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Abstract. In this work, we explore a different way to construct optimizer algorithms for solving the inverse prob-

lem of Diffuse Optical Tomography by using diversification of two stochastic gradient-based algorithms, namely

NADAM and AMSGrad. We will study the speed of convergence of the proposed new breed of algorithms, also

we will discuss the quality of reconstructed images in both cases of free of noise and noisy measurement data.

For analysis and exploration of the potential of the proposed algorithm, we use statistical simulations and analysis

approach.
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reconstruction; statistical simulation.
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1. INTRODUCTION

In the last two decades, the inverse problem of the Diffuse Optical Tomography (DOT), in

a highly scattering medium, has attracted the attention of the scientific community due to its

characteristics of being a safe, non-invasive, and a cheap medical imaging tool [1,2,3,4] Diffuse

optical tomography uses Near-infrared light [5,6,7] to visualize the distribution of the optical
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parameters in the biological tissues such as the brain and breast [8,9,10,11,12]. Data generation

system consists of a light source that delivers Near-infrared light at different locations of the

studied domain and detectors located at domain boundary that measures the light transmitted

through the tissue [7]. We should solve two mathematical problems to recover the optical

properties of tissue in DOT: The forward and the inverse problem. The forward problem is to

pursue the propagation of scattered light in biological tissue. The inverse problem is to recover

the optical parameters from scattered light measurements obtained from the forward model

[13]. Image reconstruction in DOT is a complex problem to solve due to the ill-posedness of

the inverse problem, which is subject to the nonlinearity of the optical parameters. Throughout

this paper, The light propagation within a tissue is modeled by the diffusion equation (DE),

in the case of the continuous wave (CW) method, for the sake of its simplicity and its low

computational cost [14].

This fairly interesting technique for medical imaging suffers nevertheless from the complex-

ity of the related inverse problem as mentioned before, which hinders its broad adoption in

medical imaging practice, compared to other readily available procedures like ultrasound and

mammography, due to the time consuming numerical optimization solution. The most crucial

factor that impacts the acceptance of this new promising procedure of DOT is the quality of

the generated image of the biological tissue under-diagnosis and the speed at which we can get

feedback from it in real-life configuration [15, 16]. Both of these issues have been studied in

previous work [17] that aimed to enhance the solution of DOT problem practically by acting on

the optimizer algorithm used to solve the underlying inverse problem. The conclusion reached

can be briefly stated that adaptive moment gradient descent algorithms show statistically signif-

icant higher performance in solving numerically the inverse problem of DOT, which represents

a significant step toward making DOT procedure more ready for practical application. How-

ever, with a caveat, that is the assessed algorithms, namely NADAM [18] and AMSGrad [19],

performed individually well with respect to only one of the previously cited criteria of inter-

est, namely quality of reconstructed image and speed of convergence while achieving inferior

performance concerning the other. In this situation, NADAM is very efficient algorithm in pro-

viding superior quality of reconstructed images, but consumes in the way much larger number
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of iterations than AMSGrad. Conversely, this latest algorithm is very fast in reaching conver-

gence, yet the reconstructed images are far less clear and of low quality. In the present work, we

devised a procedure to mix these two optimizers into a new brand of algorithms. This procedure

of combining the two algorithms that we will refer to in this paper by ”diversification” will re-

ceive the proper description and explanation in Section 3 hereafter. Statistical simulation results

will show that, interestingly and significantly enough, the proposed brand of algorithms inherit

the best of both worlds by accelerating the rate of convergence and achieving a good quality of

the reconstructed images, which is a significant step toward accelerating and enhancing DOT

medical imaging techniques to be adopted and used broadly in the practical medical context.

The rest of this paper is organized as follows: In Section 2, we give a brief overview of the

mathematical formulation of the diffusion approximation in the continuous wave (CW) case

and describe the inverse problem. In section 3, we describe the proposed new algorithm that

we used to reconstruct the absorption coefficient of DOT. In Section 4, we discuss the results

obtained by our algorithm in the case of free noise and noisy measurement data. Finally, in

Section 5, we summarize some conclusions.

2. FORWARD AND INVERSE PROBLEM

2.1. Forward problem. In this section we describe the mathematical formulation of the dif-

fusion approximation (DA).

Let Ω⊂ Rn,n = 2,3 , be our domain of interest, and ∂Ω the boundary of Ω. Then the DA inside

the domain Ω satisfies the partial differential equation

(1) −∇[.D(r)∇Ψ(r)]+µa(r)Ψ(r) = 0 r ∈Ω

with the Robin-boundary condition

(2) Ψ(r)+2aD(r)
∂Ψ(r)

∂ n̂
= S(r) r ∈ ∂Ω

where Ψ(r) is the photon density, D(r) is the diffusion coefficient defined by D(r) = 1
3(µa+µ ′s)

.

a is the Fresnel reflection coefficient, which depends on the mismatch between the refractive

indices, µa and µs the absorption and scattering coefficient respectively, and µ ′s the reduced
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scattering coefficient expressed as µ ′s = (1− g)µs, where g is the anisotropic factor. S(r) de-

scribes the boundary condition for the incoming radiation and n̂ is the outward normal vector to

Ω.

2.2. Inverse problem. The main goal of the inverse problem of DOT, is to determine the

optical parameters µa and µs based on the boundary measured data yi such that

(3) Fi(µa,µs) = yi 1≤ i≤ s

where Fi is the forward operator which is assumed to be Fréchet differentiable, and yi the ap-

proximate measured data. through out this paper, we will focus our attention on the reconstruc-

tion of the absorption coefficient µa, and we will consider that the scattering parameter µs is

known. Then, the inverse problem of DOT can be written as follows

(4) J(µa) =
1
2

s

∑
i=1

(Fi(µa)− yi)
2

Then this problem can be stated in term of an optimization problem with an additive regulariza-

tion term

(5) µ
∗
a = argminJ(µa)+λR(µa)

where R(µa) is the regularization operator that enforces smoothness conditions in the solu-

tion, and λ is the regularization parameter.

3. PROPOSED ALGORITHM

This section will describe our proposed approach to construct the new brand of algorithms

to solve the inverse problem of DOT, using the method that we denominate by ” Algorithms

Diversification ”. The main idea behind this technique of algorithm construction procedure is

to benefit from the adversarial advantages of Nadam and AMSGrad. In our previous work [17],

statistical numerical results have shown that when the learning rate is in the range [0.001,0.2]

NADAM algorithm takes more iterations to converge than AMSGrad. However, always in the

same learning rate range, the NADAM algorithm achieves a significantly better-reconstructed

image quality relative to AMSGrad. To exploit the adversarial advantages of NADAM and

AMSGrad, we propose a diversified algorithm, called NADA-p (Nadam-AMSGrad Diversified
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Algorithm with ratio p), that combines NADAM and AMSGrad algorithms in a stochastic fash-

ion according to a probability ratio p. Literally speaking, we combine the two gradient-based

algorithms with incompatible advantages (speed and reconstruction quality), hoping to design

an algorithm that inherits the benefits of both, since, as statistically established in the previous

article, NADAM is significantly more efficient in terms of reconstruction quality. However, the

better quality it achieves, the poorer it performs in terms of the rate of convergence. In contrast,

AMSGrad evolves in the opposite direction, giving a better convergence speed than NADAM,

but a low quality of reconstructed images. For performance assessment, we will compare the

proposed algorithm with AMSGrad and NADAM. For more details about NADAM and AMS-

Grad algorithms, we refer the reader to [20]. The implementation of the NADA-p algorithm

is outlined below in algorithm 1. Also, we empirically note that the NADA-p algorithm inher-

its the same guaranties of convergence from NADAM and AMSGrad under the assumptions

that they both converge. The case where NADAM or AMSGrad or both fail to converge is not

examined in this work.
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Algorithm 1: Pseudocode of NADAM-AMSGrad Diversified Algorithm with ratio p

(NADA-p)
Require: p, µ0

a , αNadam,αAMSGrad , ρ1, ρ2, and ε

Ensure: µn
a

while J not converged do

b← bernoulli(p)

k← k+1

gk← ∇Jµa(µ
k−1
a )

mk← ρ1.mk−1 +(1−ρ2).gk

vk← ρ1.vk−1 +(1−ρ2).g2
k

m̂k← mk
(1−ρk

1)

v̂k← vk
(1−ρk

2)

x̂k←max(vk, ˆxk−1)

if b == 0 then

µk
a ← µk−1

a − αNADAM√
v̂k+ε

(ρ1m̂k +
1−ρ1
1−ρk

1
gk)

if b == 1 then

µk
a ← µk−1

a − αAMSGrad√
x̂k+ε

mk

end while
In the following outlined implementation of the NADA-p algorithm, p is a decision parameter

taken in the range [0,1], and b is the value of the random variable that follow Bernoulli distribu-

tion with parameter p at each iteration. αNadam and αAMSGrad are the learning rate parameters

for Nadam and AMSGrad algorithms, respectively, ρ1 and ρ2 are the exponential decay rates

for the moment estimates. We denote by ε the stabilization parameter, and µ0
a is the initial guess

estimation.
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4. PERFORMANCE EVALUATION

To evaluate the reconstructed image quality of the proposed algorithm for the problem of
DOT, peak noise ratio (PSNR) and Structural similarity (SSIM) [21,22], were calculated as
expressed below

PSNR = 10log10(
max2(µtrue

a )
1
N ∑

N
i=1(µ

recon
a (i)−µtrue

a (i))2
),

SSIM(µtrue
a ,µrecon

a ) = [l(µtrue
a ,µrecon

a )]x

+[c(µtrue
a ,µrecon

a )]y +[s(µtrue
a ,µrecon

a ]z,



l(µtrue
a ,µrecon

a ) =
(2m̄

µtrue
a

m̄µrecon
a +C1)

(m̄2
µtrue

a
+m̄2

µrecon
a

+C1)

c(µtrue
a ,µrecon

a ) =
(2σ

µtrue
a

σµrecon
a +C1)

(σ 2
µtrue

a
+σ 2

µrecon
a

+C2)

s(µtrue
a ,µrecon

a ) =
(σ

µtrue
a µrecon

a
+C3)

(σ
µtrue

a
σµrecon

a +C3)

where l(µ true
a ,µrecon

a ), c(µ true
a ,µrecon

a ), and s(µ true
a ,µrecon

a ) are the luminance, contrast and

structure variations between the true image µ true
a and reconstructed image µrecon

a , respectively,

and x > 0, y > 0, and z > 0 are three parameters used to adjust relative importance of the three

components of the similarity measure. m̄µtrue
a

and m̄µrecon
a are the means of pixel values of µ true

a

and µrecon
a , respectively. We denote by σµtrue

a
, σµrecon

a , and σµtrue
a µrecon

a
the standard deviation of

µ true
a and µrecon

a , and the covariance of image µ true
a and µrecon

a , respectively. C1, C2, and C3 are

constants.

5. SIMULATION AND DATA PROCESSING

we executed a two stages plan for our simulation experiments. First, we run simulations

for free noise data to compare the performance of the NADA-p with NADAM and AMSGrad,

where we sampled the probability ration p uniformly randomly in the range [0,1]. We run a

similar simulation with the measured data contaminated with 5% white Gaussian noise in the

second stage.

To generate a set of data, we use the Toast++ software [23], which solves the forward problem

described above. We assume that the medium is highly scattering such that, µa� µs. 16 sources

and 16 detectors are located on the boundary of the domain with equal distance. The location,

size and number of anomalies in µa are chosen randomly with a background µ
bkg
a = 0.05mm−1
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and µ
′bkg
s = 4mm−1. We solve the forward problem by using the finite element method as

described in [24]. We use a circular mesh of radius 20 mm, containing different inclusion sizes

and shapes, with 30 504 nodes and 82 332 tetrahedral elements for the forward problem. To

avoid inverse crime [25], we use different meshes for the inverse problem with 18 635 nodes

and 41 723 tetrahedral elements. The number of anomalies is taken randomly in the range 1 to

3. The regularization parameter λ is set to be equal to 10−10. We solve the inverse problem

of DOT by using the NADA-p algorithm presented in the pseudo-code below. For comparison

purposes, we use Nadam and AMSGrad algorithms. For more information and details, we refer

the reader to [20].

The choice of the learning rate parameters of both NADAM and AMSGrad is based on the

results from our previous work [17]. For Nadam, we choose a learning rate that gives the best

possible reconstructed image quality without paying attention to the resulting low convergence

speed. On the other hand, for AMSGrad we take a learning rate value that gives the best

convergence rate despite the resulting low quality of reconstructed images. Based on the results

in [17], αNadam and αAMSGrad are set to be equal to 0.01 and 0.2, respectively. We fixed all the

other hyperparameters for all optimizers to the recommended values from the corresponding

literature with ρ1 = 0.9 and ρ2 = 0.999. The algorithm stops until the stopping criterion is

satisfied. The complete data analysis was carried out in R [26].

6. RESULTS AND DISCUSSION

Our study is divided into two parts. For the first section, we discuss the performance of the

proposed algorithm in the case of free noise measurement data. In the second section, we will

investigate our algorithm’s performance and robustness when white Gaussian noise is added

to measurement data. For both cases, we study the behavior of speed of convergence and the

quality of the reconstructed images with respect to the output of the three algorithms, namely

NADAM, AMSGrad, and NADA-p. To statistically compare different groups of resulted simu-

lation samples, Kruskal-Wallis paired test [27] will be carried out. The resulting p-value of the

test is at the top of each graph.
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6.1. Simulation with free of noise Data measurements. We discuss in this first part the

results from the simulation with free noise measurement data. We present the simulation results

of 200 instances. For this simulation, the maximal number of iterations has been set to be equal

to 120 iterations.

(a) (b)

FIGURE 1. (a) Relationship between number of iterations and the choice of the

ratio p for Nada-p, data from Nadam (p=0) and AMSGrad (p=1) is add for visual

comparison. (b) Kruskal–Wallis test results for the number of iterations between

different optimizers.

Figure 1(a) presents the impact of the ratio p on the number of iterations. We take p = 0

for the case of Nadam (which is equivalent to NADA-0) and p = 1 for the case of AMSGrad

(which is equivalent to NADA-1) algorithm. From Figure 1(a), we note that our proposed

algorithm converges faster than the NADAM algorithm when p is greater than 0.25. However,

it takes more iteration number when p ranges in [0,0.25]. To gain more credible evidence about

this remark, we compare the mean of the number of iteration for each algorithm as shown in

Figure 1(b), restricting our attention to the NADA-p where p is in the range [0.2,0.99]. Box

plot in Figure 1(b) show that there is a significant difference (p− value < 0.05) for the speed

of convergence between NADAM on the one hand and NADA-p and AMSGrad on the other

hand. At the same time, there is no significant difference between NADA-p and AMSGrad in

terms of speed of convergence.
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(a) (b)

(c) (d)

FIGURE 2. (a) Impact of ratio p on PSNR. (b) Impact of ratio p on SSIM. (c)

Kruskal–Wallis test results for the PSNR difference between optimizers. (d)

Kruskal–Wallis test for the SSIM difference between different optimizers.

Concerning the quality of the reconstructed images, the PSNR, and the SSIM values have

been calculated as described in Section 4, for each simulated instance. The SSIM values range

between 0 and 1. A result with a high value of SSIM is considered a good reconstructed image.

Figure 2 (a) shows the relationship between the PSNR and the probability ratio p parameter

choice for the NADA-p algorithm. From Figure 2 (a), we note that the PSNR of our proposed

algorithm is the same as NADAM algorithm when p is in the range [0.25,1[. The same ob-

servation can be concluded about the SSIM from Figure 2(b). Figure 2 (c) and Figure 2 (d)

show the Kruskal-Wallis test results for PSNR and SSIM, respectively, between different pairs
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of algorithms. From Figure 2(c) and Figure 2(d), we can conclude that there is significant sta-

tistical differences (p−value < 0.05) between AMSGrad and the other two algorithms, and no

significant statistical difference between NADAM and NADA-p (p−value > 0.05) in terms of

PSNR and SSIM.

(a) (b)

FIGURE 3. (a) Relationship between PSNR and the number of iterations. (b)

Relationship between SSIM and the number of iterations.

To further illustrate these observations, we present the relationship between PSNR/SSIM and

the number of iterations to localize the NADA-p algorithm’s performance relative to both others.

From Figure 3(a) and Figure 3(b), we outline that NADA-p algorithm can achieve high values

of PSNR and SSIM with a few numbers of iterations contrarily to NADAM that performs the

same in terms of quality reconstruction but with a much higher number of iterations.

The most remarkable feature of the NADA-p algorithm that we note from Figure 3 is that,

even though NADA-p is in a way an ”average” algorithm from NADAM and AMSGrad, it does

not yield an ”average” response with respect to the rate of convergence and quality of recon-

structed images. Still, it inherits the good features from both NADAM and AMSGrad, which

is a very interesting behavior that allows us to construct a better optimizer from combination

of two lesser good ones. This fact is significantly exhibited when we simulate with a specific

value of ratio p around the middle (like p = 0.6) as shown in Figure 4.
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(a) (b)

FIGURE 4. (a) Relationship between the PSNR and the number of iterations for

NADAM, AMSGrad and NADA-0.6. (b) Relationship between the SSIM and the num-

ber of iterations for NADAM, AMSGrad and NADA-0.6.

FIGURE 5. Reconstruction results of the absorption coefficient µa with three inclusions with different

algorithms in the case of free noise measurement data. The first row presents the target image (left) and

initial guess image (right). The second row, presents the reconstruction images using NADA-0 (left), and

NADA-1 (right). The third row, presents the reconstruction images using NADA-0.3, NADA-0.5, and

NADA-0.6 from left to right,respectively.
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Figure 5 shows the reconstruction results of the absorption coefficient with three inclusions

by different reconstruction algorithms. The first row presents the target image and the initial

guess image from left to right. The second row shows the reconstruction images using NADAM

after 100 iterations (left) and AMSGrad after 15 iterations (right). The third row presents the

reconstruction images using NADA-0.3 , NADA-0.5 , and NADA-0.6 after 40, 25 and 10 it-

erations. Results demonstrated in Figure 5 show that our algorithm can localize the shape and

the size of inclusions in a fewer number of iteration compared to NADAM, with high contrast

compared to AMSGrad.

6.2. Simulation with white noise contaminated Data measurements. Since the measure-

ment data is often contaminated with noise, and to further assess the performance and effective-

ness of the proposed algorithm against noisy data, we add 5% Gaussian noise to the boundary

measured data. We increase the maximum number limit of iterations to 200 due to the slow

convergence rate of the algorithms in the presence of noise. We run the experiment for 200

simulation instances.

(a) (b)

FIGURE 6. (a) Relationship between number of iterations and the choice of the

ratio p for NADA-p. (b) Kruskal–Wallis test results for the number of iterations

between different optimizers.

As shown in Figure 6(a), regarding the speed that the NADA-p algorithm takes to converge

on average, it is much faster than the NADAM algorithm when the ratio p ranges in [0.125,1[.

Moreover, the speed of convergence of the proposed algorithm can be considered similar to



14 NADA CHAKHIM, MOHAMED LOUZAR, MOHAMMED ALAOUI

the speed of convergence of AMSGrad algorithm when p is greater than 0.125. To statistically

confirm this observation, we run the Kruskal-Wallis test restricting our attention only to the

instances with values of p in the range [0.125,0.99]. Kruskal-Wallis test results are shown in

Figure 6(b). From Figure 6(b), we note that there is a significant statistical difference between

NADAM and the other two algorithms (p−value< 0.05) in terms of rate of convergence. How-

ever, we note that there is no significant difference between AMSGrad and NADA-p algorithms

(p− value > 0.05).

(a) (b)

(c) (d)

FIGURE 7. (a) Impact of ratio p on PSNR. (b) Impact of ratio p on SSIM. (c)

Kruskal–Wallis test results for the PSNR difference between optimizers. (d)

Kruskal–Wallis test for the SSIM difference between different optimizers.

Finishing our evaluating of the impact of noise on the performance of our algorithm, this time

in terms of the quality of reconstructed images. We notice first from Figure 7(a) and Figure
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7(b) that the NADA-p algorithm behaves as NADAM algorithm when p ranges in [0.125,1[

while outperforming AMSGrad in terms of PSNR and SSIM in that same range. We run the

Kruskal-Wallis test to confirm this observation as shown in Figure 7(c) and Figure 7(d). From

Figure 7(a) and Figure 7(b), we conclude that there is no significant statistical differences (p−

value > 0.05) between NADAM and NADA-p in term of PSNR and SSIM. However, we notice

a significant statistical difference between AMSGrad and both other two algorithms regarding

the quality of reconstructed images.

(a) (b)

FIGURE 8. (a) Relationship between the PSNR and the number of iterations for

each algorithm. (b) Relationship between the SSIM and the number of iterations

for each algorithm.

Finally, to conclude this performance comparison as we did in the previous section about

free noise data, Figure 8 illustrate clearly the relative performance of the three algorithms with

respect to the rate of convergence and quality of reconstruction. From Figure 8, we notice

that NADA-p and NADAM algorithm outperform AMSGrad algorithm in terms of quality of

reconstructed images. Furthermore, the NADA-p algorithm can achieve the same quality of

reconstructed images as the NADAM algorithm in fewer iterations. Thus, we can conclude that

the NADA-p algorithm is more efficient and robust even in noisy measurement data and can

inherit the advantages of NADAM and AMSGrad.

Here too, we outline the same remarkable feature of the NADA-p algorithm that we noted

before in the case of the free noise data. From Figure 8 is that, even though NADA-p is in a way
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an ”average” algorithm from NADAM and AMSGrad, it does not yield an ”average” response

with respect to the rate of convergence and quality of reconstructed images. Still, it inherits

the good features from both NADAM and AMSGrad, which is a very interesting behavior that

allows us to construct a better optimizer from combination of two lesser good ones.

FIGURE 9. Reconstruction results of the absorption coefficient µa with two in-

clusions by different algorithms in the case of noisy measurement data. The

first row presents the target image (left) and initial guess image (right). The

second row, presents the reconstruction images using Nadam (left), and AMS-

Grad (right). The third row, presents the reconstruction images using NADA-0.1,

NADA-0.4, and NADA-0.6 from left to right,respectively.

Figure 9 shows the reconstruction results of the absorption coefficient µa with two inclusions

by different algorithms in the case when 5% of white Gaussian noise is added to boundary

measurement data. The first row presents the actual image (left) and the initial guess image



A NEW APPROACH TO IMPROVE OPTIMIZER PERFORMANCE FOR IMAGE RECONSTRUCTION 17

(right). The second row shows the reconstruction images using NADAM with 200 iterations

(left) and AMSGrad with 30 iterations (right). The third row presents the reconstruction images

using NADA-0.1, NADA-0.4, and NADA-0.6 from left to right, with 100, 55, and 40 iterations.

Reconstruction results show that AMSGrad fails to localize the inclusions in the case of noisy

data. For the NADAM algorithm, we notice that the shape of inclusions matches those of the

true image but with some artifacts. For the case of the reconstructed images obtained by NADA-

p algorithm, we notice that, the shape and the size of inclusions match with those figuring in the

actual image. Moreover,the image reconstructed by NADA-p algorithm has better contrast than

those obtained by NADAM and AMSGrad.

7. CONCLUSION

In this paper, a new optimizer algorithm to solve the inverse problem of DOT has been pre-

sented and discussed. A large amount of random simulation has been carried out to evaluate the

convergence behavior and quality of reconstructed images for both cases of free of noise and

contaminated measurement data. Results and their analysis show that the proposed algorithm

can achieve convergence significantly faster compared to NADAM algorithm. Also according

to the quality of reconstructed images, results show that the proposed algorithm can achieve

much better quality of reconstruction compared to AMSGrad algorithm.

By diversifying the two algorithms, NADAM and AMSGrad, in the way we used to design

our NADA-p algorithm, the resulting optimizer exhibits a very interesting feature, by inheriting

the speed of convergence from AMSGrad, alongside with the better quality of image reconstruc-

tion from NADAM. And even though being an algorithm that follows an ”average” behavior

from NADAM and AMSGrad, the resulting performance of NADA-p, as a hybrid mixed algo-

rithm, is significantly better than the average performance of the mix components.

In future work, we aim to apply the diversified algorithm to clinical data to evaluate its per-

formance and accuracy in an actual data set.
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