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Abstract: In this paper, the influence of predation fear on the dynamics of the three species food chain system is 

formulated mathematically and investigated. It is assumed that the food is transferred from the lower level to the upper 

level according to the Sokol-Howell type of functional response due to the anti-predator property of each prey in the 

system. The boundedness and persistence conditions are established for the proposed food chain system. The local 

and global stability analysis is investigated. The occurrence conditions of local bifurcation including the Hopf 

bifurcation near the equilibrium points are obtained. In the end, numerical simulation is performed to validate the 

theoretical results and present the dynamical behavior of the system. Different mathematical tools such as strange 

attractor, bifurcation diagram, and Lyapunov exponents are used to detect chaos in the proposed system. It is observed 

that the model is capable of exhibiting complex dynamics including chaos. It is also pointed out that a suitable 

predation fear can control the chaotic dynamics and make the system stable. 
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1. INTRODUCTION  

In ecosystems, prey-predator interactions are critical, and understanding the mechanisms that drive 

them is a difficult issue in ecology and evolutionary biology. In prey-predator interactions, 

predation has long been regarded to be the most important factor. A predator eats prey by hunting 

and killing it in the wild. However, increasing evidence suggests that many animals can predict 

the likelihood of predation and adjust their behavior accordingly. When prey becomes aware of 

the possibility of predation, it may engage in anti-predator behaviors like modifying its habits or 

appearance, as well as shifting its foraging and reproductive times.  

 Anti-predator behavior in prey is common, and the fear effect can be large, meaning that fear 

has a big impact on population dynamics. Despite the fact that predators do not kill prey directly, 

the fear of predators on prey has an impact on predator and prey population dynamics. In fact, 

there's evidence that the indirect influence can be just as significant as the direct effect. As a result, 

when researching prey-predator interactions, taking into account solely the direct killing effect is 

insufficient. Hua et al [1] proposed a two-dimensional prey-predator model that incorporates the 

cost of fear into prey growth. Several other prey-predator systems incorporating the fear effect 

have been developed and examined as a result of this research, see [2-12].  

As the prey becomes aware of the threat of predation, it may exhibit anti-predator behaviors such 

as adjusting its habits, foraging times, and reproduction. These responses will have an impact on 

the prey's population density. To avoid being killed immediately, the prey may choose to stay in a 

safer area distant from the high-risk sector when foraging. In terms of foraging time, the prey 

species may choose to restrict its foraging activity at some risk, forcing it to adopt a hungry survival 

mechanism and, as a result, lowering its growth rate. 

On the other hand, prey anti-predator behavior is common, and the fear effect can be significant, 

implying that fear has a significant impact on population dynamics. Wang et al [7-8] created a two-

dimensional prey-predator model adding the cost of fear into prey growth with this motivation. 

Their findings suggest that the anti-predator reaction is critical in maintaining the prey-predator 

balance. They also discovered that in the model incorporating the cost of fear, the Hopf bifurcation 
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can occur and can be both supercritical and subcritical, which differs from previous conventional 

prey-predator models. Pal et al. [11] looked at the fear effect in a prey-predator model in which the 

prey-predator interaction follows the BeddingtonïDeAngelis functional response. They 

discovered that as the cost of fear rises, the system becomes unstable and provides periodic 

solutions via supercritical Hopf bifurcation. The system, however, experiences another Hopf 

bifurcation and becomes stable as the level of fear increases, similar findings were found in [10-

11]. Recently, Sarkar and Khajanchi [12] designed and examined a prey-predator system with 

Holling type-II functional response that introduced the cost of fear into prey reproduction. They 

showed that powerful anti-predator reactions can stabilize prey-predator interactions by ignoring 

the occurrence of the periodic activity. 

Following these studies, other scientists used the Holling type II function response to represent 

the feeding process in a tri-trophic food chain and food web models. Panday et al [13] suggested 

and explored the influence of fear in a tri-trophic food chain model, in which the growth rate of 

the middle predator is reduced owing to the cost of top predator fear, and the growth rate of prey 

is repressed due to the cost of middle predator fear. Fear, they discovered, may settle the system 

from chaos to stable focus by half the period, similar findings were found in [14]. Later, Ibrahim 

and Naji [15] investigated the influence of fear in the BeddingtonïDeAngelis food chain model 

with three species. They discovered that fear has a stabilizing influence on the system up to a 

threshold degree; otherwise, it acts as an extinction factor in the system. Mukherjee provided a 

mathematical model that simulates two competing prey and one predator system with the cost of 

fear that impacts both the prey population's reproduction rate and the predator's predation rate in 

[16]. He observed that although a high level of fear can make coexistence impossible, a rise in 

intraspecific competition within the predator population can allow predator and competitive prey 

to coexist. In [17], Abd and Naji devised and analyzed a food chain model that included fear at the 

first and second levels. Alternative food sources for the top predator are also taken into account. 

They obtained that the system has many dynamics, including chaos, which can be decreased by 

increasing the fear rate. Maghool and Naji recently suggested and investigated the dynamics of a 
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tri-trophic Leslie-Gower food-web system under the influence of fear [18]. They discovered that 

the fear factor acts as a system stabilizer up to a certain point, after which it causes the predator to 

become extinct.  

In contrast to prior researches, this publication considers the impact of fear from predator predation 

in the upper level of the food chain throughout the levels of the food chain in which the prey 

species has an anti-predator capability such as group defense. The following is the outline of the 

paper: Section 2 describes the model and its dimensionless form. Section 3 defines the equilibrium 

points and describes the conditions that must be met for them to be stable locally. The model's 

persistence is discussed in Section 4, and the research of global behavior is discussed in Section 5. 

Section 6 investigates the feasibility of local bifurcation, while section 7 determines the criteria 

for Hopf bifurcation to occur. Moreover, section 8 applies numerical simulation to test our 

theoretical findings and discovers chaos by producing bifurcation diagrams and Lyapunov 

exponent bifurcation diagrams. Finally, the conclusion and discussion of this work are given in 

section 9. 

 

2. THE MODEL FORMULATION  

In the present section, the real-world three-species food chain system is formulated mathematically. 

It is assumed that fear affects negatively the growth rates of the prey and middle predator. 

Furthermore, the middle predator's fear of predation from the upper predator reduces the middle 

predator's foraging too. Accordingly, the predation rate of the middle predator and the growth rate 

of the prey at the first level, and that of the middle predator at the second level are multiplied by a 

decreasing function of upper predator population density. On the other hand, it is assumed that the 

preys have an anti-predator technique capability against predation by the predator at the upper 

level. Consequently, the dynamics of the above described food chain system can be represented by 

the following set of first order nonlinear differential equations. The terms  , and  

represent the reduction in the growth rate of the prey, and the reduction in the growth rate and 

foraging of the middle predator due to the fear. While the Sokol-Howell type of functional 
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responses are used to describe the predation process due to the existence of the anti-predator 

technique. Therefore, the above described real world food-chain system can be represented 

mathematically using the following system of differential equations. 

ὦὢ ȟ   

  Ὠὣȟ

  Ὠὤȟ                                  

                              (1) 

with ὢπ πȟὣπ πȟὥὲὨ  ὤπ π, where  ὢὝ represents the prey density at the time 

Ὕ, ὣὝ is the middle predator density at the time Ὕ, while ὤὝ is the top predator density at 

time Ὕ. The parameters in the system (1) are assumed to be positive and are detailed in the Table 

(1) below. 

 

Table 1: The description of the model (1) parameters 

Parameter Description 

ὶ The intrinsic growth rate of the prey population. 

ὦ Intraspecific competition of the prey. 

ὥ, ὥ Maximum attack rates of the middle predator and top predator respectively. 

ὥ, ὥ Conversion rates to the middle predator and top predator respectively. 

ὲ, ὲ Fear levels from the middle predator and top predator respectively. 

ά, ά  Preference rates for the middle predator and top predator respectively. 

Ὠ, Ὠ Natural mortality rates of middle predator and top predator respectively. 

 

Clearly, system (1) has eleven parameters in all. Therefore for easier mathematical analysis, the 

number of parameters is reduced using the following transformations. 

 

ὼ  ȟώ ȟᾀ  ȟὸ ὶὝȟό ȟ    ό ȟό ȟ
  

ό ȟό ȟό ȟό ȟό ȟό Ȣ

           

Therefore, the non-dimensional system that corresponds to the system (1) is given by:  
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ὼ ὼ ὼὪὼȟώȟᾀȟ       

ώ   ό ώὪὼȟώȟᾀȟ

ᾀ ό ᾀὪὼȟώȟᾀȢ                                    

                          (2) 

Here, the interaction functions are define on ᴙ ὼȟώȟᾀȡ ὼὸ πȟώὸ πȟᾀὸ π . 

Moreover, since the interaction functions in the right-hand side of the system (2) are continuous 

and have a continuous partial derivatives, hence they are Lipschitzian functions. Thus, the solution 

of the system (2) exists and is unique.  

Theorem 1: All the solutions of the system (2), which initiate in ᴙ  are uniformly bounded. 

Proof. Let ὼὸȟώὸȟᾀὸ  be the solution of system (2), then from the first equation, it is 

obtained that ὼ ὼ, then as ὸO Њ the following is obtained ὼ ρ. 

Define the function ὓ ὸ όὼὸ ώὸ ᾀὸ. 

Differentiating the function ὓὸ, yields: 

ό όὼ ό ᾀ. 

Then       

      ςόὼ όὼ όώ ᾀ ςό  ,ὓ

where  ÍÉÎ ρȟόȟό . Consequently, as ὸO Њ, it is obtain that 

ὓ ὸ . 

Hence the solutions of the system (2) with non-negative initial point are uniformly bounded in the 

region ᴥ ὼȟώȟᾀᶰᴙ ȟπ όὼὸ ώὸ ᾀὸ . 

 

3. EQUILIBRIUM POINTS AND LOCAL STABILITY ANALYSIS  

The system (2) has at most four non-negative equilibrium points, the form of points with their 

existence conditions are stated below. 

1. The trivial equilibrium point (TEP) that is denoted by Ὡ πȟπȟπ always exists. 

2. The axial equilibrium point (AEP) that is denoted by Ὡ ρȟπȟπ always exists. 
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3.  The top predator free equilibrium point TPFEP, which is denoted by Ὡ ὼӶȟώȟπ, of the 

system (2) can be obtained by solving the following system of equations

 
όώ ρ όὼ όόὼ ώ ρ ὼ ρ όὼ π

όόὼ όὼ ό π                                                           
    

Straightforward computation shows that the above system has a unique positive solution in 

the interior of ὼώplane that is given by Eq. (3) provided that the conditions given by Eq. 

(4) hold together.   

ὼӶ
ότ ότ

ς τόςόχ
ς

ςόςόχ
ȟώ

ὄ ὄς τὃὅ

ςὃ
,                              (3)     

where   ὃ όρ, ὄ όὼ όόὼ ρ, and ὅ ὼ ρ ρ όὼ . 

 
τό ό ό ȟ
ὼӶ ρȢ               

                                       (4) 

4. The coexistence equilibrium point (CEP), that is denoted by Ὡ ὼᶻȟώᶻȟᾀᶻ , exists 

uniquely in the interior of positive octant if and only if there is a unique solution to the 

following set of algebraic equations. 

ὼ πȟ       

  ό πȟ

ό πȢ                                   

                               (5) 

Although the third equation has two positive solutions given by the equation (6), the algebraic 

system (7) that results from the first two equations of (5) after substituting the value of ώᶻȠὭ ρȟς 

may or may not have a unique intersection point depending on the value of the parameters.  

ώȟ
ᶻ ᶸ

.                           (6) 

Ὄ ὼȟᾀ ᶻ ὼ
ᶻ

πȟ     

Ὄ ὼȟᾀ   
ᶻ
ό πȢ

                                (7) 

For instance, for the parameter values:   

ό πȢςυȟό ςȟό πȢςυȟό ρȟό ρȟό ςȟό πȢρȟό ρȟό πȢρ.   (8) 

From equation (6), there are two positive values of ώ , given by ώᶻ πȢρπςπψτ  and ώᶻ
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τȢψωχως . However system (7) has a unique solution given by ὼᶻȟᾀᶻ πȢωτȟπȢςς  at ώᶻ , 

while it has no solution at ώᶻ, see Figure (1a) and (1b) respectively. Therefore for the set of data 

(8), the system (2) has a unique CEP given by Ὡ πȟωτȟπȢρȟπȢςς. 

 

Figure 1: Existence of CEP. (a) The unique solution of system (7) when ώᶻ πȢρπςπψτ . (b) 

There is no solution when ώᶻ τȢψωχως 

 

In the following the local stability analysis of the system (2) near the above equilibrium points is 

investigated using the linearization technique. 

The Jacobin matrix of system (2) at the point (x, y, z) can be written as:  

ὐ

ở

Ở
ờ

ὼ Ὢ ὼ ὼ

ώ ώ Ὢ ώ

ᾀ ᾀ ᾀ ὪỢ

ỡ
Ỡ

ὥ ȟ            (9)                                                                                

where ὥ ὼ ὼ  , ὥ  , ὥ  , ὥ

 , ὥ
   

ό  , ὥ  , ὥ π , ὥ

 , ὥ ό , with – ρ όὼ , – ρ όώ ,  – ρ όᾀ  , and  –

ρ όώ. 
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Therefore, the following can be obtain: 

The Jacobian matrix at TEP has the eigenvalues ‗ ρ, ‗ ό, ‗ ό, and hence Ὡ 

is a saddle point. 

The Jacobian matrix at AEP has the eigenvalues  ‗ ρ, ‗ ό, and ‗ ό, 

hence Ὡ is a locally asymptotically stable provided that  

ό.                     (10) 

The Jacobian matrix at TPFEP is reduced to: 

 ὐ ὦ ,                                    (11a) 

where ὦ ὼ
ςόςὼ

ςώ
 , ὦ

ὼ ὼ
ȟ  ὦ

ὼ ώ 
 , ὦ

ώ ὼ
 , ὦ π , ὦ

ὼώ

ώ
, ὦ π, ὦ π, ὦ

ώ
ό, with –Ӷ ρ όὼӶ, –Ӷ ρ όώ, –Ӷ ρ όώ. 

Therefore, the characteristic equation of ὐ can be written as:  

‗ ὦ ‗ ὦ ὦ ὦ ‗ π.                                    (11b) 

Clearly, the eigenvalues of the Eq. (11b) can be written as: 

‗  , ‗  , ‗ ό .             (12) 

It is easy to verify that, all the eigenvalues of ὐ  are negative, and hence Ὡ  is locally 

asymptotically stable, provided that the following conditions hold: 

Ӷ
ρ,                       (13a) 

ὼ ,                                            (13b) 

ό.                                      (13c) 

The Jacobian matrix of the system (2) at the CEP can be written as: 

ὐ ὧ ,                            (14) 

where: 

ὧ ὼᶻ
ᶻ ᶻ

ᶻ ᶻ
, ὧ

ᶻ

ᶻ

ᶻ

ᶻ ᶻ
, ὧ

ᶻ ᶻ

ᶻ ᶻ
, 
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ὧ
ᶻ ᶻ

ᶻ ᶻ
, ὧ

ᶻ ᶻ

ᶻ
, ὧ

ᶻ ᶻ

ᶻ ᶻ

ᶻ

ᶻ
, 

ὧ π, ὧ
ᶻ ᶻ

ᶻ
, ὧ π. 

with –ᶻ ρ όὼᶻȟ–ᶻ ρ όώᶻȟ–ᶻ ρ όᾀᶻȟ–ᶻ ρ όώᶻ . Consequently, the 

characteristic equation of ὐ can be written as: 

‗ ὃ‗ ὃ‗ ὃ π,                     (15) 

where ὃ ὧ ὧ  , ὃ ὧὧ ὧὧ ὧὧ , and ὃ ὧ ὧὧ ὧ ὧ  , 

with Ў ὃὃ ὃ ὧ ὧ ὧὧ ὧὧ ὧ ὧὧ ὧὧ . 

Now, according to Routh-Hurwitz criterion, all the eigenvalues of the characteristic equation (15) 

have negative real parts and then the CEP becomes locally asymptotically stable if and only if 

ὃ π, ὃ π, and Ў π. Accordingly, the following theorem can be proved easily. 

Theorem (2): The CEP is locally asymptotically stable if the following sufficient conditions hold. 

ὼᶻ ,                                    (16a) 

ώᶻ ,                                    (16b) 

ᶻ ᶻ
ᶻ

ᶻ ᶻ
ᶻ ᶻ

ᶻ ᶻ ᶻ
ὼᶻ,                         (16c) 

όόώᶻ–ᶻρ όὼᶻ – –zᶻ ςόὼᶻώᶻ όόὼᶻ–ᶻ ό– –zᶻ,         (16d) 

ςόόώᶻᾀᶻ– –zᶻ ςόὼᶻώᶻ– –z –zᶻ ό ό– –zᶻ –ᶻ ρ όὼᶻ –  z,   (16e)         

       όόὼᶻρ όὼᶻ –ᶻ ςόόώᶻᾀᶻ– –zᶻόόὼ
ᶻ–ᶻ ό– –zᶻ .           (16f)  

 

4. PERSISTENCE 

The persistence of the system (2) is studied, it is well known that the system is said to persist if 

and only if each species persist, mathematically this means that the system (2) persists if the 

solution of the system with the positive initial condition does not have omega limit set on the 

boundary of its domain. 

The system (2) has a subsystem lying in the positive quadrant of ὼώplane, which can be written 
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as follow:  

ὼ ὼ А ὼȟώȟ

ώ   ό А ὼȟώȟ           
           

                       (17) 

It is easy to verify that, this subsystem has a positive equilibrium point coincide with the TPFEP 

of the system (2) in the interior of the positive quadrant of the ὼώplane. Now, to discover the 

possibility of the existence of periodic dynamics around the interior positive point of the subsystem 

(17), the Dulac function approach is used.    

Define the function  ″ ὼȟώ . Clearly this function is continuously differentiable function 

in the interior of the positive quadrant of the ὼώplane and  ″ ὼȟώ π, for all ὼȟώᶰᴙ. 

Furthermore, direct computation gives that  

Ўὼȟώ ″ϽА ″ϽА . 

Therefore, Ўὼȟώ does not change sign and not identically to zero under the following condition: 

 ρ.                                            (18) 

Note that, condition (18) is coincide with condition (13a) at the TPFEP, which means the 

subsystem (17) is a globally asymptotically stable in the interior of the positive quadrant of the 

ὼώ plane whenever the subsystem has a locally asymptotically stable in the interior of ᴙ . 

Hence, according to the Dulac approach, there is no periodic dynamics in the interior of positive 

quadrant of ὼώplane for the subsystem.  

Theorem (3): Assume that there are no periodic dynamics in the boundary planes, then the system 

(2) is uniformly persistent provided that the following conditions hold   

ό ,                                     (19a) 

ό ,                                 (19b) 

Proof.  Define ‰ὼȟώȟᾀ ὼ ώ ᾀ  , where ὴȟὴȟὴ  are positive constants, and 

‰ὼȟώȟᾀ π  for all ὼȟώȟᾀᶰὍὲὸ ᴙ   with ‰ὼȟώȟᾀ π  if any one of ὼȟώ , or ᾀ 
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approaches zero. Therefore, direct computation gives: 

Џὼȟώȟᾀ
ȟȟ

ȟȟ
ήὪ ήὪ ήὪ, 

where the functions ὪȠὭ ρȟςȟσ , are given in the system (2). Now, according to the average 

Lyapunov method, the proof is as follows provided that Џὼȟώȟᾀ π  for all boundary 

equilibrium points. Therefore,  

Џὼȟώȟᾀ ή
ρ

ρ όώ
ὼ

ώ

ρ όὼ

ρ

ρ όᾀ
                                         

ή
όὼ

ρ όὼ
  

ρ

ρ όᾀ

όᾀ

ρ όὼ
ό ή

όώ

ρ όώ
ό Ȣ

 

We have that 

ЏὩ   ή ή ό ή ό . 

Obviously, by choosing the arbitrary positive value of ή sufficiently large with respect to ή, ή, 

it is obtained that ЏὩ π. 

  ЏὩ ή   ό ή ό . 

Note that, the condition (19a) guarantees that the coefficient of ή is positive, then by suitable 

chose of the parameters ή and ή, so that ή is sufficiently large with respect to ή, it is obtain 

that ЏὩ π. Now, regarding to TPFEP, we have: 

ЏὩ ή ό . 

Clearly, the condition (19b) guarantees that ЏὩ π. 

Hence the system (2) is uniformly persistent, and the proof is complete. 

 

5. GLOBAL STABILITY ANALYSIS 

In this section, the global stability of the locally asymptotically stable equilibrium points of 

system (2) is investigated using suitable Lyapnuov functions as shown in the following theorems.  

Theorem (4): Assume that the AEP is locally asymptotically stable and the following conditions 

hold then it is a globally asymptotically stable. 

  ό ρ  ό ό,                                       (20)  
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Proof. Define the real valued function ὔ ὼȟώȟᾀ  ό ὼ ρ ÌÎὼ ώ
 

 
ᾀ.  

Clearly the function ὔ ὼȟώȟᾀ  is a positive definite function that is ὔ ρȟπȟπ π , while 

ὔ ὼȟώȟᾀ π , for all values in the region ὼȟώȟᾀᶰᴙ ȡὼ πȟώ πȟᾀ πȠ ὼȟώȟᾀ

ρȟπȟπ . Then using some algebraic manipulation give that: 

Ὠὔ

Ὠὸ
 ό ὼ ρ

 ό ὼ ρ

ρ όώ

 ό ὼ ρώ

ρ όὼ ρ όᾀ

 ό ὼ ρ
όὼώ

ρ όὼ ρ όᾀ

όώᾀ

ρ όώ

  όώ
όώᾀ

ρ όώ

 ό ό

 ό
ᾀ

   

Consequently, by using additional computation the following is obtained:   

 ό ὼ ρ  ό  ό ρ  ό  ώ
  

 
ᾀ. 

Now by using the condition (20), it is observed that π, which means it is a negative definite. 

Therefore, the AEP is globally asymptotically stable.             ƴ 

Theorem (5): Assume that the TPFEP is locally asymptotically stable, then all the trajectories of 

the system (2) starting from points belong to the sub-region of ᴙ , which satisfies the following 

sufficient conditions, approach asymptotically to TPFEP. 

Ӷ
ρ,                    (21a) 

Ӷ
τρ

 
 ,                 (21b) 

π
 

 ᾀ.                                      (21c) 

where the symbols – and –Ӷ for Ὥ ρȟςȟσȟτ are given in Eqs. (9) and (11a) respectively. 

Proof. Define the real valued function  

ὔ ὼȟώȟᾀ  ό ὼ ὼӶὼӶÌÎ
Ӷ

ώ ώ ώÌÎ
 

 
ᾀ.  

Clearly the function ὔ ὼȟώȟᾀ  is a positive definite function that is ὔ ὼӶȟώȟπ π , while 

ὔ ὼȟώȟᾀ π , for all values in the region ὼȟώȟᾀᶰᴙ ȡὼ πȟώ πȟᾀ πȠ ὼȟώȟᾀ



14 

FIRAS HUSSEAN MAGHOOL, RAID KAMEL NAJI  

ὼӶȟώȟπ . Then for any initial point ὼȟώȟᾀ that belongs to the sub-region satisfying the above 

condition, it is obtained that: 

Ὠὔ

Ὠὸ
 ό ὼ ὼӶ ὼ ὼӶ

ό ώ ώ   

––Ӷ

ώ ώ

––

όώ  ὼ ὼӶ

––Ӷ–

όώᾀ

–Ӷ–

ώ ώ
ό ὼ ὼӶ

––Ӷ–

όόὼὼӶὼ ὼӶ

––Ӷ–

όό ᾀὼӶ

–Ӷ–

όᾀ

–
  

όώᾀ

–

όό

ό
ᾀ

 

Further computation gives: 

Ὠὔ

Ὠὸ
 ό ρ

όώ ρ ὼӶ

–Ӷ
ὼ ὼӶ  ό ώ ώ                              

 ό
ό

––Ӷ

ρ

––

ρ

––Ӷ–

όὼὼӶ

––Ӷ–
ὼ ὼӶώ ώ

όό

ό

ό όώ

–Ӷ
όώᾀ  ό ώ ώ

 

Consequently, using the conditions (21a) and (21b) yield that: 

 
 ό ρ

 
ὼ ὼӶ ώ ώ                       

 
όώᾀ  ό ώ ώ Ȣ

 

 Accordingly, with the help of condition (21c), it is observed that  is negative definite and 

hence all the trajectories stating from points satisfy the given conditions approach asymptotically 

to TPFEP.                                               ƴ 

Theorem (6): Assume that the CEP is locally asymptotically stable, then all the trajectories of the 

system (2) starting from points belong to the sub-region of ᴙ  , which satisfy the following 

sufficient conditions, approach asymptotically to CEP. 

 ή ή ή ,                                      (22a) 

 ή ή ,                                          (22b) 

 ή ή ,                                      (22c) 

ᶻ ᶻ

ᶻ ᶻ
ρ,                                      (22d)     
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ςή ώ ώᶻ ή  ὼ ὼᶻ ή ώ ώᶻ ,              (22e) 

ᾀ ᾀᶻ ή  ώ ώᶻ ᾀ ᾀᶻ ,                         (22f) 

where the symbols ήȟὭȟὮ ρȟςȟσ are given in the proof. 

Proof: Consider the following real valued function: 

 ὔ ὼȟώȟᾀ ὼ ὼᶻ ὼᶻÌÎᶻ ώ ώᶻ ώᶻÌÎᶻ ᾀ ᾀᶻ ᾀᶻÌÎᶻ   

Clearly the function ὔ  is a positive definite function, that is ὔ ὼᶻȟώᶻȟᾀᶻ π , while 

ὔ ὼȟώȟᾀ π , for all values in the region ὼȟώȟᾀᶰᴙ ȡὼ πȟώ πȟᾀ πȠ ὼȟώȟᾀ

ὼᶻȟώᶻȟᾀᶻ . Thus after some algebraic manipulation it is obtain that:   

Ὠὔ

Ὠὸ

ή

ς
ὼ ὼᶻ ή ὼ ὼᶻ ώ ώᶻ

ή

ς
ώ ώᶻ ςή ώ ώᶻ

ή ὼ ὼᶻ ᾀ ᾀᶻ ή ώ ώᶻ ᾀ ᾀᶻ ᾀ ᾀᶻ ȟ
 

Where  

ή ρ
ᶻ ᶻ

ᶻ

, ή
ᶻ ᶻ

ᶻ

, ή
ᶻ

ᶻ

, 

ή
ᶻ

ᶻ

ᶻ ᶻ
, ή

ᶻ ᶻ

ᶻ ᶻ

ᶻ

ᶻ

. 

Consequently, using the conditions (22a)-(22d) gives 

 

ή  ὼ ὼᶻ ή ώ ώᶻ ςή ώ ώᶻ  

ή  ώ ώᶻ ᾀ ᾀᶻ ᾀ ᾀᶻ 

ή  ὼ ὼᶻ ᾀ ᾀᶻ Ȣ

 

Clearly, with the help of conditions (22e), and (22f), it is observed that  is negative definite 

and hence all the trajectories stating from points satisfy the given conditions approach 

asymptotically to CEP. 

 

6. BIFURCATION ANALYSIS  

In this section, an investigation of the effect of varying the values of the parameters on the system's 

dynamical behavior (2) is carried out using Sotomayorôs theorem for local bifurcation. Recall that, 
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the non-hyperbolic equilibrium point of the dynamical system is a necessary but not sufficient 

condition for a bifurcation to occur. Therefore, the parameter that makes the equilibrium point a 

non-hyperbolic point is chosen as a candidate bifurcation parameter. 

Rewrite the system (2) in the form  

Ὂὢȟὢ ὼȟώȟᾀ ȟὊ ὼὪȟώὪȟᾀὪ .                (23) 

Also, the second directional derivative of the right hand side of the system (2) can be determined 

as: 

ὈὊὢȟ‘ ὡȟὡ Ὠ ,              (24)        

where ὡ ύȟύȟύ  be any non-zero vector and ‘ is any parameter, with 

Ὠ ς ύ ς  ύύ ς  ύύ

ς
   
 ύύ ς ύ ς ύ

,  

Ὠ ς ύ ς  ύύ ς  ύύ

ς ύύ ς ύ ς ύ
,       

Ὠ ς
όόᾀώσ όώ

–
ύ ς

ό ρ όώ

–
 ύύ  

According to the above calculation, the following theorems investigate the possibility of 

occurrence of local bifurcation in the system (2). 

Theorem (7): Assume that the following condition holds, then the system (2) at the AEP undergoes 

a transcritical bifurcation when the parameter ό passes through the value όᶻ .  

 ρ ό,                                                             (25) 

Proof: The Jacobian matrix of the system (2) at Ὡȟόᶻ  can be written as:  

ὐ ὐὩȟόᶻ
ρ ό π

π π π
π π ό

, 

Then the matrix ὐ have two eigenvalues with negative real parts, and the third one is zero, say 
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‗ ᶻ π. Hence Ὡ is non-hyperbolic point.   

Let  ʃ ʃ ȟʃ ȟʃ  be the eigenvector corresponding to the eigenvalue ‗ ᶻ π. Thus, 

ὐʃ π , gives that ʃ „ʃ ȟʃ ȟπ  , where „ ό ȟ  and ʃ π  any real 

number. 

Now, let  ɭ ɾ ȟɾ ȟɾ   represents the eigenvector corresponding to the eigenvalue 

‗ ᶻ π  of the matrix ὐ . Thus, ὐɭ π   gives that ɭ πȟɾ ȟπ  ,  where ɾ π 

any real number. Now, according to the Sotomoyarôs theorem, it is obtain that:  

 Ὂ ὢȟό πȟÙ ȟπ   Ὂ Ὡȟόᶻ πȟπ ȟπ . 

Therefore, ɭ Ὂ Ὡȟόᶻ π, hence the system (2) has no saddle-node bifurcation. Moreover, 

since  

 ὈὊ ὢȟό
π π π
π ρ π
π π π

  ὈὊ Ὡȟόᶻʃ πȟʃ ȟπ . 

Then, ɭ ὈὊ Ὡȟόᶻʃ ʃ ɾ π. 

Also, by using equation (24), it is obtain that: 

 ὈὊὩȟόᶻ ʃȟʃ

ở

ờ

ς„ ʃ ςό „ʃ ςό ʃ

ς  „ʃ

π Ợ

Ỡ. 

Then, due to condition (25) it is observed that: 

 ɭ ὈὊὩȟόᶻ ʃȟʃ  „ʃ ɾ  π. 

Then a transcrtical bifurcation take place in the sense of Sotomayor.                 ƴ 

Theorem (8): Assume that the conditions (13a) and (13b) together with the following condition 

hold. Then the system (2) at the TPFEP undergoes a transcritical bifurcation when the parameter 

ό passes through the value όᶻ . 

 ρ όώ  „ π,                                            (26) 

where the symbol „ is given in the proof. 
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Proof: The Jacobian matrix of the system (2) at Ὡȟόᶻ  can be written as:  

ὐ ὐὩȟόᶻ
ὦρρ ὦρς ὦρσ
ὦςρ π ὦςσ
π π π

, 

where ὦȟὭ ρȟς ὥὲὨ Ὦ ρȟςȟσ are given in Eq. (11a). Clearly, Ὡ becomes a non-hyperbolic 

point at ό όᶻ , due to existence of zero eigenvalue, say ‗ ᶻ π , while the other two 

eigenvalues ‗  , and ‗   are given in Eq. (12) and having negative real parts under the 

conditions (13a) and (13b). 

Let  ʃ ʃ ȟʃ ȟʃ  be the eigenvector corresponding to the eigenvalue ‗ ᶻ π . Thus, 

ὐʃ π, gives that ʃ „ʃ ȟ„ʃ ȟʃ , where  „ ȟ    „  , ʃ

π any real number. 

Now, let  ɭ ɾ ȟɾ ȟɾ   represents the eigenvector corresponding to the eigenvalue 

‗ ᶻ π of the matrix ὐ. Thus, ὐɭ π  gives that ɭ πȟπȟɾ , where ɾ π any 

real number. Now, since:  

 Ὂ ὢȟό πȟπ ȟÚ  ᶅ Ὂ Ὡȟόᶻ πȟπ ȟπ . 

Therefore, ɭ Ὂ Ὡȟόᶻ π, hence the system (2) has no saddle-node bifurcation. Moreover, 

since  

 ὈὊ ὢȟόᶻ
π π π
π π π
π π ρ

 ᶅ ὈὊ Ὡȟόᶻʃ πȟπȟʃ . 

Then, ɭ ὈὊ Ὡȟόᶻʃ ʃ ɾ π. 

Also, by using equation (24), it is obtain that: 

 ὈὊὩȟᶻ ʃȟʃ ὨӶ , 

Where 

ὨӶ ς
Ӷ Ӷ

„ʃ ς
Ӷ
 „„ʃ                     

ς
Ӷ
 „ʃ ς

   Ӷ
 „ʃ ς

Ӷ
„ʃ ς

Ӷ
ʃ

, 
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ὨӶ ς
Ӷ Ӷ

„ʃ ς
Ӷ
 „„ʃ                                     

ς
Ӷ
 „ʃ ς

Ӷ
„ʃ ς

Ӷ
ʃ

,       

ὨӶ ς  „ʃ . 

Then, using the conditions (26) yields:  

 ɭ ὈὊὩȟόᶻ ʃȟʃ  „ ʃ ɾ π.  

Hence a transcrtical bifurcation take place in the sense of Sotomayor.              ƴ 

Theorem (9): Assume that the conditions (16a), (16b), (16c), and (16e) together with the following 

condition hold. Then the system (2) at the CEP undergoes a saddle-node bifurcation when the 

parameter ό passes through the value  όᶻ ᶻ ᶻ ᶻ ᶻ
ᶻ ᶻ

ᶻ
ᶻ ᶻ

ᶻ ᶻ
ᶻ ᶻ ᶻ. 

     „ɾ Ὠ ᶻ  ɾ Ὠ ᶻ π,                          (27)                                        

Proof: The Jacobian matrix of the system (2) at CEP with ό όᶻ can be written as:  

ὐ ὐὩȟόᶻ
ὧ ὧ ὧ
ὧ ᶻ ὧ ὧ ᶻ

π ὧ π
, 

where ὧȟὭȟὮ ρȟςȟσ  with ὧ ᶻ ὧ όᶻ , and   ὧ ᶻ ὧ όᶻ . Direct computation shows 

that ὧὧ ᶻ ὧὧ ᶻ π, hence the determinant of the matrix ὐ is equal to zero. Therefore the 

matrix ὐ has a zero eigenvalue given by ‗ᶻ π, and hence the CEP is a non-hyperbolic point. 

Let  ʃ ʃ ȟʃ ȟʃ  be the eigenvector corresponding to the eigenvalue ‗ᶻ π. Thus, 

ὐʃ π , gives that ʃ „ʃ ȟπȟʃ  , where, „ π  due to condition (16c), and 

ʃ π is any real number. 

Now, let  ɭ ɾ ȟɾ ȟɾ   represents the eigenvector corresponding to the eigenvalue 

‗ᶻ π of the matrix ὐ. Thus, ὐɭ π, gives that ɭ „ɾ ȟɾ ȟ„ɾ , where  „

π  due condition (16a), and „ π  due to conditions (16a), (16b), and 

(16e) with   ɾ π be any real number. Moreover, it is observed that:   

 Ὂ ὢȟό πȟ  ȟπ   Ὂ Ὡȟόᶻ πȟ
ᶻ

ᶻ ᶻ
 ȟπ . 
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Therefore, ɭ Ὂ Ὡȟόᶻ
ᶻ

ᶻ ᶻ
ɾ π,  

Moreover, since  

 ὈὊὩȟόᶻ ʃȟʃ Ὠ ᶻ
, 

where  

Ὠ ᶻ ς
ᶻ ᶻ ᶻ

ᶻ ᶻ
„ʃ ς

ᶻ ᶻ

ᶻ ᶻ
„ ʃ ς

ᶻ ᶻ

ᶻ ᶻ
ʃ ,       

Ὠ ᶻ ς
ᶻ ᶻ ᶻ

ᶻ ᶻ
„ʃ ς

ᶻ ᶻ

ᶻ ᶻ
 „ ʃ ς

ᶻ ᶻ

ᶻ ᶻ
ʃ ,       

Ὠ ᶻ π. 

Therefore, using the condition (27), it is obtain that  

 ɭ ὈὊὩȟόᶻ ʃȟʃ „ɾ Ὠ ᶻ  ɾ Ὠ ᶻ π  

Then a saddle-node bifurcation take place in the sense of Sotomayor. 

 

7. HOPF BIFURCATION ANALYSIS 

In this section, the possibility of occurrence of the Hopf bifurcation is investigated. Recall 

that the three-dimensional dynamical system undergoes a Hopf bifurcation around an equilibrium 

point provided that the Jacobian matrix at that equilibrium point has one negative eigenvalue with 

two complex conjugate eigenvalues having real part ὙὩ‗ satisfies that ὙὩ‗ȿ π, and 

ὙὩ‗ȿ π (known as transversality condition), where — is a bifurcation parameter.   

Theorem (10): Assume that the conditions (16a)-(16d) and (16f) along with the following 

condition hold: 

ςόόώᶻᾀᶻ– –zᶻ ςόὼᶻώᶻ– –z –zᶻ ό ό– –zᶻ –ᶻ ρ όὼᶻ – ,z  (28a) 

ὃ όᶻ ὃ όᶻὃ όᶻ ,                               (28b) 

where ὃȠὭ ρȟςȟσ  are the coefficients of the characteristic equation (15). Then system (2) 

undergoes a Hopf bifurcation near the CEP as the parameter ό passes through the value όᶻ, 

where όᶻ ᶻ
ᶻ ᶻ

 , with ὧȠὭȟὮ ρȟςȟσ  are the elements of the Jacobian 
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matrix ὐ. 

Proof: According to the form of Ў ὃὃ ὃ given in equation (15), it is easy to verify that 

Ў π when ό όᶻ, where όᶻ π provided that the given conditions are satisfied. Therefore, 

it is obtain ὃ όᶻὃ όᶻ ὃ όᶻ. Consequently, the characteristic equation (15) at ό όᶻ 

becomes 

ὖ ‗ ‗ ὃ ‗ ὃ π,                          (29) 

where ὃ, and ὃ are positive due to the given conditions. Now direct computation gives that 

the equation (29) has the following roots   

‗ ὃ  and ‗ȟ Ὥὃ. 

Therefore, the first condition of the Hopf bifurcation that is represented by the existence of pure 

imaginary complex conjugate eigenvalues is satisfied when ό όᶻ. Now, in the neighborhood 

of όᶻ , the complex conjugate eigenvalues take the form ‗ȟ  ό Ὥ ό  . Hence 

substituting ‗  ό Ὥ ό  in equation (29), and then take the derivative with respect to 

the bifurcation parameter ό . After that compare the two sides of resulting equation and then 

equating their real and imaginary parts, we get  

ό  ό ‰ό  ό ɡό ȟ

‰ό  ό ό  ό ɜό ȟ
                       (30) 

where  

ό σ ό ςὃ ό  ό ὃ ό σ ό , 

‰ό φ ό  ό  ςὃ ό  ό , 

ɡό  ό ὃ ό ὃ ό  ό ὃ ό ὃ ό  ό , 

ɜό ς ό  ό ὃ ό ὃ ό  ό . 

Solving the linear system (30), we get  

 ό ȟ

  ό Ȣ                   
                                (31)  
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Hence, the transversality condition is satisfied provided that ɡόᶻόᶻ ɜόᶻ‰όᶻ π . 

Obviously, we have that  όᶻ π and  όᶻ ὃ όᶻ, then the coefficients of system (30) 

at ό όᶻ become:   

όᶻ ςὃ όᶻ, 

‰όᶻ ςὃ όᶻ ὃ όᶻ , 

ɡόᶻ ὃ όᶻ ὃ όᶻὃ όᶻ, 

ɜόᶻ ὃ όᶻ ὃ όᶻ.  

Therefore,  

ɡόᶻόᶻ ɜόᶻ‰όᶻ                                                                          

ςὃ όᶻ ὃ όᶻ ὃ όᶻὃ όᶻ ὃ όᶻὃ όᶻ Ȣ
 

Hence, ɡόᶻόᶻ ɜόᶻ‰όᶻ π  under the condition (28b), which gives  όᶻ π . 

Thus system (2) undergoes Hopf bifurcation at ό όᶻ.  

 

8. NUMERICAL SIMULATION  

In this section, the food chain system (2) is solved numerically using the hypothetical set of 

biologically feasible parameters values that given by (8). The objectives are to confirm the 

theoretical finding and understand the impact of varying the values of the parameters including the 

fear rates on the dynamical behavior of the system. The obtained numerical solution of the food 

chain system (2) is presented in different forms such as phase portrait, time sires, bifurcation 

diagrams, and Lyapunov exponentôs bifurcation diagram using Matlab version R2013a. The 

numerical trajectory of system (2) using the parameters set (8) with the initial point (0.8, 0.7, 0.6) 

are drawn in Figure (2). 
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Figure 2. The trajectory of system (2) using parameters set (8). (a) 3D Phase portrait 

represents strange attractor. (b) Time sires of the strange attractor. (c) Projection of the 

strange attractor in the ὼώplane. (d) Projection of the strange attractor in the ὼᾀplane. 

(e) Projection of the strange attractor in the ώᾀplane. 
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According to Figure (2), system (2) approaches asymptotically to a strange attractor that was drawn 

after removing the transient effect. Now, the effect of varying the parameter ό  in the range 

πȟρȢυ  on the dynamics of the system (2) is investigated numerically using the bifurcation 

diagram along with Lyapunov exponents bifurcation diagrams as shown in Figure (3).  

 

 

Figure 3. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. ό. 

(c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 

According to Figure (3), the bifurcation diagrams show clearly the existence of chaos for the range 

π όρ ρȢπυ . As the value of ό  increases so that ρȢπφ όρ τȢπχ , the chaotic dynamics 

transfer to periodic dynamic as shown in Figure 4(a-b) for typical value of ό, while the system 

(2) approaches asymptotically to a stable CEP for τȢπψ ό σχ as shown in the Figure 5(a-b) 

for a typical value of ό . Furthermore, for σψ ό  system (2) loses its persistence and 



25 

CHAOS IN THE FOOD CHAIN SYSTEM WITH FEAR 

approaches asymptotically to TPFEP as shown in Figure 6(a-b) for typical value of ό. 

 

 

Figure 4. The trajectory of system (2) for the data (8) with ό ρȢς . (a) 3D periodic 

attractor. (b) Time series of the periodic attractor in (a).  

 

 

Figure 5. The trajectory of system (2) for the data (8) with ό υ. (a) Asymptotically 

stable CEP that given by πȢφȟπȢρȟπȢςχ. (b) Time series of the periodic attractor in (a).  

The effect of varying the parameter ό in the range πȢψȟς on the dynamics of the system (2) 

is investigated numerically using the bifurcation diagram along with Lyapunov exponents 

bifurcation diagrams as shown in Figure (6).  
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Figure 6. The trajectory of system (2) for the data (8) with ό τυ. (a) Asymptotically 

stable TPFEP that given by πȢρȟπȢπωȟπ. (b) Time series of the periodic attractor in (a).  

 

 

Figure 7. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. ό. 

(c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 
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Clearly, system (2) has complex dynamics including chaos as shown in Figure (7). It is 

observed that for the range πȢπρ ό πȢτ the system approaches asymptotically to CEP, 

however for the range πȢτρ ό πȢψ, the system (2) has a periodic attractor, see Figures (8) 

and (9) for typical values of ό. Further, an increase for the value of ό in the range πȢψ

ό ω  enters the system (2) to the complex dynamics region. However, for ω ό , the 

system (2) approaches asymptotically to AEP.  

 

Figure 8. The trajectory of system (2) for the data (8) with ό πȢσ. (a) Asymptotically 

stable CEP that given by πȢωȟπȢρȟπȢχψ. (b) Time series of the periodic attractor in (a).  

 

Figure 9. The trajectory of system (2) for the data (8) with ό πȢυ . (a) 3D periodic 

attractor. (b) Time series of the periodic attractor in (a).  

The influence of the varying ό in the range πȟς, is presented in the bifurcation diagrams given 

by Figure (10). The trajectory of system (2) for the parameters set (8) with the ό ρȢυ  is 

presented in Figure (11) too. 
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Figure 10. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 

 

Figure 11. The trajectory of system (2) for the data (8) with ό ρȢυ. (a) Strange attractor. 

(b) Time series of the strange attractor in (a).  
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Obviously, Figures (10) and (11) show the presence of complex dynamics including chaos for the 

wide range of the parameter ό. The existence of a positive Lyapunov exponent throughout the 

range ensures the existence of chaos too. 

Moreover, the impact of varying other parameters of the system (2) on its dynamical behavior is 

also investigated using bifurcation diagrams and Lyapunov exponents bifurcation diagrams, and 

the obtained results are presented in Figures (12)-(17) for the parameters όȟόȟόȟόȟό, and 

ό respectively. 

 

 

 

Figure 12. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 
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Figure 13. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 
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Figure 14. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 

 

 

Figure 15. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 
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Figure 16. Bifurcation diagrams as a function of ό. (a) Max (x) vs. ό. (b) Max (y) vs. 

ό. (c) Max (z) vs. ό. (d) Lyapunov exponents vs. ό. 

 

 

 


