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Abstract: Beta regression (BR) models provide an adequate approach for modeling continuous outcomes of limited 

intervals (0, 1). The BR model assumes that the dependent variable follows a beta distribution and that its mean is 

affiliated to a set of exploratory variables through a linear predictor known as coefficients and link function. The BR 

model also includes a dispersion parameter. This paper describes the BR model along with its properties. Furthermore, 

the comparison between different link functions of the BR model is conducted through a medical real-life application 
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to laparoscopic surgical operations aiming to widen congenital obstruction in the connection between the kidney and 

ureter, a condition called ureteropelvic junction obstruction (UJO). 

Keywords: beta regression; maximum likelihood estimation; link functions; linear regression; ordinary least square; 

ureteropelvic junction obstruction. 
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1. INTRODUCTION 

The BR is a type of generalized linear model (GLM) as it is a member of the exponential family 

of distributions. The GLM constructed assuming a dependent variable is marginally distributed 

following a beta distribution which is referred to as the BR model. Beta regression was formally 

introduced in political science and has many applications in medical sciences. It is a suitable 

candidate to traditional linear regression when the dependent variable follows a beta distribution 

rather than a normal distribution. The beta distribution can be parameterized by its mean and 

variance like the normal distribution. However, unlike the normal distribution, the variance of a 

beta distribution is a function of its mean and a ‘precision’ parameter, which is a scale measure of 

how tightly the observed data is clustered. 

The usual practice used to transform the data so that the transformed response, say 𝑦 ̃, assumes 

values in the real line and then applies a standard linear regression analysis. A commonly used 

transformation is the logit function: �̃� = 𝑙𝑜𝑔 (
𝑦

1−𝑦
), where log is the natural logarithm. However, 

this approach has some disadvantages, such as: 

1- The regression parameters are interpretable in terms of the mean of �̃�, and not in terms of the 

mean of y (given Jensen’s inequality).  

2- Regressions involving data from the unit interval such as rates and proportions which are 

typically heteroskedastic: display more variation around the mean and less variation as we 

approach the lower and upper limits of the standard unit interval. 

3- The distributions of rates and proportions are typically asymmetric, and thus Gaussian-based 

approximations for interval estimation and hypothesis testing can be quite inaccurate in small 
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samples. 

Ferrari and Cribari [1] proposed a regression model for continuous variates which assumes values 

in the standard unit interval, rates, and proportions or concentration indices. Since the model 

assumes that the response is beta distributed, they called their model the BR model. In their model, 

the regression parameters are interpretable in terms of the mean of y (the variable of interest) and 

the model is natural [2].  

Let 𝑦  a random variable following a beta distribution: 𝑦 ~ 𝑏𝑒𝑡𝑎 (𝑝, 𝑞)   where p, q are shape 

parameters and 𝑝, 𝑞 >  0. The probability density function (PDF) of y is given as follows:  

𝑓(𝑦) =
𝛤(𝑝+𝑞)

𝛤(𝑝)𝛤(𝑞)
 𝑦𝑝−1(1 − 𝑦)𝑞−1,            𝑝, 𝑞 > 0,   0 < 𝑦 < 1,            (1) 

where Γ(∙) is the gamma function. The mean and variance of y are 𝐸(𝑦) =
𝑝

𝑝+𝑞
, 

𝑉𝑎𝑟(𝑦) =
𝑝𝑞

(𝑝+𝑞)2(𝑝+𝑞+1)
.   

 

Figure 1: Beta density function with different combinations of parameters α and β.                               

Source: Wikipedia site. 

Figure 1 shows that the beta distribution is highly flexible and able to accommodate the varying 

severity of skewness, heteroskedastic, and asymmetries (which make normalizing transformations 

impossible) [3]. However, the previous application of beta distribution did not involve the 

situations that the response variable can be modeled as a function of exogenous variables until the 

BR model proposed by [1]. 
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2. LITERATURE REVIEW 

Various beta regression models have been proposed as a function of location and precision 

parameters [4–6]. Paolino[4] demonstrated that maximum likelihood estimation of proportions 

data using the beta distribution provides more accurate and precise results than OLS approach. 

Kieschnick and Mccullough [5] identified different specifications for variates obsreved on [0.1] 

intervals and recommened that regression models based on the beta distbution should used to 

model for these data. Smithson and Verkuilen [6]  presented maximum likelihood regression 

models assuming that the response variable is conditionally beta distributed. Location and 

variances were modeled using continuous and categorical variables considering the 

heteroscedasticity problem. Cribari and Vasconcellos [7] analyzed the finite-sample behavior of 

three bias corrections to the maximum likelihood estimators of Beta distribution parameters. While 

Vasconcellos and Cribari [8] proposed a new class of regression models for beta-distributed 

response variables considering that the beta distribution’s parameters are related to the regression 

parameters and covariates. They also highlighted the bias of the maximum likelihood estimator in 

small samples. 

Simas et al. [9] extended the beta regression model proposed by [1]  allowing the regression 

structure to be nonlinear. They defined bias-corrected estimators by derived formulas for 

maximum-likes estimators with second-order biases. Cepeda  [10] proposed joint mean and 

variance beta regression models and applied the Bayesian estimation method. Bayer et al. [11] 

proposed the beta regression control chart (BRCC). Ferrari and Pinheiro [12] developed two 

modified likelihood ratio tests to test restrictions on the beta regression. Bayer and Cribari  [13] 

proposed three Bartlett corrected likelihood ratio tests for fixed dispersion of the beta regression. 

Also, Bayesian estimation of the BR model was proposed by [14]–[16]   

Many studies have used the BR model in medical applications. Swearingen et al. [17] modeled 

ischemic stroke lesions using beta regression because of their highly skewed distribution. Cepeda 

et al.[10] modelled the meteorological data assuming a beta distribution and both the mean and 

precision parameters are being modeled. Yellareddygari et al. [18] proposed a BR model for 
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predicting the development of pink rot in potato tubers during storage and compared the BR model 

with the linear model on real data. Aktaş and Unlu [19] applied the BR model and describes its 

properties on well-being index data in Turkey . Gayawan et al. [20] adopted the beta regression 

model to examine covariate effects on the child mortality index in Nigeria.  

Another group of studies proposed and developed the inflated BR model [21]–[25]. For the 

selection criteria model, Bayer and Cribari [11] proposed a model selection criterion for beta 

regression with varying dispersion, focusing on the selection of covariates for both mean and 

dispersion sub-models. Espinheira et al. [26] proposed also model selection criteria considering 

the residuals, leverage, and influential points both to systematic linear and nonlinear components. 

 

3. METHODOLOGY 

3.1 Beta Regression Model 

The BR model introduced by Ferrari and Cribari [1]  considered the precision parameter 𝜙 to be 

constant across all observations. Nevertheless, assuming a constant 𝜙 could lead to substantial 

loss in efficiency of the estimators [27]. In BR with varying dispersion, the precision parameter is 

assumed to be variable throughout the observations and modeled by covariates, unknown 

parameters, and one link function. The BR model assumes that the response variable follows beta 

distribution, which is a family of continuous probability distributions strictly defined on the 

interval (0, 1) with two shape parameters (namely α and β). Those two positive shape parameters 

control the shape of the distribution in one-unit interval. Ferrari and Cribari [1] defined a regression 

structure for beta distributed responses that differs from (1). Let  𝜇 =
𝑝

𝑝+𝑞
 , 𝜙 = 𝑝 + 𝑞, 𝑝 = 𝜇𝜙, 

and 𝑞 = (1 − 𝜇)𝜙. Ferrari and Cribari [1] proposed a different new parameterization, the beta 

density in (1) can be written as: 

𝑓(𝑦) =
𝛤(𝜙)

𝛤(𝜇𝜙)𝛤((1−𝜇)𝜙)
 𝑦𝜇𝜙−1(1 − 𝑦)(1−𝜇)𝜙−1,   0 < 𝑦 < 1,            (2) 

where 𝑦 ~ (𝜇, 𝜙) , 0 < μ < 1, and 𝜙 > 0.  Then 𝐸(𝑦) = 𝜇  and  𝑉𝑎𝑟(𝑦) =
𝜇(1−𝜇)

1+𝜙
 , where 𝜙 

is known as a precision parameter and 𝜙−1 is the dispersion parameter. Let  {y1, . . . , yn} be the 
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response variables that are independent of each other and each yi(𝑖 = 1, . . . , 𝑛) follows the beta 

density with 𝜇 and 𝜙, the model is obtained by assuming that the mean of  y𝑖 can be written as 

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝑓1(𝑥𝑖
𝑇; 𝛽) = 𝑥𝑖

𝑇𝛽,                               (3) 

 𝜇𝑖  = 𝑔−1(𝜂𝑖),                                  (4) 

where 𝛽 = (𝛽1, 𝛽2, . . . , 𝛽𝑘)𝑇 is a vector of unknown regression parameters (𝛽 ∈ ℝ𝑘)  and 𝑥𝑖
𝑇 

(𝑥1𝑖 , . . . , 𝑥𝑘𝑖) are observations on 𝑘 covariates (k < n) or (independent variables or covariates) and 

𝜂𝑖 a linear predictor, 𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽k𝑥k𝑖, in case of the model has an intercept. Finally, 

𝑔(𝜇𝑖) is a strictly monotonic and twice differentiable link function that maps (0, 1) into ℝ, Note 

that the variance of 𝑦𝑖 is a function of 𝜇𝑖  and consequently of the covariate values. Hence, non-

constant response variances are naturally accommodated into the model. 

We can define a dispersion sub model to account for possibly varying dispersion: 

h(𝜙i) =  𝑓2(𝑧𝑖
𝑇; 𝜃) = 𝑧𝑖

𝑇𝜃,                          (5) 

where 𝜃 = (𝜃1, 𝜃2, . . . , 𝜃𝑞)𝑇 is a vector of unknown regression parameters, and 𝑧𝑖
𝑇 =

(𝑧1i, . . . , 𝑧𝑞𝑖) are observations on 𝑞 covariates (q < n − k). Note that under our parametrization, 

one can use for the dispersion sub-model the same link functions that are typically used for the 

mean sub-model namely: logit, probit, clog log,  and log-log. For details on these links (see Table 

1).  

3.2 Link Functions and Estimation 

Different link functions can be considered for the BR model  as in other generalized linear models 

[28]–[30]. When the parameters of interest are in the continuous interval (0,1), possibilities include 

the symmetric and asymmetric link functions [31], Box-Cox transformation link function [32], 

Gosset link function [33], Pregibon link function, and generalized logit function [34]. Canterle and 

Bayer [35] proposed the BR model with parameter-indexed link functions in the mean and 

dispersion sub models. A smooth and invertible linearizing link function 𝑔(.) is another element 

of the generalization, which transforms the expectation of the response variable, 𝑔(𝜇𝑖) = 𝐸(𝑦𝑖) 

to the linear predictor: 

𝑔(𝜇𝑖) = 𝜂𝑖 = 𝛽0 + 𝛽1𝑥1𝑖 + ⋯ + 𝛽𝑘𝑥𝑘𝑖                          (6) 
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The inverse link 𝑔−1(∙) is also called the mean function commonly employed link function and 

their inverse are shown in Table1. The identity link simply returns its argument unaltered, 𝜂𝑖 =

𝑔(𝜇𝑖), and 𝜇𝑖 = 𝑔−1(𝜂𝑖).  

Table 1: Link functions and their inverse 

Link function Formula: 𝒈(𝝁𝒊) = 𝜼𝒊 Inverse: 𝝁𝒊 = 𝒈−𝟏(𝜼𝒊) 

Logit 
𝜂𝑖 = 𝑙𝑜𝑔 (

𝜇𝑖

1 − 𝜇𝑖
) 𝜇𝑖 =

𝑒𝑥𝑝(𝜂𝑖)

1 + 𝑒𝑥𝑝(𝜂𝑖)
 

Probit  𝜂𝑖 = 𝜙−1(𝜇𝑖) 𝜇𝑖 = 𝜙(𝜂𝑖) 

Complementary log-log (Clog-log) 𝜂𝑖 = log[−log(1 − 𝜇𝑖)] 𝜇𝑖 = 1 − 𝑒𝑥𝑝[−𝑒𝑥𝑝(𝜂𝑖)] 

Log-log  𝜂𝑖 = −log[− log(𝜇𝑖)] 𝜇𝑖 = 𝑒𝑥𝑝[−𝑒𝑥𝑝(−𝜂𝑖)] 

Some processes require that we model the scale parameter as a function of covariates as shown in 

table 2. 

Table 2: The definitions of the scale-link functions 

Name Function 

Identity h(𝜙𝑖) = 𝜙𝑖 

Log h(𝜙𝑖) = 𝑙𝑜𝑔(𝜙𝑖) 

Square root 
h(𝜙𝑖) = √𝜙𝑖 

Note that the variance of y is a function of µ which renders the regression model based on this 

parameterization naturally heteroskedastic. In particular 

Var(y𝑖) =
μ𝑖(1−μ𝑖)

1+𝜙
=

𝑔−1(𝑥𝑖
𝑇𝛽)[1−𝑔−1( 𝑥𝑖

𝑇𝛽)]

1+𝜙
.               (7) 

The log-likelihood function for the BR model is: 

 ℓ(𝛽, 𝜙) = ∑ ℓ𝑖
𝑛
𝑖=1 (μ𝑖, ϕ) = 𝑙𝑜𝑔Γ(ϕ) − 𝑙𝑜𝑔Γ(μ𝑖ϕ)-𝑙𝑜𝑔Γ((1 − μ𝑖)𝜙) + (μ𝑖ϕ − 1)𝑙𝑜𝑔y𝑖 +

((1 − μ𝑖)𝜙 − 1)𝑙𝑜𝑔(1 − y𝑖).                          (8)                                                                                                                                                                                                                                  

It is possible to show that this BR model is a regular model since all regularity conditions are 

described. Furthermore, with an invertible reparameterization, one can guarantee that the ML 

estimations are unique [36]-[37]. A particularly useful link function is the logit link, in which case 

we case write 𝜇𝑖 =
𝑥𝑖

𝑇𝛽

1+𝑥𝑖
𝑇𝛽

 .    

3.3 Model Selection Criteria 

Model comparison can be made via information criteria such as Akaike information criterion (AIC) 
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introduced by [36] or the Bayesian information criterion (BIC). AIC is a well-known flaw of being 

dependent on sample size  it tends to capitalize on chance and thus favors more complex models 

when the sample size is large. For this reason, many prefer the BIC [6]. 

 AIC = −2 𝑙𝑜𝑔(𝐿𝑓𝑖𝑡) + 2𝑘  BIC = −2 𝑙𝑜𝑔(𝐿𝑓𝑖𝑡) + 𝑘 𝑙𝑜𝑔(𝑛),           (9)                                                                      

where 𝑙𝑜𝑔 (𝐿𝑓𝑖𝑡) is the log-likelihood of whatever model was fitted, k is the number of parameters 

estimated, and n is the number of observations. 

To assess the goodness of the model indices to assess the predictive capacity of the generalized 

regression model. These pseudo 𝑅2 indices have been developed that are intended as analogs of 

𝑅2  as used in ordinary least squares (OLS) estimator. One such index introduced a penalized 

version of the BR pseudo-R-squared used in [1]. A simple candidate is a proportional reduction of 

error (PRE) statistic based on log-likelihoods:  

  Pseudo 𝑅2 = 1 − [
𝑙𝑜𝑔(𝐿𝑛𝑢𝑙𝑙)

𝑙𝑜𝑔 (𝐿𝑓𝑖𝑡)
],                        (10)        

where 𝑙𝑜𝑔(𝐿𝑛𝑢𝑙𝑙) is the log-likelihood of the null model as defined earlier, and 𝑙𝑜𝑔(𝐿𝑓𝑖𝑡) is the 

log-likelihood of whatever model was fitted. 

 

4. REAL-LIFE APPLICATION 

The dataset used in this application obtained from Abdelmohsen et al. [38]. Data is collected from 

a master's thesis in pediatric surgery conducted at Al-Azhar University in Egypt, which recorded 

the pre-and post-operative data for children aged from one year to twelve years since they were 

suffering from a congenital obstruction in the connection between the kidney and the ureter, a 

condition called ureteropelvic junction obstruction. The number of observations is twenty patients 

divided into two groups (ten patients in each group) to compare two minimally invasive techniques 

using surgical laparoscopy to widen this obstruction.  

4.1 Descriptive Statistics 

STATA software version 14.2 is used to analyze the data. Tables 3 and 4 provides labels and 

descriptive statistics for the study variables.  
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Table 3: Description of variables 

Variable Description  

Dependent variable  

Post-Split Function (PO.SF) Proportion percent after Surgery. 

Independent variables  

Groups (GRO)  A dummy variable (Laparoscopic Group = 0, 

Laparoscopic- Assisted Group = 1). 

Preoperative Split Function 

(PRE.SF) 

Proportion percent before Surgery. 

GIT Recovery (GIT) Recovery of intestines after surgery in hours. 

Presentation (PRES) Pain Complaint (Incidental = 0, Prenatal = 1, Abdominal 

Pain=2). 

HOS Staying in hospital after surgery in days. 

UTI Dummy variable (Yes = 0, No = 1) of urinal 

inflammation. 

PAIN Measures of pain in 3 days after surgery. 

Table 4: Descriptive statistics and different mean test  

Variable Mean Max. Min. SD CV 
Jarque-Bera test t-test 

Statistic  P-value t-Statistic  P-value 

PO.SF 0.509 0.780 0.200 0.158 0.310 0.508 0.776 -0.207 0.839 

PRE.SF 0.255 0.360 0.100 0.070 0.275 1.413 0.493 0.192 0.850 

GIT 9.100 14.000 5.000 3.024 0.332 1.898 0.387 0.000 1.000 

HOS 9.850 15.000 7.000 2.084 0.212 1.833 0.400 2.561 0.020 

PAIN 5.300 8.000 4.000 1.342 0.253 1.273 0.529 -1.756 0.096 

Note: SD: Standard deviation, CV: coefficient of variation, Min.: minimum, Max.: maximum 

Table 4  indicates that all variables have a small variation as CV  values for all variables is less than 

one. This is an indication that the data does not contain outliers. Jarque-Bera test is used  to test 

normality. Since the p-values of all variables are more than 0.05, indicating that all variables are 
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normally distributed. So, t-test is used to compare between two groups. There are no significant 

differences in PO.SF, PRE.SF, GTI, and Pain variables between the two group. While there is a 

significant difference between the two groups for HOS variable. 

4.2 Diagnostic Tests 

To test the multicollinearity problem in the model, we used the correlation matrix and variance 

inflation factor (VIF). As shown in Table 5, the model has no multicollinearity problem, because 

all correlation coefficients less than 0.8, and VIF values for all variables less than 5 [6,35,39-40]. 

Some authors have introduced new estimators to reduce the impact of the multicollinearity 

problem in the BR model [30,39-41]. 

Table 5: Correlation matrix and variance inflation factor (VIF) 

Variable PO.SF PRE.SF GIT PRES HOS UTI PAIN 

PO.SF 1.0000 

     

 

PRE.SF 0.0487 1.0000 

    

 

GIT -0.1676 0.0001 1.0000 

   

 

PRES 0.2931 -0.5443 0.0739 1.0000 

  

 

HOS -0.2848 -0.5168 0.3198 0.3751 1.0000 

 

 

UTI 0.0441 0.1400 0.3943 -0.1524 0.1068 1.0000  

PAIN -0.1784 0.3824 -0.2672 -0.1249 -0.1148 -0.0107 1.0000 

VIF ------- 1.69 1.55 1.71 1.76 1.64 1.41 

To test the heteroskedasticity problem, we used the Breusch-pagan-Cook-Weisberg (BPCW) test. 

There is no heteroskedasticity problem (P-value = 0.8635 > 0.05).  

4.3 Beta Regression Models 

Table 6 compares between the BR model with different link functions (Logit, Probit, Clog-log, 

and Log-log link functions) and the linear regression model with the OLS estimation method to 

choose the best model for this data. Table 6 indicates that four BR models are significant, because 

the p-value of LR 𝜒2 test is less than 0.05. Moreover, the coefficients of all variables of the four 

BR models are significant  except PAIN variable. This may be due to complications after surgery 
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as well. The dummy variable of GRO is positive and significant in all BR models, concluding that 

the laparoscopic-assisted surgery was the favorable one in this case. Unlike the linear regression 

model (OLS), it was found that the p-value of F-statistic for the model is 0.1683 > 0.05  

indicating that the model is non-significant, and all variables are non-significant. The BR model is 

the best model for this medical application. 

Table 6: Estimated Regression Models 

Variable 

Linear 

regression 
Beta regression 

OLS Logit Probit Clog-log  Log-log 

Constant 0.474 -2.868*** -1.808*** -2.579*** -1.457** 

GRO 0.138 0.718*** 0.449*** 0.509*** 0.540** 

PRE.SF 0.973 3.963*** 2.487*** 2.859*** 2.798** 

GIT -0.017 -0.048* -0.031* -0.042** -0.034 

PRES 0.156 0.941*** 0.577*** 0.637*** 0.682*** 

HOS -0.019 -0.088** -0.053** -0.048** -0.065* 

UTI 0.013 1.275*** 0.798*** 0.928*** 0.8733*** 

PAIN -0.032 0.047 0.033 0.052 0.0036 

Scale 
  

 
  

PRE.SF -------- -89.606*** -90.013** -90.968** -78.877** 

UTI -------- 10.199*** 10.326*** 10.10*** 9.489** 

PRES -------- 2.0503** 2.048** 1.996* 1.888* 

Constant -------- 16.011*** 16.017*** 16.531*** 13.895** 

      

F-statistic 1.77     

LR 𝝌𝟐 -------- 32.75*** 32.53*** 33.56***  29.39**     

Notes: ***, **, and * indicate statistical significance at the 0.001, 0.01 and 0.05 level, respectively.  

To  prove  that the link function is the best of the model, we used goodness criteria to select the best 

model as shown in table 7. Table 7 compares the BR model with four link functions (Logit, Probit, 

Clog-log, Log-log). We found that clog-log has the smallest values of BIC and AIC, and the largest 

value  of log-likelihood and Pseudo 𝑅2. Thus, we concluded that the BR model with clog-log is 

the best model to analyze our data. 
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Table 7: Goodness’ criteria of beta models 

Link Function Log-likelihood  𝐏𝐬𝐞𝐮𝐝𝐨 𝑹𝟐 AIC BIC 

Logit  25.791 0.635 -27.582 -15.634 

Probit 25.681 0.633 -26.834   -14.885 

Clog-log 26.198 0.641  -28.397 -16.448 

Log-log 24.111 0.609 -24.224 -12.275 

 

5. CONCLUSION 

Beta regression assumes that the response variable is beta-distributed. The BR model has mean 

and dispersion parameters assuming that the mean is related to a set of independent variables 

through a linear predictor with link function and unknow coefficients. In this paper, we studied the 

BR model with different link functions as Logit, Probit, Clog-log, and Log-log and applied in the 

medical field. We utilized the selection criteria to compare between the different BR models and 

choose the best model for analyzing the data. We used a real data in medical research to compare 

two minimally invasive techniques using surgical laparoscopy and laparoscopy-assisted 

techniques for widening the ureter used. The results indicated that the linear regression model is 

not suitable for this application, unlike the BR model with clog-log which provided the best results. 
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