) satisfies CDα
t u(t)≤ a−bu(t), u(0)= u0, where α ∈ (0,1], (a,b)∈R2

and b 6= 0, then

u(t)≤
(

u0−
a
b

)
Eα [−btα ]+

a
b
.

Lemma 4. [52] Let u(t) ∈C (R+), u∗ ∈ R+, and its Caputo fractional derivatives of order-α

exist for any α ∈ (0,1]. Then, for any t > 0, we have

CDα
t

[
u(t)−u∗−u∗ ln

u(t)
u∗

]
≤
(

1− u∗

u(t)

)
CD

α

t u(t).

Lemma 5. (Generalized LaSalle Invariance Principle [53]). Suppose Ω is a bounded closed

set and every solution of system

(4) CDα
t u(t) = f (u(t)),

which starts from a point in Ω remains in Ω for all time. If ∃V (u) : Ω→ R with continuous

first order partial derivatives satisfies CDα
t V |Eq.(4) ≤ 0, then every solution u(t) originating in

Ω tends to M as t→ ∞, where M is the largest invariant set of E :=
{

u|CDα
t V |Eq.(4) = 0

}
.

3. EXISTENCE AND UNIQUENESS

Let Θ :=
{
(x,y) ∈ R2 : max(|x| , |y|)≤ σ

}
, T+ ≤ +∞, and R2

+ := {(x,y) : x≥ 0, y≥ 0}.

The existence and uniqueness of solution of the model (1) are stated in the following theorem.

Theorem 6. Model (1) with initial value in R2
+ ⊆Θ has a unique solution in Θ× [0,T+].

Proof. By considering that the system is switched when the solution passes through the thres-

hold level, we divide the proof into two cases, i.e when y < T and y≥ T . We adopt the similar

approach that has been used in [13]. We denote X = (x,y) and X̄ = (x̄, ȳ). We start for y ≥ T .

Consider a mapping F(X) = (F1(X),F2(X)). For any X , X̄ ∈Θ, it follows from eq. (1) that

‖F(X)−F(X̄)‖= |F1(X)−F1(X̄)|+ |F2(X)−F2(X̄)|

=

∣∣∣∣(rx
(

1− x
K

)
−mxy

)
−
(

rx̄
(

1− x̄
K

)
−mx̄ȳ

)∣∣∣∣+
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c+(y−T )

)
−
(

nx̄ȳ−dȳ− h(ȳ−T )
c+(ȳ−T )

)∣∣∣∣
=
∣∣∣r(x− x̄)− r

K
(x+ x̄)(x− x̄)−my(x− x̄)−mx̄(y− ȳ)

∣∣∣+∣∣∣∣ny(x− x̄)+nx̄(y− ȳ)−d(y− ȳ)− ch(y− ȳ)
(c+ y−T )(c+ ȳ−T )

∣∣∣∣
≤ r|x− x̄|+ 2σr

K
|x− x̄|+σm|x− x̄|+σm|y− ȳ|+σn|x− x̄|+

σn|y− ȳ|+d|y− ȳ|+ h
c
|y− ȳ|

= L1|x− x̄|+L2|y− ȳ|

≤ L|y≥T ‖X− X̄‖

where L1 = r+
(

2r
K

+m+n
)

σ , L2 = (m+n)σ +d+
h
c
, L|y≥T = max{L1,L2} . Therefore,

F(X) satisfies the Lipschitz condition when y ≥ T . Hence, according to Lemma 2, for any

non-negative initial condition, there exists a unique solution X(t) of model (1) when y ≥ T .

We can also easily reveal that ‖F(X)−F(X̄)‖ ≤ L|y<T |‖X− X̄‖ for y < T , where L|y<T =

max{L1,L3} with L3 = (m+ n)σ + d. Thus for y ≥ T , F(X) is also satisfies the Lipschitz

condition. Consequently, Lemma 2 states that when y < T , the solution of model (1) also exists

and unique. �

4. NON-NEGATIVITY AND BOUNDEDNESS

For the biological reason, the solutions of model (1) for any initial conditions in R2
+ must be

in R2
+ and bounded. Such properties of solutions are presented in the following theorem.

Theorem 7. The solutions of model (1) are non-negative and uniformly bounded if their initial

conditions are in R2
+.

Proof. We begin by showing the non-negativity of solutions using ”reductio ad absurdum”.

Suppose that there exists a constant t1 > t0 such that

(5)


x(t) > 0, t0 ≤ t < t1

x(t1) = 0

x(t+1 ) < 0
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According to eq. (5) and (1), we obtain

(6) CDα
t x(t1)

∣∣∣
x(t1)=0

= 0.

Based on Lemma 1, we acquire x(t+1 ) = 0, which contradicts with eq. (5). Therefore, for all

t ≥ t0, we have x(t)≥ 0. Using similar approach, we can prove that y(t)≥ 0 for all t ≥ t0. Thus

for initial conditions in R2
+, the solutions of model (1) are always in R2

+ as t→ ∞.

Now, to prove the boundedness of model (1), we first define a function H (t) = x+
my
n

.

Therefore, we acquire

CDα
t H (t)+dH (t) = CDα

t x+
m
n

CDα
t y+dx+

dmy
n

= rx
(

1− x
K

)
−mxy+

m
n

(
nxy−dy− h(y−T )

c+(y−T )

)
+dx+

dmy
n

= (d + r)x− rx2

K
− hm(y−T )

n(c+ y−T )

= − r
K

(
x− (d + r)K

2r

)2

+
(d + r)2K

4r
− hm(y−T )

n(c+ y−T )

≤ (d + r)2K
4r

Based on Lemma 3, we obtain H (t) ≤
(

H (0)− (d + r)2K
4dr

)
Eα [−d(t)α ] +

(d + r)2K
4dr

.

Clearly that H (t)→ (d + r)2K
4dr

for t → ∞. Therefore, all solutions of model (1) are confined

to the region ϒ where

(7) ϒ :=
{
(x,y) ∈ R2

+ : x+
my
n
≤ ξ

}
,

where ξ =
(d + r)2K

4dr
+ ε and ε > 0. We have completed the prove of Theorem 7. �

5. EQUILIBRIUM POINT AND LYAPUNOV STABILITY

To compare the local stability with the global stability conditions of equilibrium points, we

rewrite the existence and local stability condition of the equilibrium points of model (1) given

by Theorem 2 and 3 in [41] as the following commensurate lemma.

Lemma 8. [41] The existence and local asymptotic stability of equilibrium points of model (1)

are given as follows.
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(i) Both predator and prey extinction point Φ0 = (0,0) always exists and is a saddle point.

(ii) The predator extinction point Φ1 = (K,0) always exists and is locally asymptotically stable

if n <
d
K

.

(iii) The unharvested co-existence point Φ2 =

(
d
n
,
(nK−d)r

mnK

)
exists if n >

d
K

and (r−mT )n <

dr
K

, which is always locally asymptotically stable.

(iv) The harvested co-existence point Φ3 = (x∗,y∗) exists if y∗ < min
{ r

m
,T
}

and is locally

asymptotically stable if (i) ξ1 < 0 and ξ2 > 0, or; (2) ξ1 > 0, ξ 2
1 < 4ξ2, and α < α∗; where

x∗ =
(r−my∗)K

r
, y∗ is positive solution of polynomial equation

mnKy3 +((c−T )mnK +(d−nK)r)y2 +((c−T )(d−nK)+h)ry−hrT = 0,

and

ξ1 =
h(y∗−T )2− chT
(c+ y∗−T )2y∗

,

ξ2 =

(
mny∗− h(y∗−T )2r− chrT

(c+ y∗−T )2Ky∗

)
x∗,

α
∗ =

2
π

tan−1


√

4ξ2−ξ 2
1

ξ1

 .

In this section, we investigate the global stability of Φ1, Φ2, and Φ3. Since the harvesting is

disabled when the density of predator below the threshold level, we divide the global stability

into the following two regions

Ω1 := {(x,y) : x≥ 0, y < T} , and Ω2 := {(x,y) : x≥ 0, y≥ T} .

We give the global stability condition of equilibrium points Φ1, Φ2, and Φ3 in the following

theorem.

Theorem 9. If n≤ d
K

then the predator extinction point Φ1 = (K,0) is globally asymptotically

stable in the region Ω1.

Proof. Let V1(x,y) =
[
x−K−K ln

x
K

]
+

my
n

be the Lyapunov function. By utilizing Lemma 4,

we acquire

CDα
t V1(x,y)≤

(
x−K

x

)
CDα

t x+
m
n

CDα
t y
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= (x−K)
(

r− rx
K
−my

)
+

m
n
(nxy−dy)

= (x−K)
(
− r

K
(x−K)−my

)
+

m
n
(nxy−dy)

= − r
K
(x−K)2−

(
d
n
−K

)
my

Thus, CDα
t V1(x,y)≤ 0 when n≤ d

K
for all (x,y) ∈ R2

+. To achieve CDα
t V1(x,y) = 0, we have

two cases:

(i) When n <
d
K

, CDα
t V1(x,y) = 0 implies that (x,y) = (K,0).

(ii) When n =
d
K

, CDα
t V1(x,y) = 0 implies that x =K. By subtituting x =K to the first equation

of model (1), we have 0 = CDα
t x = −mKy and thus y = 0. Therefore, CDα

t V1(x,y) = 0

implies that (x,y) = (K,0).

According to those two cases, the only invariant set on which V1(x,y) = 0 is the singleton {Φ1}

and hence Lemma 5 says that Φ1 is a globally asymptotically stable in the region Ω1. �

Theorem 10. The unharvested co-existence point Φ2 =

(
d
n
,
(nK−d)r

mnK

)
is always globally

asymptotically stable in the region Ω1.

Proof. Consider a Lyapunov function defined by

V2(x,y) =
[

x− d
n
− d

n
ln

nx
d

]
+

m
n

[
y−
(

1− δ

η

)
− (nK−d)r

mnK
ln

mnKy
(nK−d)r

]
.

We apply Lemma 4 to obtain

CDα
t V1(x,y)≤

x− d
n

x

CDα
t x+

m
n

y− (nK−d)r
mnK
y

CDα
t y

=

(
x− d

n

)(
r− rx

K
−my

)
+

m
n

(
y− (nK−d)r

mnK

)
(nx−d)

=

(
x− d

n

)(
− r

K

(
x− d

n

)
−
(

my− (nK−d)r
nK

))
+

(
my− (nK−d)r

nK

)(
x− d

n

)
= − r

K

(
x− d

n

)2

−
(

my− (nK−d)r
nK

)(
x− d

n

)
+

(
my− (nK−d)r

nK

)(
x− d

n

)
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= − r
K

(
x− d

n

)2

Therefore, CDα
t V2(x,y) ≤ 0 for all (x,y) ∈ R2

+. Denote that CDα
t V2(x,y) = 0 implies that

x =
d
n

. By solving the first equation when x =
d
n

, we achieve 0=CDα
t x =

dr
n

(
1− d

nK

)
− dmy

n

and thus y =
(nK−d)r

mnK
. Therefore CDα

t V2(x,y) = 0 implies that (x,y) =
(

d
n
,
(nK−d)r

mnK

)
.

This means the only invariant set on which CDα
t V2(x,y) = 0 is the singleton {Φ2}. Following

Lemma 5, the unharvested co-existence point Φ2 =

(
d
n
,
(nK−d)r

mnK

)
is always globally asymp-

totically stable in the region Ω1. �

Theorem 11. Let n <
(y∗−T )mT
(c+ y∗−T )ξ

− my∗

ξ
. The harvested co-existence point Φ3 = (x∗,y∗) is

globally asymptotically stable in the region Ω2.

Proof. It is clear that Φ3 is the equilibrium point of (1) if

(8) mnK(y∗)3 +((c−T )mnK +(d−nK)r)(y∗)2 +((c−T )(d−nK)+h)r(y∗)−hrT = 0.

Now, by taking a positive Lyapunov function

V3(x,y) =
[
x− x∗− x∗ ln

x
x∗

]
+

m
n

[
y− y∗− y∗ ln

y
y∗

]
,

and obeying Lemma 4, we achieve

CDα
t V3(x,y)≤

(
x− x∗

x

)
CDα

t x+
m
n

(
y− y∗

y

)
CDα

t y

= (x− x∗)
(

r− rx
K
−my

)
+

m
n
(y− y∗)

(
nx−d− h(y−T )

y(c+ y−T )

)
= (x− x∗)

(
rx∗

K
+my∗− rx

K
−my

)
+

m
n
(y− y∗)

(
nx−

(
nx∗− h(y∗−T )

y∗(c+ y∗−T )

)
− h(y−T )

y(c+ y−T )

)
= (x− x∗)

(
− r

K
(x− x∗)−m(y− y∗)

)
+

m
n
(y− y∗)

(
n(x− x∗)+

h(y∗−T )
y∗(c+ y∗−T )

− h(y−T )
y(c+ y−T )

)
= − r

K
(x− x∗)2 +

mh(y∗−T )(y− y∗)
ny∗(c+ y∗−T )

− mh(y−T )(y− y∗)
ny(c+ y−T )

= − r
K
(x− x∗)2 +

mh(y∗−T )y
ny∗(c+ y∗−T )

− mh(y∗−T )
n(c+ y∗−T )
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= − mh(y−T )
n(c+ y−T )

+
mh(y−T )y∗

ny(c+ y−T )

≤ − r
K
(x− x∗)2 +

mhy
ny∗
− mh(y∗−T )

n(c+ y∗−T )
+

mhy∗

ny

= − r
K
(x− x∗)2−

(
y∗−T

c+ y∗−T
− y

y∗
− y∗

y

)
mh
n

Since y <
ξ n
m

(see eq. (7)) and {y,y∗} ≥ T , we achieve

CDα
t V3(x,y)≤−

r
K
(x− x∗)2−

(
y∗−T

c+ y∗−T
− ξ n

mT
− y∗

T

)
mh
n
.

Therefore, because n <
(y∗−T )mT
(c+ y∗−T )ξ

− my∗

ξ
, we conclude

(9) CDα
t V3(x,y)≤−

r
K
(x− x∗)2.

Clearly, CDα
t V3(x,y) ≤ 0 for all (x,y) ∈ R2

+. From eq. (9), CDα
t V3(x,y) = 0 when x = x∗. By

applying x = x∗ to model (1), we acquire

0 = CDα
t x =rx∗

(
1− x∗

K

)
−mx∗y,

0 = CDα
t y =nx∗y−dy− h(y−T )

c+(y−T )
,

which gives cubic polynomial equation

(10) mnKy3 +((c−T )mnK +(d−nK)r)y2 +((c−T )(d−nK)+h)ry−hrT = 0.

Comparing eq. (10) and (8), we obtain y = y∗. Hence, CDα
t V3(x,y) = 0 implies that (x,y) =

(x∗,y∗) and the only invariant set on which CDα
t V3(x,y) = 0 is the singleton {Φ3}. Applying

Lemma 5, the harvested co-existence point Φ3 = (x∗,1− x∗) is globally asymptotically stable

in the region Ω2. �

Based on Lemma 8 and Theorem 9 to 11, we have the following remarks.

Remark 1. The global stability properties of Φ1 given by Theorem 9 same as its local stability

properties given by Lemma 8. This means for every non-negative initial condition in Ω1, the

solutions are convergent to Φ1 and hence the predator will extinct whenever n≤ d
K

.
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Remark 2. Since Φ2 is always globally asymptotically stable in Ω2, we confirm that the locally

asymptotically stable condition is always satisfied, which supports the validity of Lemma 8.

This means if the conversion efficiency rate of predation is greater than the ratio of natural

death rate and environmental carrying capacity of prey, then both prey and predator populations

will survive.

Remark 3. If the globally asymptotically stable requirement of Φ3 is satisfied, then the exis-

tence of both prey and predator are guaranteed. This means that THP is a suitable policy for the

renewable resources management.

6. NUMERICAL SIMULATIONS

We explore the dynamics of model (1) numerically by performing some numerical simula-

tions using a Caputo fractional-order predictor-corrector scheme developed by Diethelm et al.

[54]. Due to field data limitations, we use hypothetical parameter values for the numerical si-

mulations. We divide the numerical simulations into two cases to describe the dynamics of the

model (1) as follows.

(i) The influence of the conversion efficiency rate of predation (n), and

(ii) The influence of the order of the derivative (α).

n=0.09

FIGURE 1. Bifurcation diagram of model (1) driven by n in interval [0,0.1] with

parameter values: r = 6, K = 45, m = 1.5, d = 1, h = 7, c = 0.5, T = 2, and

α = 0.92.
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FIGURE 2. Numerical simulations of model (1) with parameter values: r = 6,

K = 45, m = 1.5, d = 1, h = 7, c = 0.5, T = 2, and α = 0.92.
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FIGURE 3. Time series of model (1) with parameter values: r = 6, K = 45,

m = 1.5, d = 1, h = 7, c = 0.5, and T = 2.
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6.1. The influence of the conversion efficiency rate of predation. From previous analytical

results, it can be noticed that the global stability of equilibrium points depends on the value of

the conversion efficiency rate of predation (n). To show the influence of n on the dynamics of

model (1), we first plot in Figure 1 the bifurcation diagram driven by n in the interval [0,0.1],

while other parameter values are arranged as follows.

(11) r = 6, K = 45, m = 1.5, d = 1, h = 7, c = 0.5, T = 2, and α = 0.92.

From Figure 1, it is seen that when 0 < n / 0.02222, Φ1 is globally asymptotically stable

while Φ2 does not exists. When 0.02222 / n / 0.04444, Φ1 losses its stability and a globally

asymptotically stable equilibrium point Φ2 appears. This phenomenon is called forward bifur-

cation, where a stable equilibrium point splits into two equilibrium points where the original

equilibrium point losses its stability and the new equilibrium point is stable. Furthermore, when

0.04444 < n≤ 0.1, Φ2 vanishes and there appears a globally asymptotically stable equilibrium

point Φ3. To show the orbit of solutions for each case, we portray the numerical simulations

including the phase portraits and the time series. When n = 0.02, the solutions with the initial

values below the threshold level are directly convergent to Φ1, while if the initial values above

the threshold level, the solutions oscillate and moving toward Φ1; see Figures 2a and 2b. If we

replace n with 0.03, Φ1 becomes a saddle-point and Φ2 is globally asymptotically stable. The

similar behavior occurs in Φ2. When the initial values above the threshold level, the solution

oscillates around the threshold value and convergent to Φ2 while others are directly convergent;

see Figures 2c and 2d. Finally, when we take n = 0.09, Φ1 is still unstable, and Φ2 does not

exists and there exists an asymptotically stable Φ3. As in Figures 2e and 2f, all solutions are

convergent to Φ3. From the biological point of view, if the predator has adequate food for its

growth, the existence of both prey and predator can be maintained although the harvesting is

permitted. Even if the conversion efficiency rate of predation decreases down to a certain value

limit, by obeying the THP, the existence of both populations are still preserved.

6.2. The influence of the order of the derivative. To show numerically the influence of

the order of the derivative (α), we first set the similar parameter values as in Figure 2 and

some different values of α . It is shown that in this case, α does not change the stability of
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Φi, i = 1,2,3, except the convergence rate of the solution. The solution with a higher value

of α is convergent more rapidly to the equilibrium point than that with a smaller value of α ,

see Figure 3. Especially, from Figures 3b and 3d, we examine that for higher value of α , the

amplitude of oscillations are wider compared to the smaller value of α . The time to oscillate is

also reduced when α goes down.

The interesting phenomenon which occurs in the model (1) is the occurrence of Hopf bifurca-

tion. See Theorem 4 in [41]. In our works, we present the existence of Hopf bifurcation around

Φ3 by portraying the bifurcation diagram driven by α . We set the parameter values as follows:

r = 6, K = 45, m = 1.5, n = 1.2, d = 1, h = 7, c = 0.5, and T = 2. If we vary α in interval

α ∈ [0.85,1], we obtain the bifurcation diagram as in Figure 4a. The asymptotically stable Φ3

losses its stability via Hopf bifurcation when α passes through a bifurcation point. Although

Φ3 is unstable, the solutions are still bounded since they are convergent to a limit-cycle. We

perform the evolution of the limit-cycle in Figure 4b. It is confirmed that the diameter of the

limit-cycle is enlarged when α is increased. Furthermore, we demonstrate the stability of Φ3

by taking two different values of α as in Figure 5. When α = 0.92, φ3 is asymptotically stable,

where for the initial value above the threshold level, the solution oscillates towards Φ3. If we

take α = 0.93, Φ3 becomes unstable and all solutions are convergent to a limit-cycle. Although

the interior equilibrium point above the threshold level losses its stability, both populations’

densities are still maintained and change periodically.

7. CONCLUSIONS

The global stability of a fractional-order Gause-type predator-prey model with THP in preda-

tor has been studied. We have shown that when the predator density is below the threshold

level, both local and global stability conditions have similar properties. If the interior equili-

brium point exists, it is always globally asymptotically stable, which means the existence of

both populations is maintained. When the population is above the threshold level, we have

conditions that both population’s densities are preserved. Although the equilibrium point losses

its stability, both populations will not extinct, but change periodically via Hopf bifurcation.

Hence, we confirm that THP is a suitable management policy to protect overexploitation on the

renewable resources.
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[28] Y. D. Jeong, S. Kim, I. H. Jung and G. Cho, Optimal harvesting strategy for hairtail, Trichiurus Lepturus, in

Korea Sea using discrete-time age-structured model, Appl. Math. Comput. 392 (2021), 125743.



GLOBAL STABILITY OF A FRACTIONAL-ORDER GAUSE-TYPE 21

[29] A. Suryanto, I. Darti, H. S. Panigoro and A. Kilicman, A fractional-order predator-prey model with ratio-

dependent functional response and linear harvesting, Mathematics 7 (2019), 1100.

[30] S. N. Raw, B. Tiwari and P. Mishra, Analysis of a plankton–fish model with external toxicity and nonlinear

harvesting, Ric. Mat. 69 (2020), 653–681.

[31] M. Yavuz and N. Sene, Stability analysis and numerical computation of the fractional predator–prey model

with the harvesting rate, Fractal Fract. 4 (2020), 1–22.

[32] X. Yu, Z. Zhu, L. Lai and F. Chen, Stability and bifurcation analysis in a single-species stage structure system

with Michaelis–Menten-type harvesting, Adv. Differ. Equ. 2020 (2020), 238.

[33] E. Bellier, B.E. Sæther and S. Engen, Sustainable strategies for harvesting predators and prey in a fluctuating

environment, Ecol. Model. 440 (2021), 109350.

[34] J. Bohn, J. Rebaza and K. Speer, Continuous threshold prey harvesting in predator-prey models, Int. J. Math.

Comput. Sci. 5 (2011), 964–971.

[35] B. Leard and J. Rebaza, Analysis of predator-pey models with continuous threshold harvesting, Appl. Math.

Comput. 217 (2011), 5265–5278.

[36] J. Rebaza, Dynamics of prey threshold harvesting and refuge, J. Comput. Appl. Math. 236 (2012), 1743–

1752.

[37] Y. Lv, R. Yuan and Y. Pei, Dynamics in two nonsmooth predator-prey models with threshold harvesting,

Nonlinear Dyn. 74 (2013), 107–132.

[38] F. M. Hilker and E. Liz, Proportional threshold harvesting in discrete-time population models, J. Math. Biol.

79 (2019), 1927–1951.

[39] S. Toaha, The effect of harvesting with threshold on the dynamics of prey predator model, J. Phys. Conf. Ser.

1341 (2019), 062021.

[40] D. Wu, H. Zhao and Y. Yuan, Complex dynamics of a diffusive predator–prey model with strong Allee effect

and threshold harvesting, J. Math. Anal. Appl. 469 (2019), 982–1014.

[41] H. S. Panigoro, A. Suryanto,W. M. Kusumawinahyu and I. Darti, Continuous threshold harvesting in a gause-

type predator-prey model with fractional-order, AIP Conf. Proc. 2264 (2020), 040001.

[42] J. Alidousti and M. Mostafavi Ghahfarokhi, Dynamical behavior of a fractional three-species food chain

model, Nonlinear Dyn. 95 (2020), 1841–1858.

[43] F. A. Rihan and C. Rajivganthi, Dynamics of fractional-order delay differential model of prey-predator system

with Holling-type III and infection among predators, Chaos Solitons Fractals, 141 (2020), 110365.

[44] S. A. A. Shah, M. A. Khan, M. Farooq, S. Ullah, and E. O. Alzahrani, A fractional order model for Hepatitis

B virus with treatment via Atangana–Baleanu derivative, Phys. A Stat. Mech. its Appl. 538 (2020), 122636.

[45] E. Rahmi, I. Darti, A. Suryanto, Trisilowati, and H. S. Panigoro, Stability analysis of a fractional-order

Leslie-Gower model with Allee effect in predator, J. Phys. Conf. Ser. 1821 (2021), 012051.



22 H. S. PANIGORO, A. SURYANTO, W. M. KUSUMAWINAHYU, I. DARTI

[46] H. S. Panigoro, A. Suryanto, W. M. Kusumawinahyu, and I. Darti, Dynamics of an eco-epidemic preda-

tor–prey model involving fractional derivatives with power-law and Mittag–Leffler kernel, Symmetry 13

(2021), 785.

[47] D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal, and S. Alam, Impact of predator incited fear and

prey refuge in a fractional order prey predator model, Chaos Solitons Fractals 142 (2021), 110420.

[48] I. Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, Springer, London, 2011.

[49] Z. M. Odibat and N. T. Shawagfeh, Generalized Taylor’s formula, Appl. Math. Comput. 186 (2007), 286–293.

[50] Y. Li, Y. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct

method and generalized Mittag-Leffler stability, Comput. Math. with Appl. 59 (2010), 1810–1821.

[51] H. L. Li, L. Zhang, C. Hu, Y. L. Jiang and Z. Teng, Dynamical analysis of a fractional-order predator-prey

model incorporating a prey refuge, J. Appl. Math. Comput. 54 (2017), 435–449.

[52] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Comm. Non-

linear Sci. Numer. Simulat. 24 (2015), 75–85.

[53] J. Huo, H. Zhao and L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model,

Nonlinear Anal. Real World Appl. 26 (2015), 289–305.

[54] K. Diethelm, N. J. Ford and A. D. Freed, A predictor-corrector approach for the numerical solution of frac-

tional differential equations, Nonlinear Dyn. 29 (2002), 3–22.


	1. Introduction
	2. Preliminaries
	3. Existence and Uniqueness
	4. Non-negativity and Boundedness
	5. Equilibrium Point and Lyapunov Stability
	6. Numerical Simulations
	6.1. The influence of the conversion efficiency rate of predation
	6.2. The influence of the order of the derivative

	7. Conclusions
	Acknowledgements
	Conflict of Interests
	References

