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Abstract. We consider a SEIQR epidemic model which describes the spread of COVID-19. The SEIQR epidemic

model is built by introducing an isolation compartment in the SEIR model. We implement the variational iteration

method (VIM) to find the approximate solution for the SEIQR model. We first implement the VIM by apply-

ing restricted variations for both linear and nonlinear terms in the correction functionals and find the Lagrange

multiplier for the VIM. The comparison between the solution obtained by such VIM and the solution obtained

by the fourth-order Runge-Kutta method shows that the VIM is accurate only for relatively small time domains.

For larger time domains, the VIM solution is inaccurate and unrealistic. Then we improve the previous VIM by

reducing the restricted variations and show that the improved VIM is more accurate than the previous VIM for

larger time domains.
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1. INTRODUCTION

In March 2020, the World Health Organization (WHO) announced the coronavirus disease

2019 (COVID-19) outbreak as a global pandemic. This is because the COVID-19 case, which
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was first identified in Wuhan – China, in December 2019, has already spread to almost all

countries in the world [1]. The COVID-19 pandemic has had a devastating impact on almost all

aspects of human life, including health, economic and social. Therefore, researchers, scientists

and policymakers are struggling with how to control this pandemic to guarantee the lives of

many people [2, 3].

To understand the spread of COVID-19, many researchers have developed mathematical epi-

demic models. There are two types of epidemic models, namely phenomenological models and

mechanistic compartment models. Phenomenological epidemic models predict the epidemic

curves based on the observed data, without assuming any biological/physical mechanisms in-

volved in the transmission dynamics of disease [4]. The applications of phenomenological

models for describing the spread of COVID-19 can be found for example in [5, 6, 7, 8, 9]. On

the contrary, the mechanistic compartment epidemic models assume clear biological mecha-

nisms, which represent the dynamics of disease transmission [10]. These models describe the

movement of sub-populations through a sequence of compartments that correspond to health

states. By considering that the COVID-19 epidemic consists of three health states, namely the

susceptible state (S), infectious state (I) and recovered state (R), authors in [11, 13, 12] have

applied a SIR epidemic model. In the case of COVID-19, there exists an exposed state (E), i.e.

class of individuals that have been exposed to the disease but are not yet infectious. Considering

such exposed state, the SIR model is then modified into an SEIR model, see [14, 15, 16]. Fur-

thermore, the spread of COVID-19 is mainly due to close contact with infected symptomatic

cases or via respiratory droplets. Many countries have implemented quarantine measures to

prevent the spread of COVID-19. Since the quarantined individuals (Q) play a significant role

in controlling the spread of COVID-19, Zeb et al. [17] have extended the SEIR epidemic model

into the SEIQR epidemic model.

Compartmental epidemic models are generally written as system of nonlinear differential

equations, where their exact solution are difficult to be determined. In recent years, many schol-

ars have developed various techniques to find approximate solutions for nonlinear differential

equations. One of the approximate analytical techniques is the variational iteration method

(VIM) which was firstly suggested by He [18, 19]. VIM is based on the correction functionals
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and the implementation of restricted variations. One of the main advantages of this method is

that the resulting approximated solution is represented as a continuous function. VIM has been

applied to find a solution for both nonlinear ordinary and partial differential equations, see for

example [20, 21, 22, 23, 24, 25, 26]. The key point of VIM implementation relies on a Lagrange

multiplier, which is optimally determined by the variational theory. In many applications, this is

performed by introducing restricted variations in the correction functionals to get the Lagrange

multipliers in simple forms.

In this paper we aim to apply VIM to determine an analytical approximated solution for the

SEIQR COVID-19 epidemic model proposed by Zeb et al. [17]. We first apply VIM by assum-

ing restricted variations for both linear and nonlinear terms in the correction functionals, except

for the differential operator. Then we improve such VIM by reducing the number of restricted

variations. The results of the two methods (VIM and its improvement) will be evaluated by

comparing those results with the solution obtained by the fourth-order Runge-Kutta method.

This paper is organized as follows. We describe the SEIQR COVID-19 epidemic model

in Section 2. Section 3 presents the implementation of VIM to determine the solution of the

SEIQR epidemic model. In Section 4, we provide results and discussion. The conclusion is

given in Section 5.

2. COVID-19 EPIDEMIC MODEL WITH ISOLATION

Recently, Zeb et al. [17] have proposed an SEIQR epidemic model to describe the spread of

COVID-19. The model consists of five compartments, namely Susceptible population (Ŝ(t)),

Exposed population Ê(t), Infected population Î(t), Isolated population Q̂(t), and Recovered

population R̂(t), which are represented by the following system of first order differential equa-

tions.
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TABLE 1. Description of parameters.

Parameter Description

A Recruitment rate

m Death rate (both naturally and due to disease)

b Infection rate

p Rate at which exposed population moves to infected pop-

ulation

g Rate at which exposed population moves to isolated pop-

ulation

σ Rate at which infection population moves to isolated pop-

ulation

θ Rate at which isolated individuals recovered

dŜ(t)
dt

=A−mŜ(t)−bŜ(t)
(
Ê(t)+ Î(t)

)
dÊ(t)

dt
=bŜ(t)

(
Ê(t)+ Î(t)

)
− (p+m+g) Ê(t)

dÎ(t)
dt

=pÊ(t)− (σ +m) Î(t)

dQ̂(t)
dt

=gÊ(t)+σ Î(t)− (θ +m) Q̂(t)

dR̂(t)
dt

=θ Q̂(t)−mR̂(t).

(1)

All parameters in system (1) are positive and described in Table 1.

If we define the total population as N = Ŝ+ Ê + Î + Q̂+ R̂, then from system (1) we obtain

that

(2)
dN(t)

dt
= A−mN(t),

where its solution is given by N(t) = A/m+(N(0)−A/m)exp(−mt). It is clear that N(t)→

A/m as t → ∞. Therefore, we can rescale system (1) by introducing transformation N =

A/m,β = bN,S = Ŝ/N,E = Ê/N, I = Î/N,Q = Q̂/N and R = R̂/N to get the following nor-

malized system
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dS(t)
dt

=m−mS(t)−βS(t)(E(t)+ I(t))

dE(t)
dt

=βS(t)(E(t)+ I(t))− (p+m+g)E(t)

dI(t)
dt

=pE(t)− (σ +m) I(t)

dQ(t)
dt

=gE(t)+σ I(t)− (θ +m)Q(t),

dR(t)
dt

=θQ(t)−mR(t).

(3)

In this paper we focus on solving the system (3) with the initial conditions

(4) S(0) = S0 ≥ 0,S(0) = S0 ≥ 0,S(0) = S0 ≥ 0,S(0) = S0 ≥ 0.

3. VARIATIONAL ITERATION METHOD

For a general nonlinear differential equation

(5) Lu+N(u) = f (t),

where L and N are respectively a linear and nonlinear operators, and f (t) is a nonhomogeneous

term, He [18, 19] proposed a correction functional based on the variational method as follows

(6) un+1(t) = un(t)+
∫ t

t0
λ [Lun(s)+Nũn(s)− f (s)] ds.

Here λ is a general Lagrange multiplier which can be obtained optimally via the variational the-

ory and ũn is a restricted variation, namely δ ũn = 0 with δ is a variational derivative. Following

[20, 24], we apply the variational iteration method (6) by considering restricted variations for

both linear and nonlinear parts except for the differential operator. The correction functionals

for the system (3) with initial conditions (4) are then constructed as follows
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Sn+1(t) =Sn(t)+
∫ t

0
λ1(s)

[
dSn(s)

ds
−m+mS̃n(s)+β S̃n(s)

(
Ẽn(s)+ Ĩn(s)

)]
ds,

En+1(t) =En(t)+
∫ t

0
λ2(s)

[
dEn(s)

ds
−β S̃n(s)

(
Ẽn(s)+ Ĩn(s)

)
+(p+m+g) Ẽn(s)

]
ds,

In+1(t) =In(t)+
∫ t

0
λ3(s)

[
dIn(s)

ds
− pẼn(s)+(σ +m) Ĩn(s)

]
ds,

Qn+1(t) =Qn(t)+
∫ t

0
λ4(s)

[
dQn(s)

ds
−gẼn(s)−σ Ĩn(s)+(θ +m) Q̃n(s)

]
ds

Rn+1(t) =Rn(t)+
∫ t

0
λ5(s)

[
dRn(s)

ds
−θ Q̃n(s)+mR̃n(s)

]
ds.

(7)

By taking variations of the system (7) and remembering that δ S̃n = δ Ẽn = δ Ĩn = δ Q̃n = δ R̃n =

0, we get

δSn+1(t) =δSn(t)+δ

∫ t

0
λ1(s)

(
dSn(s)

ds

)
ds,

=δ [(1+λ1(t))Sn(t)]−δ

∫ t

0
λ
′
1(s)Sn(s)ds,

δEn+1(t) =δEn(t)+δ

∫ t

0
λ2(s)

(
dEn(s)

ds

)
ds,

=δ [(1+λ2(t))En(t)]−δ

∫ t

0
λ
′
2(s)En(s)ds,

δ In+1(t) =δ In(t)+δ

∫ t

0
λ3(s)

(
dIn(s)

ds

)
ds,

=δ [(1+λ3(t)) In(t)]−δ

∫ t

0
λ
′
3(s)In(s)ds,

δQn+1(t) =δQn(t)+δ

∫ t

0
λ4(s)

(
dQn(s)

ds

)
ds

=δ [(1+λ4(t))Qn(t)]−δ

∫ t

0
λ
′
4(s)In(s)ds

δRn+1(t) =δRn(t)+δ

∫ t

0
λ5(s)

(
dRn(s)

ds

)
ds

=δ [(1+λ5(t))Rn(t)]−δ

∫ t

0
λ
′
5(s)Rn(s)ds.

(8)

System (8) gives the stationary conditions 1+λi(s)|s=t = 0 and λ
′
i (s)|s=t = 0, i = 1,2,3,4,5;

from which we obtain the Lagrange multipliers for the system (7)

λ1(s) =−1, λ2(s) =−1, λ3(s) =−1, λ4(s) =−1,and λ5(s) =−1.
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By identifying the Lagrange multipliers, the variational iteration method (VIM) for system (3)

is now given by

Sn+1(t) =Sn(t)−
∫ t

0

[
dSn(s)

ds
−m+mSn(s)+βSn(s)(En(s)+ In(s))

]
ds,

En+1(t) =En(t)−
∫ t

0

[
dEn(s)

ds
−βSn(s)(En(s)+ In(s))+(p+m+g)En(s)

]
ds,

In+1(t) =In(t)−
∫ t

0

[
dIn(s)

ds
− pEn(s)+(σ +m) In(s)

]
ds,

Qn+1(t) =Qn(t)−
∫ t

0

[
dQn(s)

ds
−gEn(s)−σ In(s)+(θ +m)Qn(s)

]
ds,

Rn+1(t) =Rn(t)−
∫ t

0

[
dRn(s)

ds
−θQn(s)+mRn(s)

]
ds.

(9)

where n = 0,1,2, . . . and S0,E0, I0,Q0 and R0 are given by the initial conditions (4).

We notice that the VIM (9) is constructed by applying restricted variation for both linear and

nonlinear terms. Based on He’s variational iteration method, we will improve the variational

iteration (9) by reducing the restrictions in the correction functionals as follows

Sn+1(t) =Sn(t)+
∫ t

0
λ1(s)

[
dSn(s)

ds
−m+mSn(s)+β S̃n(s)

(
Ẽn(s)+ Ĩn(s)

)]
ds,

En+1(t) =En(t)+
∫ t

0
λ2(s)

[
dEn(s)

ds
−β S̃n(s)

(
Ẽn(s)+ Ĩn(s)

)
+(p+m+g)En(s)

]
ds,

In+1(t) =In(t)+
∫ t

0
λ3(s)

[
dIn(s)

ds
− pẼn(s)+(σ +m) In(s)

]
ds,

Qn+1(t) =Qn(t)+
∫ t

0
λ4(s)

[
dQn(s)

ds
−gẼn(s)−σ Ĩn(s)+(θ +m)Qn(s)

]
ds,

Rn+1(t) =Rn(t)+
∫ t

0
λ5(s)

[
dRn(s)

ds
−θ Q̃n(s)+mRn(s)

]
ds.

(10)

We note that similar improvement, namely the reduction of restriction variations, was also sug-

gested in [21, 25, 26]. As previously, we take variations of system (10) to get

δSn+1(t) =δSn(t)+δ

∫ t

0
λ1(s)

(
dSn(s)

ds
+mSn(s)

)
ds,

=δ [(1+λ1(t))Sn(t)]−δ

∫ t

0
(λ
′
1(s)−mλ1(s))Sn(s)ds,
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δEn+1(t) =δEn(t)+δ

∫ t

0
λ2(s)

(
dEn(s)

ds
+(p+m+g)En(s)

)
ds,

=δ [(1+λ2(t))En(t)]−δ

∫ t

0
(λ
′
2(s)− (p+m+g)λ2(s))En(s)ds,

δ In+1(t) =δ In(t)+δ

∫ t

0
λ3(s)

(
dIn(s)

ds
+(σ +m)In(s)

)
ds,

=δ [(1+λ3(t)) In(t)]−δ

∫ t

0
(λ
′
3(s)− (σ +m)λ3(s))In(s)ds,

δQn+1(t) =δQn(t)+δ

∫ t

0
λ4(s)

(
dQn(s)

ds
+(θ +m)Qn(s)

)
ds

=δ [(1+λ4(t))Qn(t)]−δ

∫ t

0
(λ
′
4(s)− (θ +m)λ4(s))In(s)ds,

δRn+1(t) =δRn(t)+δ

∫ t

0
λ5(s)

(
dRn(s)

ds
+mRn(s)

)
ds

=δ [(1+λ5(t))Rn(t)]−δ

∫ t

0
(λ
′
5(s)−mλ5(s))Rn(s)ds

(11)

Accordingly, we obtain the following stationary conditions

1+λ1(s)|s=t =0,
(

λ
′
1(s)−mλ1(s)

)∣∣
s=t = 0,

1+λ2(s)|s=t =0,
(

λ
′
2(s)− (p+m+g)λ2(s)

)∣∣
s=t = 0,

1+λ3(s)|s=t =0,
(

λ
′
3(s)− (σ +m)λ3(s)

)∣∣
s=t = 0,

1+λ4(s)|s=t =0,
(

λ
′
4(s)− (θ +m)λ4(s)

)∣∣
s=t = 0,

1+λ5(s)|s=t =0,
(

λ
′
5(s)−mλ5(s)

)∣∣
s=t = 0.

(12)

From the stationary conditions (12), the Lagrange multipliers for the variational iteration (10)

are identified as follows

λ1(s) =− exp(m(s− t)),

λ2(s) =− exp((p+m+g)(s− t)),

λ3(s) =− exp((σ +m)(s− t)),

λ4(s) =− exp((θ +m)(s− t)),

λ5(s) =− exp(m(s− t)).

(13)
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Thus, the improved variational iteration method (IVIM) for the system (3) can be written as

Sn+1(t) =Sn(t)−
∫ t

0
exp(m(s− t))

[
dSn(s)

ds
−m+mSn(s)+βSn(s)(En(s)+ In(s))

]
ds,

En+1(t) =En(t)−
∫ t

0
exp((p+m+g)(s− t))

[
dEn(s)

ds
−βSn(s)(En(s)+ In(s))+(p+m+g)En(s)

]
ds,

In+1(t) =In(t)−
∫ t

0
exp((σ +m)(s− t))

[
dIn(s)

ds
− pEn(s)+(σ +m) In(s)

]
ds,

Qn+1(t) =Qn(t)−
∫ t

0
exp((θ +m)(s− t))

[
dQn(s)

ds
−gEn(s)−σ In(s)+(θ +m)Qn(s)

]
ds,

Rn+1(t) =Rn(t)−
∫ t

0
exp(m(s− t))

[
dRn(s)

ds
−θQn(s)+mRn(s)

]
ds.,

(14)

where n = 0,1,2, . . .

It is noticed that Rangkuti et al. [21] have considered reducing the restrictions in the correc-

tion functionals for their problem. Using this procedure, they also obtained Lagrange multipliers

of the form of exponential functions as in (13). However, they only implemented the first order

of their Lagrange multiplier, i.e. λ = −1, which is the same as if we use restricted variations

for both linear and nonlinear terms in the correction functionals.

4. NUMERICAL RESULTS AND DISCUSSION

In this Section, we compare the solution of the system (3) obtained by the VIM (9) with that

obtained by the IVIM (14). For the numerical test, we take the following parameter value

(15) A =
28

100
,m =

3
10

,b =
1
2
, p =

3
10

,g =
8

100
,σ =

2
10

, and θ =
1

10
,

with initial value

(16) S0 =
1

10
,E0 =

3
10

, I0 =
2

10
, and Q0 =

4
10

.

The first iteration of VIM (9) gives the following solution
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SV IM
1 (t) =

1
10

+
37
150

t,

EV IM
1 (t) =

3
10
− 271

1500
t,

IV IM
1 (t) =

1
5
− 1

100
t,

QV IM
1 (t) =

2
5
− 12

125
t,

RV IM
1 (t) =

1
25

t,

(17)

while the second iteration produces the following solution

SV IM
2 (t) =

1
10

+
37

150
t− 13799

225000
t2 +

37037
5062500

t3,

EV IM
2 (t) =

3
10
− 271

1500
t +

3859
45000

t2− 37037
5062500

t3,

IV IM
2 (t) =

1
5
− 1

100
t− 123

5000
t2,

QV IM
2 (t) =

2
5
− 12

125
t +

823
75000

t2,

RV IM
2 (t) =

1
25

t− 27
2500

t2.

(18)

As usual, the iteration for VIM can be continued to get more accurate solutions.

In Figure 1, we plot the approximate solution obtained from the fourth iteration of VIM

(9). Such approximate solution should be compared to a reference solution. Since there is no

exact solution, we use the numerical solution obtained by the fourth-order Runge-Kutta (RK4)

method with ∆t = 10−6 as the reference solution. Figure 1 shows that the VIM solution is only

accurate for relatively small time interval. Indeed, the VIM solution for all variables almost

coincides with the reference solution only for t ∈ [0,1]. As t gets bigger, the VIM solution

deviates more from the reference solution. This behaviour is more apparent in Figure 2, in

which we plot both the VIM solution and the reference solution over a larger time interval.

Figure 2 shows that at t = 6, the VIM leads to an inaccurate solution of the normalized SEIQRD

model. Furthermore, the size of some normalized subpopulations is more than one, and others

have negative values, which shows that the VIM solution is unrealistic.
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t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
S

RK4
(t)

SVIM
4

(t)

E
RK4

(t)

EVIM
4

(t)

I
RK4

(t)

IVIM
4

(t)

Q
RK4

(t)

QVIM
4

(t)

R
RK4

(t)

RVIM
4

(t)

FIGURE 1. RK-4 and VIM solutions for t ∈ [0,2]. The VIM solution, in partic-

ular for variables S,E, and I, is reliable only for small interval of t.

t

0 1 2 3 4 5 6
-2

-1.5

-1

-0.5

0

0.5

1

1.5

S
RK4

(t)

SVIM
4

(t)

E
RK4

(t)

EVIM
4

(t)

I
RK4

(t)

IVIM
4

(t)

Q
RK4

(t)

QVIM
4

(t)

R
RK4

(t)

RVIM
4

(t)

FIGURE 2. RK-4 and VIM solutions for t ∈ [0,6]. The VIM solution for all

variables (S,E, I,Q, and R) becomes erroneous and unrealistic as t gets further

from the initial position.
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t

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1
S

RK4
(t)

SIVIM
4

(t)

E
RK4

(t)

EIVIM
4

(t)

I
RK4

(t)

IIVIM
4

(t)

Q
RK4

(t)

QIVIM
4

(t)

R
RK4

(t)

RIVIM
4

(t)

FIGURE 3. RK-4 and IVIM solutions for t ∈ [0,6]. The IVIM solution for all

variables is very compatible with the RK-4 solution. This shows that IVIM is

more efficient and accurate than VIM.

To obtain better results, we will implement the IVIM (14) to solve system (3). Using param-

eters (15) and initial values (16), the IVIM (14) leads to the following first iteration solution

SIV IM
1 (t) =

83
90
− 37

45
exp(− 3

10
t),

EIV IM
1 (t) =

7
204

+
271
1020

exp(−17
25

t),

IIV IM
1 (t) =

9
50

+
1

50
exp(−1

2
t),

QIV IM
1 (t) =

4
25

+
6

25
exp(−2

5
t),

RIV IM
1 (t) =

2
15
− 2

15
exp(− 3

10
t),

(19)

and the following second iteration solution

SIV IM
2 (t) =

1430467
2065500

− 1286321783
1667891250

exp(− 3
10

t)+
157451
523260

exp(−17
25

t)+
581

13500
exp(−1

2
t)

+
283087

3442500
exp(− 3

10
t)t− 70189

468180
exp(−49

50
t)− 259

16875
exp(−4

5
t),
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EIV IM
2 (t) =

635033
4681800

− 18899653
266862600

exp(−17
25

t)+
157451
1377000

exp(−17
25

t)t +
581

12150
exp(−1

2
t),

− 283087
1308150

exp(− 3
10

t)+
70189

206550
exp(−49

50
t)+

259
4050

exp(−4
5

t),

IIV IM
2 (t) =

7
340

+
28
45

exp(−1
2

t)− 271
612

exp(−17
25

t),

QIV IM
2 (t) =

247
2550

+
44

105
exp(−2

5
t)− 271

3570
exp(−17

25
t)− 1

25
exp(−1

2
t),

RIV IM
2 (t) =

4
75

+
14
75

exp(− 3
10

t)− 6
25

exp(−2
5

t).

(20)

As in the case of VIM, the iteration of IVIM can be continued further. If the number of iteration

steps increases, then the solutions should be convergent to more accurate results. In Figure 3

we show the solution of system (3) obtained from the fourth iteration of IVIM (14). It is found

that the IVIM produces a much more accurate solution compared to the VIM (9). We observe

that the IVIM solution is in excellent agreement with the reference solution for t ∈ [0,6].

In Table 2 and Table 3 we show the mean absolute errors of VIM and IVIM solutions on

specific domain for each dependent variable. Here, E V IM
S4

is the mean absolute error of S(t) ob-

tained from the 4th-iteration in VIM. For the other mean absolute errors of the other dependent

variables are denoted analogously. The mean absolute error is calculated using the following

formula

(21) E approx
X =

1
M

M

∑
j=1
|X re f

j −Xapprox
j |,

where X re f
j and Xapprox

j are the reference and approximate solutions at t j, respectively. The

solutions are evaluated at a uniform grid with ∆t = t j+1− t j = 0.01. Here M is the number of

evaluated points. Table 2 and Table 3 show that at the same number of iteration steps, which in

our case is the fourth iteration, the IVIM leads to a much more accurate solution compared to

the VIM.
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TABLE 2. Error of the fourth iteration VIM and IVIM solutions for variable S,E

and I.

Domain E V IM
S4

E IV IM
S4

E V IM
E4

E IV IM
E4

E V IM
I4 E IV IM

I4

[0,1] 2.336e-03 5.119e-07 8.283e-04 4.843e-07 8.090e-05 6.529e-07

[0,2] 1.601e-02 9.963e-06 3.660e-03 8.938e-06 2.103e-03 1.209e-05

[0,3] 4.687e-02 5.239e-05 4.528e-03 4.482e-05 1.332e-02 5.445e-05

[0,6] 2.485e-01 8.815e-04 1.623e-01 6.751e-04 2.676e-01 3.288e-04

TABLE 3. Error of the fourth iteration VIM and IVIM solutions for variable Q

and R.

Domain E V IM
Q4

E IV IM
Q4

E V IM
R4

E IV IM
R4

[0,1] 1.285e-05 3.904e-07 2.055e-06 1.833e-07

[0,2] 3.697e-04 8.240e-06 6.202e-05 3.762e-06

[0,3] 2.542e-03 4.354e-05 4.490e-04 1.844e-05

[0,6] 6.254e-02 5.975e-04 1.282e-02 1.614e-04

5. CONCLUSIONS

We have solved the SEIQR COVID-19 epidemic model using the VIM. Two different VIM

implementations have been considered. The difference between the two implementations lies in

the number of restricted variations used in the correction functionals. The first implementation,

i.e. the restricted variations are applied for both linear and nonlinear parts of the correction

functionals, leads to an approximate solution that is unrealistic and is correct only for relatively

small time domains. To improve the accuracy of the first VIM, we have reduced the number

of the restricted variation in the correction functionals. We have shown that the improved VIM

significantly increases the accuracy of the first VIM.
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