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Abstract. In this paper, we propose a new epidemic SIR model with infection during transport, SIR-M. Under

biologically motivated assumptions, we prove the positivity and boundedness of the solutions, calculate the basic

reproduction number and the disease-free equilibrium. We prove that the disease-free equilibrium is globally

asymptomatically stable if R0 is less than one, and then propose a generalized SIR-M model with n interacting

populations. Finally, we numerically compare the behavior of the disease in different scenarios such as the perfect

exit screening scenario, the mobility of infectious individuals from a single population, the prohibition of mobility

(confinement), etc. We find that the use of certain health and precautionary measures such as screening, border

control methods and containment, could significantly reduce the spread of the disease in both populations. On the

other hand, the lack of control of the mobility of individuals may lead to a chaotic dispersion of the disease in both

populations.
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1. INTRODUCTION

The transmission of respiratory infectious diseases such as tuberculosis (TB), influenza,

COVID-19, SARS, colds, etc., occurs through direct human-to-human or indirect contact

with a contaminated intermediate objects, human-to-environment. Prolonged proximity of

Susceptible-Infected individuals leads to increased spread of the disease in the population.

Transport usually puts individuals in close proximity for long periods of time; it is likely that

the probability of transmission during transport increases, especially with the duration of trans-

port, so that long-distance travel would be prone to the transmission. Usually in most models

analyzing the spread of infectious diseases, the transport component is usually not taken into

account [1, 2, 3, 4]. However, knowing that more than 4.5 billion passengers traveled by plane

in 2019. And it is estimated that humans travelled 23 billion kilometers in 2000 and that this

will grow to an annual 105 billion kilometers by 2050[5, 6]. So it would be crucial to take the

component of mobility into account in our models.

In the literature we find some articles examining the effect of mobility in the spread of dis-

ease. Brauer et al. have considered, in their paper [7], the impact of the arrival of already

infected individuals, they proposed a model of evolution of the disease in a single population

with immigration of infectious. Guo et al. [8] have studied the problems associated with the

influx of individuals infected with tuberculosis. A few authors have considered the problem in

the context of discrete delay differential equations, which make it possible to fix a precise travel

time between locations[9, 10, 11].

In a framework of ordinary differential equations, Cui et al. [12] have formulated a

susceptible-infectious-susceptible SIS model with infection during transport and investigated

the local and global dynamics of these models. However, they assumed that all the parameters

corresponding to the two patches are exactly the same. Arino et al. have revisited the model

with different parameters in the two populations, [13].

After various authors have proposed different applications of compartmental models with

mobility on infectious diseases [14] have proposed an application on dengue fever disease, [15]

have measured the effect of confinement, lockdown, on the dynamics and spread of COVID-19.

[16] have simulated a SEIR model with mobility representing the dispersion of COVID-19.[17]
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Have analyzed the in-flight transmission and [18] have examined the contamination within cars

In this article we propose a SIR-M model taking into account the transport component for the

modeling of the spread of infectious diseases in the population. Our contribution is shared as

follows: In the first section we formulate the SIR-M model, introduce the relevant parameters

of the model and we prove the positivity and the boundlessness of the solutions. In the second

section, we establish an analysis of the proposed model: we calculate the basic reproduction

number as well as the disease-free equilibrium point, we investigate the global stability of the

latter and we propose towards the end of this section a generalization of the SIR-M model with

n interacting populations. In the last section, we propose simulations of four different scenarios,

in order to measure the effect of mobility on the spread and dynamics of diseases in populations.

2. MODEL FORMULATION, POSITIVITY AND BOUNDEDNESS

2.1. Model formulation. In our model we subdivide the total populations i and j at time t,

denoted by Ni(t) and N j(t), into three disjoint classes each: Si(t), Ii(t), Ri(t) and S j(t), I j(t),

R j(t). With Si(t) denoting the number of susceptible individuals at time t, Ii(t) the number of

infective individuals and Ri(t) the number of recovered individuals, in the population i. So that:

Ni = Si + Ii +Ri and N j = S j + I j +R j

We consider that individuals in the two populations and during transport mixes homogeneously,

and that for each unit of time tiSi susceptible individuals, tiIi infectious individuals and tiRi re-

covered individuals move from population i to population j using a specific mode of transport

(train, bus, plane, etc.). Let’s set αi and αj rates of contact between susceptible and infectious

individuals in population i and j leading to a new infection during transport.

Thus the total infection (in vehicles) per unit time during transport from population i to popula-

tion j is :
αitiSiIi

Ni
To model the transmission of the disease, from infectious individuals to susceptible individuals

in population i or j, we use proportional incidence functions, f (Si, Ii) and f (S j, I j). Defined as

follow:

fi(Si, Ii) =
βiSiIi

Ni
and f j(S j, I j) =

β jS jI j

N j
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With βi the transmission rates between the infectious and susceptible individuals in population

i and βj the transmission rates between the infectious and susceptible individuals in population j

So we formulate the following two patch SIR epidemiological model to describe the trans-

mission dynamics of the infectious diseases with transport.

(1)



dSi

dt
= Λi− fi(Si, Ii)−µiSi− tiSi +(1−

α jI j

N j
)t jS j,

dIi

dt
= fi(Si, Ii)− (ωi +µi + ti)Ii +(1+

α jS j

N j
)t jI j,

dRi

dt
= ωiIi− (µi + ti)Ri + t jR j,

dS j

dt
= Λ j− f j(S j, I j)−µ jS j− t jS j +(1− αiIi

Ni
)tiSi,

dI j

dt
= f j(S j, I j)− (ω j +µ j + t j)I j +(1+

αiSi

Ni
)tiIi,

dR j

dt
= ω jI j− (µ j + t j)R j + tiRi,

With

αi : The rate of contact between susceptible and infectious individuals in

population i leading to a new infection,

α j : The rate of contact between susceptible and infectious individuals in

population j leading to a new infection,

ti : The travel rate in population i,

t j : The travel rate in population j,
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µi : The mortality rate in population i,

µ j : The mortality rate in population j,

ωi : The cure rate for population i,

ω j : The cure rate for population j.

Λi : The recruitment of susceptible individuals through birth in population i,

Λ j : The recruitment of susceptible individuals through birth in population j,

FIGURE 1. SIR model with mobility

Our SIR model with mobility is illustrated in the figure 1.

2.2. Positivity of solutions. Since the model monitors human populations, all its associated

state variables must be positive and bounded. In addition, the following positivity result holds.

Theorem 1. Let the initial data of the model be positive S1(0)≥ 0, S2(0)≥ 0 I1(0)≥ 0, I2(0)≥

0, R1(0) ≥ 0 and R2(0) ≥ 0, then the solutions of the model S1(t) ≥ 0, S2(t) ≥ 0, I1(t) ≥ 0,

I2(t)≥ 0, R1(t)≥ 0 et R2(t)≥ 0 remain positive for all t > 0.

Proof. Let us assume that T = sup{τ ≥ 0 | ∀0 ≤ t ≤ τ such that S(t) ≥ 0, I1(t) ≥ 0, I2(t) ≥

0R1(t)≥ 0 and R2(t)≥ 0}. Let us prove that T =+∞.

Suppose that 0 < T <+∞ then by continuity of solutions we have : S1(T ) = 0 or I1(T ) = 0

or I2(T ) = 0 or R1(T ) = 0 or R2(T ) = 0.
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If S(T ) = 0 then :

S(T ) = 0⇒ dS(T )
dt

= lim
t→T−

S(T )−S(t)
T − t

= lim
t→T−

−S(t)
T − t

≤ 0

However if we set susceptibles to zero„ S(t) = 0, in the first equation of the system (2) we get
dS(T )

dt
= Λ > 0. Similar proof for I1(t), I2(t),R1(t) and R2(t). Thus T could not be finite, which

concludes the proof. �

2.3. Boundedness of solutions. In this subsection, we prove that all solutions of system (1)

are bounded.

Proposition 2. The set G is positively invariant, with:

(2) G = {(Si, Ii,Ri,S j, I j,R j) ∈ R6
+ such that Si + Ii +Ri +S j + I j +R j ≤ N∗i +N∗j }

This proves that all solutions are bounded.

Proof. Let N(t) = Ni(t)+N j(t) be the total population. From the model, the differential equa-

tions governing the evolution of Ni and N j are :

dNi

dt
= Λi− (mi +µi)Ni +m jN j

dN j

dt
= Λ j− (m j +µ j)N j +miNi

By calculating the limit of each, we find:

lim
t→∞

Ni(T ) =
Λiµ j +m j(Λi +Λ j)

µiµ j +miµ j +m jµi
= N∗i

and

lim
t→∞

N j(T ) =
Λ jµi +mi(Λ j +Λi)

µ jµi +m jµi +miµ j
= N∗j

This implies the convergence of the total population N (t)

lim
t→∞

N(T ) = N∗i +N∗j =
Λi(mi +m j +µ j)+Λ j(mi +m j +µi)

µ jµi +m jµi +miµ j
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Then G is positively invariant. Since the set G is positively invariant, it suffices to consider

the dynamics of the flow generated by model (1) in G , where the usual existence, uniqueness

and continuation results are verified for the system [19]. �

3. MODEL ANALYSIS

3.1. Basic reproduction number. The basic reproduction number R0 is interpreted as the

average number of new cases generated by an infectious subject in a susceptible population. To

calculate it we use the next generation matrix FV−1 [20]:

R0 = ρ(FV−1)

With F = DF (x∗), V = DV (x∗) and:

(1) F (x) represents the appearance of new infected, in the population. These are new

infected, obtained by transmission of any kind. Horizontal, i.e., from individual to

individual or vertical from mother to the child.

(2) V +
i (x) represents what comes from other compartments by any other cause (displace-

ment, healing, etc.).

(3) V −i (x) represents what leaves compartment i. For example by mortality, by change of

epidemiological status, by movement etc.

(4) Vi(x) = V −i (x)−V +
i (x)

According to our model we get:

F =

 fi(Si, Ii)+
α jS jm jI j

N j

f j(S j, I j)+
αiSimiIi

Ni

 , V =

 (ωi +µi +mi)Ii−m jI j

(ω j +µ j +m j)I j−miIi


We have two infected compartments: Ii, I j

F =

 βi α jm j

αimi β j

 , V =

(ωi +µi +mi) −m j

−mi (ω j +µ j +m j)


Thus FV−1 is given by:

FV−1 =


Mi

det(V )

βim j +α jm j(ωi +µi +mi)

det(V )
β jmi +αimi(ω j +µ j +m j)

det(V )

M j

det(V )


With,
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Mi = βi(ω j +µ j +m j)+α jm1m2

M j = β j(ωi +µi + ti)+αitit j

det(V ) = (ωi +µi + ti)(ω j +µ j + t j)− tit j

Therefore, the basic reproduction number of the system is:

(3) R0 =
Mi +M j +

√
∆

2det(V )

With,

∆ = (Mi−M j)
2 +4[βit j +α jt j(ωi +µi + ti)][β jti +αiti(ω j +µ j + t j)]

3.2. Global stability of the disease free equilibrium. In this section we will study the global

stability of the disease free equilibrium, which is an equilibrium point, without infections i.e.

I∗i = 0 and I∗j = 0.

Let E0 an equilibrium without disease, E0 = (S∗i , I
∗
i ,R
∗
i ,S
∗
j , I
∗
j ,R
∗
j) ∈ G is such that:

(4)



0 = Λi− fi(S∗i , I
∗
i )−µiS∗i − tiS∗i +(1−

α jI∗j
N∗j

)t jS∗j ,

0 = fi(S∗i , I
∗
i )− (ωi +µi + ti)I∗i +(1+

α jS∗j
N∗j

)t jI∗j ,

0 = ωiI∗i − (µi + ti)R∗i + t jR∗j ,

0 = Λ j− f j(S∗j , I
∗
j )−µ jS∗j − t jS∗j +(1− αiI∗i

N∗i
)tiS∗i ,

0 = f j(S∗j , I
∗
j )− (ω j +µ j + t j)I∗j +(1+

αiS∗i
N∗i

)tiI∗i ,

0 = ω jI∗j − (µ j + t j)R∗j + tiR∗i ,

The proposed model has a single disease-free equilibrium (DFE) given by:

(5) E0 = (S∗i , I
∗
i ,R
∗
i ,S
∗
j , I
∗
j ,R
∗
j) = (

Λiµ j + t j(Λi +Λ j)

µiµ j + tiµ j + t jµi
,0,0,

Λ jµi + ti(Λi +Λ j)

µiµ j + t jµi + tiµ j
,0,0,)
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Theorem 3. if R0 ≤ 1. Then the disease-free equilibrium point E0 is globally asymptotically

stable in G .

Proof. To prove the global stability it is sufficient to prove that each positive solution

(Si, Ii,Ri,S j, I j,R j) tends to the disease-free equilibrium point E0, when t tends +∞. i.e.:

lim
t→∞

(Si(t), Ii(t),Ri(t),S j(t), I j(t),R j(t)) = (
Λiµ j + t j(Λi +Λ j)

µiµ j + tiµ j + t jµi
,0,0,

Λ jµi + ti(Λi +Λ j)

µiµ j + t jµi + tiµ j
,0,0,)

From the second and the fifth ODE in the system 1, we obtain:
dIi

dt
≤ βiIi− (ωi +µi + ti)Ii +(1+α j)t jI j

dI j

dt
≤ β jI j− (ω j +µ j + t j)I j +(1+αi)tiIi

For R0 ≤ 1 the eigenvalues of the matrix of coefficient F-V on the right side are in the left

half-plane. So using a standard ODE comparison theorem, each positive solution of the second

and the fifth ODE in the system 1 satisfies.

lim
t→∞

(Ii(t), I j(t)) = (0,0).

As consequence:

lim
t→∞

(Ri(t),R j(t)) = (0,0).

The limit system of the first and the fourth ODE of system 1 obtained when lim
t→∞

(Ii(t), I j(t)) =

(0,0) and lim
t→∞

(Ri(t),R j(t)) = (0,0), is given by:

(6)


dSi

dt
≤ Λi−µiSi− tiSi + t jS j

dS j

dt
≤ Λ j−µ jS j− t jS j + tiSi

From 6 it is easy to verify that [21]:
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lim
t→∞

Si(t) =
Λiµ j + t j(Λi +Λ j)

µiµ j + tiµ j + t jµi

lim
t→∞

S j(t) =
Λ jµi + ti(Λi +Λ j)

µiµ j + t jµi + tiµ j

Then the DFE is globally asymptotically stable in G if R0 ≤ 1. �

3.3. Generalization of the model. The model we propose is a model representing the dy-

namics and evolution of the infection in any two interacting and mobile populations Pi and

Pj.

In a general way we present the interactions between n different populations in the table 1.

P1 P2 P3 ....... Pi Pn

P1 F(x1) F(x1)+M(x2) F(x1)+M(x3) .... F(x1)+M(xi) F(x1)+M(xn)

P2 F(x2)+M(x1) F(x2) F(x2)+M(x3) .... F(x2)+M(xi) F(x2)+M(xn)

P3 F(x3)+M(x1) F(x3)+M(x2) F(x3) .... F(x3)+M(xi) F(x3)+M(xn)

...... ........ ....... ....... ........ ........ ......

Pi F(xi)+M(x1) F(xi)+M(x2) F(xi)+M(x3) .... F(xi) F(xi)+M(xn)

Pn F(xn)+M(x1) F(xn)+M(x2) F(xn)+M(x3) .... F(xn)+M(xi) F(xn)

TABLE 1. The general model of the interaction of n populations

Assuming the vector,

xi = (Si, Ii,Ri).

We write the system 1, in the following form.

For all i 6= j, i ∈ {1, ...,n} and j ∈ {1, ...,n}:

ẋi = F(xi)+M(x j)

With the case i = j

ẋi = F(xi).
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4. NUMERICAL SIMULATION

In this section, we propose numerical simulations of different possible scenarios in order to

show the impact of the mobility of individuals in the dispersion of the disease in the population.

We will fix for this purpose the parameters, see 2, in a basic reproduction number close to 1.

Parameter Value Unit

Λi 9 Individuals×Days−1

Λ j 8 Individuals×Days−1

βi 0.25 Days−1

βj 0.15 Days−1

αi 0.4 Days−1

αj 0.3 Days−1

µi 1/365 ·65 Days−1

µi 1/365 ·60 Days−1

ωi 1/7 Days−1

ωj 1/8 Days−1

TABLE 2. The parameter values used in the simulations

Case 1: Mobility with infection in both populations: In this case we assume that all

individuals in both populations travel without constraints.

We note from the simulation shown in Figure 2, that the model converges to an equilibrium

other than DFE, this point is the endemic equilibrium. This implies that infection during trans-

port is more likely to cause an epidemic in both areas.

Case 2: Mobility without infection: Perfect exit screening scenario

During a pandemic, in some countries passengers are screened to check whether they show

symptoms of an illness or meet certain health requirements such as vaccination against a

particular illness. Screening can take place either on departure from a country (exit filtering) or

on arrival in a country (entry filtering). For example, with the rapid international spread of
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COVID-19. WHO has requested that all areas screen departing passengers for symptoms of

COVID-19.

In the figure 3, we consider that the two populations follow a perfect protocol of exit border

control implemented in a symmetric way, we fix to do this αi = 0, α j = 0 , miIi = 0 and m jI j =

0. As shown in the table 3.

P1 P2 P3 ....... Pi Pn

P1 F(x1) F(x1) F(x1) .... F(x1) F(x1)

P2 F(x2) F(x2) F(x2) .... F(x2) F(x2)

P3 F(x3) F(x3) F(x3) .... F(x3) F(x3)

...... ........ ....... ....... ........ ........ ......

Pi F(xi) F(xi) F(xi) .... F(xi) F(xi)

Pn F(xn) F(xn) F(xn) .... F(xn) F(xn)

TABLE 3. The general model of the interaction of n populations with mobility

without infection

We notice from the figure 3 that the model converges asymptotically towards the disease-free

equilibrium point, DFE, this implies a disappearance of the disease from the two populations

over time. This result shows us the importance of border control methods and their impact on

the spread of the disease.

Case 3: Mobility of infectious individuals from a single population

To show the impact of mobility on the spread of diseases, in a more lucid way, we consider

that populations follow a perfect protocol of exit border control implemented asymmetrically.

We assume that susceptible and covered from both populations and infectious from population

2 travel freely, while infectious from population 1 are prevented from traveling to population 2,

i.e. αi = 0, miIi = 0. The general case is detailed in the table 4
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P1 P2 P3 ....... Pi Pn

P1 F(x1) F(x1)+M(x2) F(x1)+M(x3) .... F(x1)+M(xi) F(x1)+M(xn)

P2 F(x2) F(x2) F(x2)+M(x3) .... F(x2)+M(xi) F(x2)+M(xn)

P3 F(x3) F(x3) F(x3) .... F(x3)+M(xi) F(x3)+M(xn)

...... ........ ....... ....... ........ ........ ......

Pi F(xi) F(xi) F(xi) .... F(xi) F(xi)+M(xn)

Pn F(xn) F(xn) F(xn) .... F(xn) F(xn)

TABLE 4. The general model of the interaction of n populations with Traveler

Infections from a single population

From the figure 4 we observe an oscillation in the infectious of population 1, with infection

during transport, which means that the disease will persist in the population and will not

disappear. While in population 2, without infection during transport, the disease disappeared in

a very short time.

Case 4: Mobility ban (Containment) One of the most effective strategies to reduce and

combat the chaotic spread of the disease is containment, which involves forcing, under pain

of economic or criminal sanctions, a population to stay in their homes or in a specific place.

In this case we propose a simulation which illustrates the application of confinement in two

populations, in order to show its impact on the reduction of the propagation of a contagion. We

assume that containment was applied after the 80th day of disease onset. According to the figure

5, we observe a considerable decrease in the numbers of infectious in the two populations from

the 80th day. We thus conclude that containment is a very effective strategy to fight against the

spread of contagion.
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FIGURE 2. The behavior of the SIR-M model with infection



ANALYSIS OF A NEW SIR-M EPIDEMIC MODEL WITH INFECTION DURING TRANSPORT 15

FIGURE 3. The behavior of the SIR-M model without infection
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FIGURE 4. Behavior of infectious in populations 1 and 2 with a perfect border

control protocol in an asymmetric way
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FIGURE 5. Behavior of infectious persons in populations 1 and 2 with applica-

tion of total containment -Lack of mobility-

5. COCLUSION

In this paper, we have proposed a model for the spread of diseases with infection during trans-

port. We have considered a compartmental model SIR with mobility and different parameters in

the different populations in interactions, SIR-M. We calculated the basic reproduction number

as well as the disease-free equilibrium, DFE, we investigated the global stability of the DFE.

and then we simulated different scenarios to show the impact of mobility on the spread of the

disease. We assumed in a first case an interaction without limit, and we noticed the appearance

of a new point of equilibrium of the model called the endemic point of equilibrium, in this case

the disease persists in the two populations in interaction. In a second case, we simulated the
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perfect screening scenario implemented in a symmetrical manner in the populations in interac-

tions. We observed in this case an asymptotic stability of the equilibrium point without disease,

which implies a disappearance of the disease, over time. We thus propose a case of the perfect

screening scenario implemented in an asymmetric way. We have noticed in this case, the disap-

pearance of the disease of the population applying entry filtering, screening, while the disease

becomes more virulent in the population without border control. Finally, we simulated a case of

dispersion before and after confinement in order to show the importance of confinement in the

spread of the disease. This study allowed us to measure the impact of mobility, of individuals,

on the spread of the disease. From the different simulated scenarios we were able to highlight

the effectiveness of different strategies in the fight against the spread of the epidemic, such as

screening, border control methods and containment.
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