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Abstract. In this paper, we propose another extension of the basic prey-predators model. We incorporate the

spatial behavior of the fish population and a term of regional control to provide a realistic description of the

prey effects of two predators. We present a study of regional optimal control strategies of a spatiotemporal prey-

predator model. Based on an existing model, we add the Laplacian to describe the spatial mobility of its individual.

Our main objective is to characterize two harvesting strategies of control, which allow users to increase prey

density and decrease the density of predators and super predators to maintain a differential chain system and

ensure sustainability. Firstly, by applying the semigroup theory, we investigate the existence of the solution and

estimations of the unique strong global solution for the controlled system. Secondly, we prove the existence of a

pair of controls and characterize the controls in terms of state and assistant functions according to Pontryagin’s

maximum principle. Finally, some numerical simulations for several cases to verify the theoretical analysis are

obtained. Also, the results show the effectiveness of the controls if the harvesting strategies of the regional controls

are applied simultaneously.
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1. INTRODUCTION

In recent years, the application of control in the field of fishing has become important. This is

to preserve the natural and animal wealth that have seen a strong and continuous destruction due

to human activities and technological developments. Due to their economic importance, these

activities have increased over years. Mathematical modeling is a powerful tool that makes it

easier for those in charge to choose the right strategies and also to test the effectiveness of these

strategies before adopting any policies or taking any measures. In order to model this situation,

modelling with prey predator system is the most suitable and most used. In the population

dynamics of a prey predator system, the predator plays the role of an individual reproducing by

feeding on a prey; however, the survival of the predators depends on the survival of the prey; the

absence of the prey leads to the death and disappearance of the predators. Predator-prey systems

present much different dynamical behavior such as steady states, oscillations and bifurcations.

Recently, mathematicians and ecologists [3, 4, 5] have been studying the predator-prey system

in population dynamics. The Lotka Volterra Model [6]-[7] is the basic and classical model.

In this model there are two nonlinear differential equations, each expressing the progression

of each species as well as the interaction between them. This model has been adopted and

developed in several works, for example in [9] the authors have developed this model in a

discrete case using the difference equations; in [8] the authors have generalized this model

for several species; in [10] the authors have introduced an extension of this model taking into

account the effect of the spatial factor by adding terms that describe the movement of fish

populations. There are mainly three types of functional responses: Holling types I, II, and

III, all originally suggested by Holling [6]. Type I occurs when there is a maximum linear

situation in the density of prey consumed for each predator as the prey density decreases. Type

II product happens when the response occurs at a decreasing rate toward a high value. Finally,

type III occurs, when the response is sigmoid again approaching an upper asymptote. Many

researchers have studied the Holling types of functional responses (see [11]).
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RELATED WORKS

There are several works that have studied the dynamics of fish populations based on the lotka

volterra model. For bioeconomic model see [15]. In [15] Kar and Chakraborty examined the

dynamical behavior of a biological economic prey predator model where prey population is

harvested using differential algebraic and bifurcation theory. In [14] the authors gave a mathe-

matical analysis of a multi-site bio-economic fishing model, with the objective of maximizing

the profit of the human-fisherman respecting the biological equilibrium. The same is true for

Mchich et al. [17] where the authors have constructed a model of bioeconomic but generalized

several areas where populations are mobilized; their mathematical study has allowed them to

optimize fishing effort spatial distribution and the specification of a set of effective management

measures. Several models have been established in a space and continous time, using predator-

prey models based on reaction-diffusion [13, 18]. The 1-D spatial-temporal dynamics of a prey-

predator system with Holling type-II functional response of the predator and logistic growth of

the prey have been studied numerically by [13]. In [18], the author considered a ratio-dependent

spatially expanded food chain model. He has given the spatial pattern formation via numeri-

cal simulation based on Hopf-bifurcation analysis. Thus, a complex reproduction of the model

was observed by the dynamics of the system. Regarding the predator-prey models with spatio-

temporal dynamic, many scientists concentrated on two dimensional maps (see [19, 20, 21]). In

[19] the authors considered a predator-prey system that is discrete both in spatial and temporal

and supposed that the prey was affected by a weak Allee effect, where the predators dynamics

incorporate an intraspecific competition. In addition, they have considered a neighbourhood of

the Turing-Hopf bifurcation in their system. In [12] the researchers examined the spatial pattern

formation of a diffuse prey-predator system with ratio dependent functional response implicat-

ing the impact of intra-species competition among predators between two dimensional space.

In [13] the researchers have given a generalized coupled map network model of ecosystem dy-

namics. Furthermore, they examined the spatio-temporal response of a prey-predator map, a

model of host-parasitoid interactions, and competition between two species. More recently, a

considerable amount of work has been done on studying prey predator model. For example,

Weigang Zhou et al. [22] addressed the problem of bifurcation stabilization for a fractional
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predator- prey system with delay under disparate orders using a technique of hybrid control.

In [24] the authors have performed a bifurcation control theoretical exploration predator-prey

model of delayed fractional order according to the improved control feedback approach. In [23]

the authors have discussed a theoretical analysis of bifurcation for a delayed fractional-order

predator prey system considering different delay.

STATEMENT OF PROBLEM

Many research studies have used the idea of regional control, a concept that was introduced

and further developed by El Jai et al. (see [40] ). However, to our knowledge, this approach

has not yet been implemented in fish-population situations; its deliberations are limited to the

theoretical concepts or physical situations. The present paper is set in this general background.

The goal of this work is to investigate a spatiotemporal predator-prey model. We introduce

a distributed regional control problem based on the variational method. We further provide a

novel control application and present a structure for analytical spatial control. A multi objective

optimization method is given that we take two harvesting regional controls.

The purpose of both of these two regional optimal control strategies is to have fishing fleets

while fishing to ensure good catchability in the considered area and augmenting the function of

harvesting to harvest super predators and the predators, which menace the prey, for preserving

the environment and food chain.

The purpose of both of these two regional optimal control strategies is to optimize the harvest

of fishing fleets by harvesting super predators and predators that threaten the preys so that the

environment and food chain would be preserved. Our work is original not only because it

considers the spatiotemporal character, but also in the assumption that our control strategy is

only restricted to a sub-region ω of Ω. The choice of the sub-region ω is shown by a concern

for cost optimization and by ω to be a geographically easy area to adopt as a spatial support for

a possible maneuver or control.

We use a variational approach to solves the problem, i.e., we develop an adequate dual sys-

tem and our optimal control is the feedback of the correspondent adjoint state. Then we present

numerical simulations based on Forward/Backward Sweep Method (FSBM) iterative schema, a
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numerical way by which the optimality system is solved [25]. Numerical simulations demon-

strate that the control impact is efficient if the two catchability regional strategies of control are

employed concurrently. Further models of problems of optimal control and population dynam-

ics can be seen in [26], [27], [28], [38], [37] and [41].

This paper is organized as follows : Section 2, focuses on the basic mathematical model

and the associated optimal problem of control. In Section 3, we apply the semi-group theo-

retical results and certain known theorems of existence found in [34, 39] to deduce existence

and uniqueness of a positive strong global solution of our system. First, we attach a problem

that is truncated and whose existence can be established. A local solution of our system is ob-

tained from the solution of the truncated problem. In addition, we illustrate the boundedness

of the solution on its maximum definition set; therefore, it could be extended over the entire

domain [0, T ]×Ω. Section 4 is dedicated to the optimal control existence for our problem.

In the following section, necessary optimality conditions are deduced. The dual system and

the transversality conditions to obtain a characterization of optimal control are written. The

numerical simulations corresponding to our problem of control are provided in Section 6. Our

conclusion is presented in Section 7.

2. THE BASIC MATHEMATICAL MODEL

In this section, based on the article developed by El Bhih et al [26] and as a natural con-

tinuation of this work, we will present the basic model without control. This model describes

the population density evolution of the fish population and is divided into three compartments:

population of prey x(t), population of predator y(t) and population of super predator z(t) at time

t. More precisely, we have the following system of differential equations

(1)



dx
dt

= rx
(

1− x
K

)
− αxy

a+ x
−m

x2z
b+ x2 ,

dy
dt

=
βxy
a+ x

−d1y− ny2z
b+ y2 −h(y),

dz
dt

= n1
y2z

b+ y2 +m1
x2z

b+ x2 −d2z−h(z),

with initial conditions x(0)≥ 0,y(0)≥ 0,z(0)≥ 0.
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For the density of the prey x(t): We assume that the prey population grows logically with

carrying capacity K and constant growth rate r. This population decreases as a result of inter-

actions with predators and super predators. Moreover, the prey population is a favorite food of

predator population with a Holling type II functional response ( also called Michaelis-Menten

functional response) denoted by
αxy
a+ x

, and the super predator population feeds on the prey

population with a Holling type III functional response which is denoted by
x2z

b+ x2 .

For the density of predator y(t) : This population increases by feeding on prey population

which represent with a Holling type II. On the other hand, the predator is predated by super

predator population with Holling type III functional response which is denoted by
x2z

b+ x2 and

decrease by natural death rate d1. The term h(y) denoted the harvesting function.

For the density of the super predators z(t): This population grows as result of predating

the prey, represented by m1
x2z

b+ x2 and predating the predator with the term m1
x2z

b+ x2 . This

population decreases due the natural death, with the rate d2, and by harvesting h(z).

We assume that the harvesting functions, h(y) and h(z), are given by h(y) = qEy and

h(z) = qEz. Which means that these functions are associated with predator and super predator

populations with same catchability coefficient q [1], and E representing the fishing effort rate

used to harvest the predator and super predator population. Note that the model (1), with only

one harvest function on the super predator, was studied by Roy et al. [30].

The parameters used in this model are summarized in the follow table.
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TABLE 1. List of all parameters of system (1)

Parameter Physical interpretation

r Intrinsic growth rate of prey.

K Environmental carrying capacity of the prey.

α Capture rate of the predator to prey.

m Capture rate of the super predator to prey.

n Capture rate of the super predator to predator.

a,b1,b2 Half-saturation constants.

d1 Natural death rate of predator.

d2 Natural death rate of super predator.

β Predator consumption rate on prey.

n1 Super predator consumption rate on predator.

Modeling fish-populations should take in consideration their mobility for mating, looking for

food or seeking shelter [2]. Therefore, it is crucial to take spatial structuring into modeling

fish-populations. In fact, spatial factor in several papers (see for example [29, 24]) . In order to

describe the mobility of the fish-population, we introduce the ordinary spatial diffusion term in

each compartment x,y and z.

Let Ω be a fixed and bounded domain in R2 with smooth boundary ∂Ω and η is the outward

unit normal vector on the boundary. The time belongs to a finite interval [0,T ], T > 0, while X

varies in a bounded domain Ω. Therefore, we have the following model

∂x
∂ t
−α1∆x = rx

(
1− x

K

)
− αxy

a+ x
−m

x2z
b+ x2 ,

∂y
∂ t
−α2∆y =

βxy
a+ x

−d1y− ny2z
b+ y2 −qEy

∂ z
∂ t
−α3∆z = n1

y2z
b+ y2 +m1

x2z
b+ x2 −d2z−qEz

, (t,X) ∈ Q = [0,T ]×Ω

The parameters α1,α2,and α3 are positive coefficients of diffusion’s of the prey population,

predator population and super predator population, respectively. As we are dealing with pop-

ulation densities of species, we assume that initial condition are non-negative. Moreover, we
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assume that all parameters of model are also are non-negative.

We assume that the prey is in competition with each other. However, the two predators are not

competing. The initial conditions and flux boundary conditions are given by

∂x
∂η

=
∂y
∂η

=
∂ z
∂η

= 0, (t,X) ∈∑ = [0,T ]×∂Ω

and

x(0,X) = x0, y(0,X) = y0 and z(0,X) = z0, X ∈Ω

The main reason for our choice of no-flux boundary conditions is that we assume that fish

population can enter or leave through the habitat boundary, i.e. we assume that the environment

is isolated. We are also concerned with the self-organization of pattern, zero-flux conditions

that does not involve any external input [30].

The model with controls. In this part, the strategy chosen is to use a regional fishing control

effort that targets the sources area of the interaction of the species. In addition, we apply a

harvesting function strategy in order to ensure environmental sustainability and maintain a dif-

ferential chain system. Therefore, we introduce two regional control strategies χω(X)u1 (t,X)

and χω(X)u2 (t,X), depended on time t ∈ [0,T ] and in the location X ∈ ω ⊂Ω (χω is the char-

acteristic function of w, the introduction of the characteristic function implies that the controls

u1, u2 acts only on the small area ω ⊂Ω ).

The regional controls χω(X)u1 (t,X), χω(X)(u2 (t,X)) represent the increase effort on catcha-

bility q to harvest the predators population (super predator population), while to minimize the

number of predators (super predators) y ( z) respectively, but with focusing on preservation of

predators and super predators populations, which threaten the prey x overtime to maintain a

differential chain system and ensure environmental sustainability.

With the new changes, our controlled system becomes as follows

(2)



∂x
∂ t
−α1∆x = rx

(
1− x

K

)
− αxy

a+ x
−m

x2z
b+ x2 ,

∂y
∂ t
−α2∆y =

βxy
a+ x

−d1y− ny2z
b+ y2 −qEχω(X)u1 (t,X)y,

∂ z
∂ t
−α3∆z = n1

y2z
b+ y2 +m1

x2z
b+ x2 −d2z−qEχω(X)u2 (t,X)z,

(t,X) ∈ Q
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with the initial conditions and no-flux boundary conditions are given by

(3)
∂x
∂η

=
∂y
∂η

=
∂ z
∂η

= 0, (t,X) ∈∑

(4) x(0,X) = x0, y(0,X) = y0 and z(0,X) = z0, X ∈Ω.

We define our objective functional as

J ((x,y,z) ;(u1,u2)) =
∫ T

0

∫
Ω

ρ1χω(X)x(t,X)+ρ2χω(X)h(y(t,X))+ρ3χω(X)h(z(t,X))dxdt(5)

− η1

2
‖u1‖L2([0,T ]×ω)−

η2

2
‖u2‖L2([0,T ]×ω).

subject to the state system given by (2−4).

The objective is to minimize the number of predators y and the super predators z by maxi-

mizing the harvesting functions h(y) and h(z), increasing the number of prey in all space Ω, and

minimizing the cost of implementing the controls by using possible minimal control variables

ui for i = 1,2. The constants ρ1, ρ2 , η1, η2 > 0 are weights representing the relative importance

of each term in the objective functional J.

The square of the control variables ‖u1‖2
L2([0,T ]×ω) and ‖u2‖2

L2([0,T ]×ω) reflects the severity of

the side effects of the mechanisms of fishing effort.

Our objective is to find control functions such that

J ((x∗,y∗,z∗) ;(u∗1,u
∗
2)) = max{J ((x,y,z) ;(u1,u2)) ,(u1,u2) ∈Uad} ,

subject to system (2−4),in the control set is defined as

(6) Uad = {(u1,u2) ∈ L∞([0,T ]×ω)×L∞([0,T ]×ω) / 0≤ u1 ≤ umax
1 ≤ 1 and 0≤ u2 ≤ umax

2 ≤ 1}

3. EXISTENCE OF GLOBAL SOLUTION

In this section, we investigate the existence of a strong global solution, positivity and bound-

edness of solutions of problem (2). Since this model describes the fish-population, it should

remain non-negative and bounded.
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Let ỹ = (y1,y2,y3) = (x,y,z), y0 = (y0
1,y

0
2,y

0
3) = (x0,y0,z0) and H(Ω) = (L2(Ω))3.

We define also A the linear operator as follow

(7)
A : D(A)⊂ H (Ω) −→ H (Ω)

Aỹ −→ (∆y1,∆y2,∆y3),

with

(8) D(A) =
{

ỹ = (y1,y2,y3) ∈
(
H2 (Ω)

)3
,
∂y1

∂η
=

∂y2

∂η
=

∂y3

∂η
= 0, a.e x ∈ ∂Ω

}
If we consider the function f (t, ỹ(t)) = ( f1(t, ỹ(t)), f2(t, ỹ(t)), f3(t, ỹ(t))) with



f1 (t, ỹ(t)) = ry1

(
1− y1

k

)
− αy1y2

a+ y1
−m

y2
1y3

b+ y2
1

f2 (t, ỹ(t)) =
βy1y2

a+ y1
−d1y2−n

y2
2y3

b+ y2
2
−qEχω(X)u1y2

f3 (t, ỹ(t)) = n1
y2

2y3

b+ y2
2
+m1

y2
1y3

b+ y2
1
−d2y3−qEχω(X)u2y3

and N = y0
1 + y0

2 + y0
3.

Now let h : [0,T ]×D( f ) 7−→ (L2(Ω))3 defined by h = (h1,h2,h3) , where

D( f ) =
{

ỹ ∈
(
L2 (Ω)

)3
, f (t, ỹ(·)) ∈

(
L2 (Ω)

)3
, ∀t ∈ [0,T ]

}
.

and for all ỹ ∈ D( f ), for all t ∈ [0,T ] , and a.e x ∈Ω

h(t, ỹ)(x) = (h1(t, ỹ),h2(t, ỹ),h3(t, ỹ))(x) = f (t,x, ỹ(t))

Then the problem (2) can be rewritten in the space H(Ω) in the following form

(9)

 ỹ(0) = ỹ0 ∈ D(A)
∂ ỹ
∂ t

= Aỹ+ f (t, ỹ(t)) , t ∈ [0,T ] .

We denote by W 1,2 ([0,T ] ,H (Ω)) the space of all absoletely continous functions ỹ :

[0,T ] 7→H (Ω) having the property that
∂ ỹ
∂ t
∈ L2 (0,T,H (Ω)) and L(T,Ω) = L2 (0,T,H2 (Ω)

)
∩

L∞
(
0,T,H1 (Ω)

)
.

Theorem 3.1. Let Ω be a bounded domain from R2, with the boundary smooth enough y0
i ≥ 0

on Ω ( f or i = 1,2,3) ,

r,α,m,q,η ,β ,η1,m1,a,b ≥ 0, (u1,u2) ∈ (Uad)
2 the problem (2−4) has a unique (global)
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strong solution

ỹ ∈W 1,2 ([0,T ] ,H (Ω)) such that yi ∈ L(T,Ω)∩L∞ (Ω) ( f or i = 1,2,3) . In addition y1,y2 and

y3 are non negative and bounded uniformly in L∞(Q). Furthermore there exists C > 0 (inde-

pendent of (u1,u2)) for all t ∈ [0,T ]

(10)
∥∥∥∥∂yi

∂ t

∥∥∥∥
L2(Ω)

+‖yi‖L2(0,T,H2(Ω)) +‖yi‖H1(Ω)+‖yi‖L∞(Q) ≤C, f or i = 1,2,3

Proof. Notice that the function f (t,y) defined in (9) is not Lipschitz continuous with respect to

y, uniformly for t ∈ [0,T ]. Therefore, we cannot apply Theorem (7.1) (see appendix) for our

problem directly. To overcome this problem, we consider using the well-known technique of

truncation function before making the use of Theorem (7.1). The proof of this theorem is rather

long; thus, we split it into the following two steps.

Step 1: This step studies the local existence of positive solutions to system (2-4 ) in view of

Theorem (7.1) (see appendix). We use a truncation procedure for h. For a fixed positive integer

k > 0, let us define the function sets D1 = {z/z > k}, D2 = {z/ |z|< k} ,D3 = {z/z <−k} and

consider the following auxiliary problem:
∂ ỹk

∂ t
= Aỹk + f k (t, ỹk (x, t)

)
, in Q,

ỹk (x,0) = y0, in Ω ,

where f k (t, ỹk)= ( f k
1
(
t, ỹk) , f k

2
(
t, ỹk) , f k

3
(
t, ỹk)). Here, for each index i, f k

i
(
t, ỹk) are defined

as follows:

f k
i

(
t, ỹk
)
= fi

(
t, [y1]Ds1

, [y2]Ds2
, [y3]Ds3

)
where [yi]Dsi

means that yi ∈ Dsi, and

[yi]Dsi
=


k i f si = 1,

yi i f si = 2,

−k i f si = 3.

As the operator A defined in (7-8) is dissipating, self-adjoint and generates a C0-semi-group of

contractions on H (Ω) [34], it is clear that function f k (t, ỹk) becomes Lipschitz continuous in
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ỹk uniformly with respect to t ∈ [0,T ]. Therefore, theorem (7.1) (see appendix) assures problem

(2−4) and admits a unique strong solution ỹk ∈W 1,2 ([0,T ] ,H (Ω)) with

(11) yk
1, yk

2, yk
3 ∈ L2 (0,T ;H2(Ω)

)
Let us now prove the boundedness of ỹk on Q. Indeed, if we denote

Mk = max
{∥∥∥ f k

1

∥∥∥
L∞(Q)

,
∥∥y0

1
∥∥

L∞(Ω)

}
and {S (t) , t ≥ 0} is the C0−semi-group generated by the operator B : D(B)⊂ L2(Ω)−→ L2(Ω)

where

Byk
1 = λ1∆yk

1

and

D(B) =
{

yk
1 ∈ H2(Ω),

∂yk
1

∂η
= 0, a.e ∂Ω

}
.

it is obvious that function Y k
1 (t,X) = yk

1−Mkt−
∥∥y0

1

∥∥
L∞(Ω)

satisfies the Cauchy problem
∂Y k

1
∂ t (t,X) = λ1∆Y k

1 + f k
1
(
t, ỹk (t)

)
−Mk t ∈ [0,T ]

Y k
1 (0,x) = y0

1−
∥∥y0

1

∥∥
L∞(Ω)

The corresponding strong solution is

Y k
1 (t) = S (t)

(
y0

1−
∥∥y0

1
∥∥

L∞(Ω)

)
+
∫ t

0
S (t− s)

(
f k
1

(
s, ỹk (s)

)
−Mk

)
ds,

Since y0
1−
∥∥y0

1

∥∥
L∞(Ω)

≤ 0 and f k
1
(
t, ỹk (t)

)
−Mk ≤ 0, it follows that Y k

1 (t,X)≤ 0, ∀(t,x) ∈ Q.

Moreover the function W k
1 (t,X) = yk

1−Mkt−
∥∥y0

1

∥∥
L∞(Ω)

satisfies the Cauchy problem
∂W k

1
∂ t (t,X) = λ1∆W k

1 + f k
1
(
t, ỹk (t)

)
+Mk t ∈ [0,T ]

W k
1 (0,X) = y0

1−
∥∥y0

1

∥∥
L∞(Ω)

The corresponding strong solution is

W k
1 (t) = S (t)

(
y0

1 +
∥∥y0

1
∥∥

L∞(Ω)

)
+
∫ t

0
S (t− s)

(
f k
1

(
s, ỹk (s)

)
+Mk

)
ds,

Since y0
1 +
∥∥y0

1

∥∥
L∞(Ω)

≥ 0 and f k
1
(
t, ỹk (t)

)
+Mk ≥ 0, it follows that W k

1 (t,x)≥ 0, ∀(t,x) ∈ Q.

Then ∣∣∣yk
1 (t,x)

∣∣∣≤Mkt +
∥∥y0

1
∥∥

L∞(Ω)
, ∀(t,x) ∈ Q
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and analogously

(12)
∣∣∣yk

i (t,x)
∣∣∣≤Mkt +

∥∥y0
i
∥∥

L∞(Ω)
, ∀(t,x) ∈ Q for i = 2,3,

Thus we have proved that

(13) yk
i ∈ L∞ (Q) (∀(t,x) ∈ Q) for i = 1,2,3.

By the first equation of (2) one obtains

∫ t

0

∫
Ω

∣∣∣∣∂yk
1

∂ s

∣∣∣∣2 dsdx+α
2
1

∫ t

0

∫
Ω

∣∣∣∆yk
1

∣∣∣2 dsdx−2α1

∫ t

0

∫
Ω

∂yk
1

∂ s
∆yk

1dsdx

=
∫ t

0

∫
Ω

(
ryk

1

(
1−

yk
1

K

)
−

αyk
1yk

2

a+ yk
1
−m

(yk
1)

2yk
3

b+(yk
1)

2

)2

dsdx.

Using the regularity of yk
1 and the Green’s formula, we can write

2
∫

Ω

∂yk
1

∂ s
∆yk

1dsdx =− ∂

∂ s

(∫
Ω

∣∣∣∆yk
1

∣∣∣2 dx
)

ds =−
∫

Ω

∣∣∣∇yk
1

∣∣∣2 dx+
∫

Ω

∣∣∇y0
1
∣∣2 dx

Then

∫ t

0

∫
Ω

∣∣∣∣∂yk
1

∂ s

∣∣∣∣2 dsdx+α
2
1

∫ t

0

∫
Ω

∣∣∣∆yk
1

∣∣∣2 dsdx+2α1

∫
Ω

∣∣∣∇yk
1

∣∣∣2 dx−2α1

∫
Ω

∣∣∇y0
1
∣∣2 dx

=
∫ t

0

∫
Ω

(
ryk

1

(
1−

yk
1

K

)
−

αyk
1yk

2

a+ yk
1
−m

(yk
1)

2yk
3

b+(yk
1)

2

)2

dsdx.

Since ‖yi‖L∞(Ω) for i= 1,2,3 are bounded independently of (u1,u2) and y0
1 ∈H2 (Ω) , we deduce

that

(14) yk
1 ∈ L∞

(
0,T,H1 (Ω)

)
We make use of (11), (13), and (14), in order to get yk

1 ∈ L(T,Ω)∩L∞ (Q) and concluding that

the inequality in (10) holds for i = 1, similarly for yk
2and yk

3.
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In order to show the nonnegativeness of yk
i for i = 1,2,3, we write the system (2) in the form

∂yk
1

∂ t = α1∆yk
1 +F1(yk

1, yk
2, yk

3)

∂yk
2

∂ t = α2∆yk
2 +F2(yk

1, yk
2, yk

3)

∂yk
3

∂ t = α3∆yk
3 +F3(yk

1, yk
2, yk

3)

It is obvious to see that the functions F1

(
yk

1, yk
2, yk

3

)
,F2

(
yk

1, yk
2, yk

3

)
and

F3

(
yk

1, yk
2, yk

3

)
are continuously differentiable satisfying

F1

(
0, yk

2, yk
3

)
= F2

(
yk

1, 0, yk
3

)
= 0,

and

F3

(
yk

1, yk
2, 0

)
= m1

(yk
1)

2yk
2

b+(yk
1)

2
≥ 0 for all yk

1,y
k
2,y

k
3 ≥ 0.

Since initial values of system (2) are non-negative, we deduce that yk
1(t,x)≥ 0,yk

2(t,x)≥ 0, and

yk
3(t,x)≥ 0,∀(t,x) ∈ Q (see [31]).

Now we particularize k > 0 large enough such that

(15) Mkθ +
∥∥y0

i
∥∥

L∞(Ω)
≤ k, i = 1,2,3, for some θ ∈ [0,T ]

For example, we can take k > 2max
{∥∥y0

i

∥∥
L∞(Ω)

, i = 1,2,3
}

. Let θ ∈ (0,T ) be maximal with

property (15). By (12)-(15), it is clear that
∣∣yk

i (t,x)
∣∣ < k , for (t,x) ∈ [0,θ ]×Ω and i = 1,2,3.

So, f k(t,y1,y2,y3) coincides with f (t,y1,y2,y3) for(t,x) ∈ [0,θ ]×Ω , and consequently ỹk =(
yk

1,y
k
2,y

k
3
)

is a local solution for (2−4) defined on [0,θ ]×Ω .

We show now that ỹ is bounded on (0,θ)×Ω and thus, it is actually a global solution of (2−4)

defined on (0,θ)×Ω.

We put f (yi) =
yi

a+yi
, g(yi) =

y2
i

a+y2
i
, and l(y1) = r

(
1− y1

k

)
We work under the following hypotheses on f ,g, l : R→ R

(H1) l is continous and bounded on (0,∞) .

(H2) f ,g are continous and positive on (0,∞) and bounded on bounded sets.
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In view of hypothesis (H1) , (H2) by the first equation of (2) , we deduce that

∂y1

∂ t
≤ α1∆y1 +my1, t ∈ (0,θ) , x ∈Ω

Here m > 0 is an upper bound for l via (H1) . This leads to estimate

0≤ y1 (t,x)≤ exp(mt)S̃ (t)y0
1 (x) , (t,x) ∈ (0,θ)×Ω,

where
{

S̃ (t) , t ≥ 0
}

is the C0−semigroup of contractions on L2 (Ω) generated by the operator

By1 = α1∆y1, with the domain

D(B) =
{

y1 ∈ H2 (Ω) ,
∂y1

∂η
= 0, a.e on ∂Ω

}
.

Therefore ‖y1‖L∞((0,θ)×Ω) ≤ m1 for some m1 > 0 independent of N and of u. Next, we can

easly deduce the boundedness of y2 and y3 on (0,θ)×Ω. Consequently, yi are defined on the

whole set Q (and also positive and bounded). If we take the second power in (2), integrate over

[0, t]×Ω with t ∈ [0,T ], the claim (10) follows in view of Green’s formula and of (H1),(H2).

Thus (y1,y2,y3) is a global positive strong solution of system (2)− (4) and it satisfies (10).

This completes the proof.

�

4. EXISTENCE OF THE OPTIMAL SOLUTION

In this section, we will prove the existence of an optimal control for the problem (2− 4)

subject to reaction-diffusion system (2− 4) and (u1,u2) ∈ (Uad)
2 . The most important result

of this section is the theorem below.

Theorem 4.1. Under the hypothesis of theorem (7.1), the optimal control problem (2− 4)

admits an optimal solution (ỹ∗,(u∗1,u
∗
2)).

Proof. From Theorem (7.1), we know that, u1,u2,y1,y2 and y3 are bounded uniformly in

L∞(Q), J is a minimizing sequence such that

lim
n→∞

J (ỹn,(un
1,u

n
2)) = inf

(u1,u2)∈(Uad)
2
J (ỹ,(u1,u2))



16 AMINE EL BHIH, YOUSSEF BENFATAH, MOSTAFA RACHIK, ABDESSAMAD TRIDANE

where
(
yn

1,y
n
2,y

n
3
)

is the solution of system (2− 4) corresponding to the control
(
un

1,u
n
2
)

for

n = 1,2, . . . that is

(16)



∂yn
1

∂ t = α1∆yn
1 + ryn

1

(
1−

yn
1

K

)
−

αyn
1yn

2
a+ y1

−m

(
yn

1
)2 yn

3

b+
(
yn

1
)2 ,

∂yn
2

∂ t = α2∆yn
2 +

βyn
1yn

2
a+ yn

1
−d1yn

2−
n
(
yn

2
)2 yn

3

b+
(
yn

2
)2 −qEχω(X)un

1 (t,X)yn
2,

∂yn
3

∂ t = α3∆yn
3 +n1

(
yn

2
)2 yn

3

b+
(
yn

2
)2 +m1

(
yn

1
)2 yn

3

b+
(
yn

1
)2 −d2yn

3−qEχω(X)un
2 (t,X)yn

3,

(17)
∂yn

1
∂η

=
∂yn

2
∂η

=
∂yn

3
∂η

= 0 (t,x) ∈ ∑(t,x) ∈ ∑

yn
i (0,x) = y0

i f or i = 1,2,3 x ∈Ω

By theorem (7.1) using the estimate (10) of the solution yn
i , there exists a constant C > 0

such that for all n≥ 1, t ∈ [0,T ]

(18)

‖yn
i ‖L∞(Q) ≤C,

∥∥∥∥∂yn
i

∂ t

∥∥∥∥
L2(Q)

≤C, ‖yn
i ‖L2(0,T,H2(Ω)) ≤C, ‖yn

i ‖H1(Ω) ≤C, i = 1,2,3

H1 (Ω) is compactly embedded in L2 (Ω) , so we deduce that yn
1 (t) is compact in L2 (Ω) .

Let’s show that
{

yn
1 (t) , n≥ 1

}
is equicontinous in C

(
[0,T ] : L2 (Ω)

)
. As

∂yn
1

∂ t
is bounded in

L2 (Q) , this implies that for all s, t ∈ [0,T ]∣∣∣∣∫
Ω

(yn
1)

2 (t,x)dx−
∫

Ω

(yn
1)

2 (s,x)dx
∣∣∣∣≤ K |t− s|

The Ascoli-Arzela Theorem (See a Chapter IV.5 in Brezis et al. [32]) implies that yn
1 is compact

in C
(
[0,T ] : L2 (Ω)

)
. Hence, selecting further sequences, if necessary, we have yn

1 −→ y∗1 in

L2 (Ω) , uniformly with respect to t.

and analogously yn
i −→ y∗i in L2 (Ω) , uniformly with respect to t, for i = 2,3.

From the boundedness of ∆yn
i in L2 (Q) , which implies it is weakly convergent in L2 (Q) on a

subsequence denoted again ∆yn
i then for all distribution ϕ∫

Q
ϕ∆yn

i =
∫

Q
yn

i ∆ϕ →
∫

Q
y∗i ∆ϕ =

∫
Q

ϕ∆y∗i

Which implies that ∆yn
i → ∆y∗i weakly in L2 (Q) , i = 1,2,3

In addition estimates (18) lead to
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∂yn
i

∂ t
→ ∂y∗i

∂ t
weakly in L2 (Q), i = 1,2,3

yn
i → y∗i weakly in L2 (0,T ;H2 (Ω)

)
, i = 1,2,3

yn
i → y∗i weakly in L∞

(
0,T ;H1 (Ω)

)
, i = 1,2,3

We now show that yn
i yn

j → y∗i y∗j for i = 1,2,3 and j = 1,2,3.

Since un
1 and un

2 are bounded in L2 ([0,T ]×ω) and in L2 ([0,T ]×ω) respectively, we can assume

that χωun
1 ⇀ χωu∗1 weakly in L2 ([0,T ]×ω) and χωun

2 ⇀ χωu∗2 weakly in L2 ([0,T ]×ω) on a

subsequence denoted again un
1 and un

2.

Since Uad is a closed and convex set in L2 (Q) it is weakly closed, so (u∗1,u
∗
2) ∈ (Uad)

2.

We now show that

χω (x)un
1yn

2 −→ χω (x)u∗1y∗2 in L2 ([0,T ]×ω) and χω (x)un
2yn

3 −→ χω (x)u∗2y∗3 in L2 ([0,T ]×ω)

By writing

χω (x)un
1yn

2−χω (x)u∗1y∗2 = (yn
2− y∗2)χω (x)un

1− (un
1−u∗1)χω (x)y∗2

and

χω (x)un
2yn

3−χω (x)u∗2y∗3 = (yn
3− y∗3)χω (x)un

2− (un
2−u∗2)χω (x)y∗3

and making use of the convergences yn
i+1 −→ y∗i+1 strongly in L2 (Q) for i = 1,2, χωun

1 ⇀

χωu∗1 in L2 ([0,T ]×ω) and χωun
2 ⇀ χωu∗2 in L2 ([0,T ]×ω) we obtains that χω (x)un

1yn
2 −→

χω (x)u∗1y∗2 in L2 ([0,T ]×ω) and χω (x)un
2yn

3 −→ χω (x)u∗2y∗3 in L2 ([0,T ]×ω)

By taking n→ ∞ in ((16−17)), we obtain that y∗ is a solution of (2− 4) corresponding to

(u∗1,u
∗
2) ∈ (Uad)

2.

Therefore

J(ỹ∗,(u∗1,u
∗
2)) = ρ1

∫ T
0
∫

Ω
y∗1 (t;x)dxdt +ρ2

∫ T
0
∫

Ω
y∗2 (t;x)dxdt + η1

2 ‖u
∗
1‖

2
L2([0,T ]×ω)+

η2
2 ‖u

∗
2‖L2([0,T ]×ω)

≤ lim
n→∞

inf
(

ρ1
∫ T

0
∫

Ω
yn

1 (t;x)dxdt +ρ2
∫ T

0
∫

Ω
yn

2 (t;x)dxdt + η1
2 ‖u

n
1‖

2
L2([0,T ]×ω)+

η2
2 ‖u

n
2‖

2
L2([0,T ]×ω)

)
≤ lim

n→∞

(
ρ1
∫ T

0
∫

Ω
yn

1 (t;x)dxdt +ρ2
∫ T

0
∫

Ω
yn

2 (t;x)dxdt + η1
2 ‖u

n
1‖

2
L2([0,T ]×ω)+

η2
2 ‖u

n
2‖

2
L2([0,T ]×ω)

)
≤ inf

(u1,u2)∈(Uad)
2
J ((u1,u2))

This shows that J attains its minimum at (ỹ∗,(u∗1,u
∗
2)) , we deduce that (ỹ∗,(u∗1,u

∗
2)) verifies

problem (2−4) and minimizes the objective functional (5). The proof is complete. �
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5. NECESSARY OPTIMALITY CONDITION

Given u = (u1,u2)
> ∈Uad and u∗ = (u∗1,u

∗
2)
> ∈Uad , we aim, in this section, to give a charac-

terization of the optimal control by proving the conditions of optimality to the problem (2−6).

First, we use the gateaux differentiability of the mapping u→ ỹ(u) . For this purpose, denot-

ing by ỹε =
(
yε

1,y
ε
2,y

ε
3
)
= (y1,y2,y3)(uε) and y∗ =

(
y∗1,y

∗
2,y
∗
3
)
= (y1,y2,y3)(u∗) the solution of

(2−4) corresponding to uε and u∗ respectively, where uε and u∗ respectively, where (ỹ∗,u∗) is

an optimal pair such that uε = u∗+ εu ∈Uad (for ε > 0 small) and u ∈Uad.

Let’s define the matrix

H =



f1 −
αy∗1

a+ y∗1
−m

(y∗1)
2

b+
(
y∗1
)2

β
y∗2

a+ y∗1
f2 −n

(y∗2)
2

b+
(
y∗2
)2

m1

(
yn

1
)2 yn

3

b+
(
yn

1
)2 n1

y∗2y∗3
b+
(
y∗2
)2 f3


,

with

f1 = r
(

1−
y∗1
K

)
−

αy∗2
a+ y∗1

−m
y∗1yn

3

b+
(
y∗1
)2 −

αy∗1
a+ y∗1

f2 = β
y∗1

a+ y∗1
−d1y∗1−n

y∗2y∗1
b+
(
y∗2
)2 −qEu∗1χω(x)

f3 = n1
(y∗2)

2

b+
(
y∗2
)2 +m1

(y∗1)
2

b+
(
y∗1
)2 −d2−qEu∗2χω(x)

and the matrix

G =


0 0

−qEy∗2χω(x) 0

0 −qEy∗3χω(x)

 .

We have the following theorem

Theorem 5.1. The mapping y : Uad →W 1,2 ([0,T ] ,H (Ω)) with yi ∈ L(T,Ω) for i = 1,2,3 is

gateaux differentiable with respect to u∗. For all direction u ∈Uad, y′ (u∗)u =U is the unique
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solution in W 1,2 ([0,T ] ,H (Ω)) with Ui ∈ L(T,Ω) of the following equation

(19)


∂U
∂ t = AU +HU +Gu t ∈ [0,T ]

U(0,x) = 0

Proof. We put Uε
i =

yε
i − y∗i

ε
for i = 1,2,3 and we denote Pε the system (2−4) corresponding

to uε and P∗ the system (2−4) corresponding to u∗, subtracting system Pε from P∗. As in [16],

authors supposed in their stability study of this model that the total population N does not vary

in terms of xT ; yT and zT . Thus, we take into account the same condition to obtain

(20)

∂Uε
1

∂ t = α1∆Uε
1 +

(
r
(

1− y∗1
K

)
− αy∗2

a+ y∗1
−m

y∗1yn
3

b+(y∗1)
2

)
Uε

1 −
αy∗1

a+ y∗1
Uε

2 −m
(y∗1)

2

b+(y∗1)
2Uε

3

∂Uε
2

∂ t = α2∆Uε
2 +β

y∗2
a+ y∗1

Uε
1 +

(
β

y∗1
a+ y∗1

−d1y∗1−n
y∗2y∗1

b+(y∗2)
2 −qEχω(x)u∗1

)
Uε

2 −n
(y∗2)

2

b+(y∗2)
2Uε

3

∂Uε
3

∂ t = α3∆Uε
3 +

(
m1

(yn
1)

2 yn
3

b+(yn
1)

2

)
Uε

1 +n1
y∗2y∗3

b+(y∗2)
2Uε

2

+

(
n1

(y∗2)
2

b+(y∗2)
2 +m1

(y∗1)
2

b+(y∗1)
2 −d2−qEχω(x)u∗2

)
Uε

3

with the homogeneous Neumann boundary conditions

∂Uε
1

∂η
=

∂Uε
2

∂η
=

∂Uε
3

∂η
= 0, (x, t) ∈∑ = [0,T ]×∂Ω

(21) Uε
i (0,x) = 0 x ∈Ω, for i = 1,2,3

We prove that Uε
i are bounded in L2(Q) uniformly with respect to ε . For this, we define

Hε =



f ε
1 −

αyε
1

a+ yε
1

−m

(
yε

1
)2

b+
(
yε

1
)2

β
yε

2
a+ yε

1
f ε
2 −n

(
yε

2
)2

b+
(
yε

2
)2

m1

(
yε

1
)2 yε

3

b+
(
yε

1
)2 n1

yε
2yε

3

b+
(
yε

2
)2 f ε

3


With

f ε
1 = r

(
1−

yε
1

K

)
−

αyε
2

a+ yε
1
−m

yε
1yn

3

b+
(
yε

1
)2
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f ε
2 = β

yε
1

a+ yε
1
−d1yε

1−n
yε

2yε
1

b+
(
yε

2
)2 −qEχω(x)uε

1

f ε
3 = n1

(
yε

2
)2

b+
(
yε

2
)2 +m1

(
yε

1
)2

b+
(
yε

1
)2 −d2−qEχω(x)uε

2

Uε =
(

Uε
1 , Uε

2 , Uε
3

)
,

and

G =


0 0

−qEχω(x)y∗2 0

0 −qEχω(x)y∗3

 .

Then, we can rewrite system (20) as

(22)

 ∂Uε

∂ t = AUε +HεUε +Gu t ∈ [0,T ]

Uε (0,x) = 0

(S(t), t ≥ 0) is the semi-group generated by A, then the solution of (22) can be expressed as

(23) Uε(t) =
∫ t

0
S (t− s)Hε (s)Uε(s)ds+

∫ t

0
S (t− s)Gu(s)ds.

On the other hand the coefficients of the matrix Hε are bounded uniformly with respect to ε,

using Gronwall’s inequality, we have

‖Uε
i ‖ ≤ β

where β > 0 (i = 1,2,3) . Then

‖yε
i − y∗i ‖L2(Q) = ε ‖Uε

i ‖L2(Q)

Hence yε
i → y∗i in L2 (Q) , i = 1,2,3. We put

H =



f ∗1 −
αy∗1

a+ y∗1
−m

(y∗1)
2

b+
(
y∗1
)2

β
y∗2

a+ y∗1
f ∗2 −n

(y∗2)
2

b+
(
y∗2
)2

m1

(
yn

1
)2 yn

3

b+
(
yn

1
)2 n1

y∗2y∗3
b+
(
y∗2
)2 f ∗3


with
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f ∗1 = r
(

1−
y∗1
K

)
−

αy∗2
a+ y∗1

−m
y∗1yn

3

b+
(
y∗1
)2

f ∗2 = β
y∗1

a+ y∗1
−d1y∗1−n

y∗2y∗1
b+
(
y∗2
)2 −qEχω(x)u∗1

f ∗3 = n1
(y∗2)

2

b+
(
y∗2
)2 +m1

(y∗1)
2

b+
(
y∗1
)2 −d2−qEχω(x)u∗2

and U = (U1,U2,U3) . Hence, then system (20−24) can be written in the form

 ∂U
∂ t = AU +HU +Gu t ∈ [0,T ]

U (0) = 0

and its solution can be expressed as

(24) U(t) =
∫ t

0
S (t− s)H (s)U (s)ds+

∫ t

0
S (t− s)Gu(s)ds.

By (25) and (24) one deduces that

Uε(t)−U(t) =
∫ t

0
S (t− s)Hε (s)(Uε −U)(s)ds+U (s)(Hε (s)−H (s))ds.

Thus all the coefficients of the matrix Hε tend to the corresponding coefficients of the matrix H

in L2(Q).

By using of Gronwall’s inequality, we derive that thus Uε
i → Ui in L2 (Q) as ε → 0, for

i = 1,2,3. The proof is complete. �

Let p = (p1, p2, p3) and ρ = (0,ρ1,0) the adjoint variable, we can write the dual system

associated to our problem

(25)


−∂ p

∂ t −Ap−F∗p = D∗Dρ t ∈ [0,T ]

p(T,x) = 0
∂ p
∂η

= 0
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Let u∗ be an optimal control of (2−4), ỹ∗ =
(
y∗1,y

∗
2,y
∗
3
)

be the optimal state, D is the matrix

defined by D =


0 0 0

0 1 0

0 0 0

, D∗ be the adjoint matrix associated to D, H∗ be the adjoint

matrix associated to H

Lemma 5.1. Under hypothesis of theorem (7.1), if (ỹ∗,(u∗1,u
∗
2)) is an optimal pair, then there

exists a unique strong solution p ∈W 1,2 ([0,T ] ,H (Ω)) to the system (25) with pi ∈ L(T,Ω) for

i = 1,2,3.

Proof. Like in theorem (7.1), by making the change of variable s = T − t and the change of

functions qi (s,x) = pi (T − s,x) = pi (t,x) , (t,x) ∈ Q, i = 1,2,3. We can easily prove the

existence of the solution of this lemma. �

To obtain the necessary conditions for the optimal control problem, applying standard opti-

mality techniques. By analyzing the objective functional and using relationships between the

state and adjoint equations, we obtain the following characterization of the optimal control

Theorem 5.2. Let u∗ be an optimal control of (2−6) and let y∗ ∈W 1,2 ([0,T ] ,H (Ω)) with

y∗i ∈ L(T,Ω) for i = 1,2,3 be the optimal state, that is y∗ is the solution to (2−4) with the

control u∗. Then, there exists a unique solution p∈W 1,2 ([0,T ] ,H (Ω)) with pi ∈ L(T,Ω) of the

linear problem

(26)


−∂ p

∂ t −Ap−F∗p = D∗ρ t ∈ [0,T ]

p(T,x) = 0
∂ p
∂η

= 0

(27)

u∗1 = min
(

umax
1 ,max

(
0,−qEχω(x)p2

η1
y∗2

))
and u∗2 = min

(
umax

2 ,max
(

0,−qEχω(x)p3

η2
y∗3

))

Proof. We suppose u∗ is an optimal control and ỹ∗ =
(

y∗1, y∗2, y∗3

)
=
(

y1, y2, y3

)
(u∗)

are the corresponding state variables. Consider uε = u∗+ εh ∈ Uad and corresponding state
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solution ỹε =
(

yε
1, yε

2, yε
3

)
=
(

y1, y2, y3

)
(uε) , we have

(28)

J′ (u∗)h

= lim
ε→0

1
ε
(J (uε)− J (u∗))

= lim
ε→0

1
ε

 ρ1
∫ T

0
∫

Ω
(yε

2− y∗2)(t,x)dxdt +ρ2
∫ T

0
∫

Ω

(
yε

3− y∗3
)
(t,x)dxdt

+η1
2
∫ T

0
∫

ω

(
(uε

1)
2− (u∗1)

2
)
(t,x)dxdt + η2

2
∫ T

0
∫

ω

(
(uε

2)
2− (u∗2)

2
)
(t,x)dxdt


= lim

ε→0

1
ε

 ρ1
∫ T

0
∫

Ω

(
yε

2− y∗2
ε

)
(t,x)dxdt +ρ2

∫ T
0
∫

Ω

(
yε

3− y∗3
ε

)
(t,x)dxdt

+
η1

2
∫ T

0
∫

ω

(
ε (h1)

2 +2h1u∗1
)
(t,x)dxdt +

η2

2
∫ T

0
∫

ω

(
ε (h2)

2 +2h2u∗2
)
(t,x)dxdt


= ρ1

∫ T
0
∫

Ω
Y2 (t,x)dxdt +ρ2

∫ T
0
∫

Ω
Y3 (t,x)dxdt +η1

∫ T
0
∫

ω
(h1u∗1)(t,x)dxdt

+η2
∫ T

0
∫

ω
(h2u∗2)(t,x)dxdt

=
∫ T

0 〈Dρ,DY 〉H(Ω) dt +
∫ T

0 〈ηu∗,h〉
(L2(Ω))

2 dt

with ηu∗ =

 η1u∗

η2u∗

 . We use (19) and (26−27), we have

∫ T

0
〈Dρ,DY 〉H(Ω) dt =

∫ T

0
〈D∗Dρ,Y 〉H(Ω) dt

=
∫ T

0

〈
−∂ p

∂ t
−Ap−F∗p,Y

〉
H(Ω)

dt

=
∫ T

0

〈
p,

∂Y
∂ t
−AY −FY

〉
H(Ω)

dt

=
∫ T

0
〈p,Gh〉H(Ω) dt

=
∫ T

0
〈G∗p,h〉

(L2(Ω))
2 dt

Since J is gateaux differentiable at u∗ =

 u∗1

u∗2

 and Uad is convex, as the minimum of the

objective functional is atteined at u∗ it is seen that J′ (u∗)(v−u∗)≥ 0 for all v ∈Uad .

We take h = v−u∗ and we use (28−29) then

J′ (u∗)(v−u∗) =
∫ T

0
〈G∗p+ηu∗,v−u∗〉

(L2(Ω))
2 dt.
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We conclude that J′ (u∗)(v−u∗) ≥ 0 equivalent to
∫ T

0 〈G∗p+ηu∗,v−u∗〉
(L2(Ω))

2 dt ≥ 0 for

all v ∈Uad. By standard arguments varying v, we obtain

ηu∗ =−G∗p.

Then

u∗1 =
−qE p2

η1
χω(x)y∗2 and u∗2 =

−qE p3

η1
χω(x)y∗3.

As (u∗1,u
∗
2) ∈Uad, we have

u∗1 =min
(

umax
1 ,max

(
0,−qE p2

η1
χω(x)y∗2

))
and u∗2 =min

(
umax

2 ,max
(

0,−qE p3

η2
χω(x)y∗3

))
�

6. NUMERICAL SIMULATION

6.1. Numerical simulation without control. In order to show the effect of the spatial fac-

tor of the proposed model, we give a numerical simulation over a period of t = 360 days with

figures (1-3). The values of the parameters used in these simulations as well as the size of

the grid are presented in section 4 entitled Numerical simulations. The system is numerically

solved using MATLAB, and we give a description of the numerical method used to resolve

our dynamical system in section 4. In the subsection (6.2), we present numerical values and

methods. Figure 1, 2, and 3 present numerical results of the density of prey, predator, and super

predator. We consider two situations, in the first one the interaction of the prey, predator, and

super predator starts from the corner (1) , and in the second one, it starts from the middle. The

only difference between these two cases is that in the second situation, the predators, and super

predators harvest the prey rapidly. This demonstrates the significance of the spatial concept that

has been applied.

In figures 1−3, we can clearly see that there is no significant effect until t = 70 days after the

interaction of the prey, predators and super predators. The density of preys decreases sharply

that may lead to their absence; there is a significant increase of the density of predators until

t = 70 days, and just then we observe a remarkable decrease until t = 360 days. The density of

super predators increases until t = 210 days and decreases later until t = 360 days.

Considering the results of these simulations motivates us to think about the definition of an
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appropriate control strategy. The strategy proposed in this paper is the introduction of two har-

vesting functions that aim to make fishing control efforts target the source area of the interaction

of the species.

FIGURE 1. The density of prey behavior within Ω without control (1) the evo-

lution of density of different fish population begins starts from the corner of the

area. (2) the evolution of density of different fish population begins starts from

the middle of the area
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FIGURE 2. The density of predator behavior within Ω without control (1) the

evolution of density of different fish population starts from the corner of the

area. (2) The evolution of density of different fish population begins starts from

the middle of the area
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FIGURE 3. The density of super predator behavior within Ω without control:

(1) the evolution of density of these species begins starts from the corner of the

considered area. (2) The evolution of density of these species begins starts from

the middle of the considered area.
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6.2. Numerical simulation with controls. This section describes numerical simulations to

illustrate our theoretical results and to show the performance of the strategy we have adopted

in the framework to protect the prey population and preserve the sustainable ecosystem. The

initial values in area 1 and area 2 are the same in the table 1. As far as the initial values, they

are estimated from a statistical study [16].

Such formulation, a strategy of optimal regional control is obtained through resolving the

optimality system, consisting of PDEs from the state variables and boundary conditions (2−4)

and adjoint equations with transversality conditions (25) by applying the forward-backward

sweep method (FSBM) [33].

The equations of the states are solved by using a straightforward method in an iterative pro-

cedure using the explicit Euler to discretize the second order derivatives ∂x, ∂y, and ∂ z. In

addition, we use the explicit Euler second-order method where the initial control variables are

divined in the initiation of the iterative method and then, the adjoint equations are backwards

solved in time. Lastly, the variables of control are revealed from the adjoint solutions and the

current state. The iterative process is then repeated until a tolerance criterion is reached. We

assume that the initial densities of prey, predator, and super predator populations are estimated

as x0 = 1050,y0 = 920 and z0 = 730.. In order to illustrate the significance of this study and

without losing its generality, the model is valid for all areas of the world, but the simulation

will be limited to the study of a model that is composed of two areas (source of prey-predator

interaction : Ω1 where the evolution of density of the various fish populations begins with the

lower left corner of Ω, and Ω2 where the evolution begins from the center of Ω)

We consider a population total N0 = 2700 in a 25km×25km rectangulary grid, we assume that

prey-population are distributed homogeneously with 10 in each of 1km×1km. Furthermore, the

higher limits of the condition of optimality are regarded as umax
1 = 0.7 and umax

2 = 0.8, and in

the objective function constant weight values are ρ1 = 1, ρ2 = 1, ρ3 = 10. concerned do not

provide more explanatory information, people can be left feeling that there is something wrong,

which leads to a lot of gossips.
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Notations Value Description(Units)

r1 1.9
Intrinsic growth rate of prey(

day−1
)

K 60
Environmental carriying capacity of prey(

day−1
)

α 1.5
Capture rate: of: the: predator: to: prey(

day−1
)

E 7.6×10−3 fishing effort rate(
day−1

)
a 0.6

Half-saturation constants(
day−1

)
b 0.7

Half-saturation constants(
day−1

)
β 1.2

Predator’s consumption rate on prey(
day−1

)
m1 1.92

Super predator’s consumption rate on prey(
day−1

)
q 2×10−4 Catchability coefficient(

year−1
)

m 1.91
Capture rate: of: the: super: predator: to: prey(

day−1
)

n 0.83
Capture rate: of: the: super: predator: to: predator(

day−1
)

n1 0.8
Super predator’s consumption rate on predator(

year−1
)

d1 3×10−4 Natural death rate of predator(
day−1

)
d2 1.2×10−4 Natural death rate of super predator(

day−1
)

t [0,360]
time period

(day)
TABLE 2. Initial conditions and parameters values
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To provide an illustration and showing the influence of every control and its impact on the

preservation of prey. We choose to adopt two cases. In the first case, we optimize simulta-

neously the regional catchability controls χωu1(t,X) and χωu2(t,X). However, in the second

case, the regional fishing effort control χωu2(t,X) is not optimized but held the constant while

the regional fishing control χωu1(t,X) is optimized. Figures (4-9) illustrate the found results

found in the both cases for all scenarios.

(i) Case 1: applying both regional controls χωu1(t,X) and χωu2(t,X).

(ii) Case 2: applying only regional control χωu1(t,X)

CASE 1: APPLYING REGIONAL CONTROLS χωu1 AND χωu2

In this case we will give two scenarios. In the first scenario, we will limit ourselves to control

only the area in the center, in this scenario we choose to targeted a circular area ω1 which

contains the source zone of the interaction of the species with a larger radius R = 7. However,

the second scenario we controlling only the area in the corner where the targeted circular area

ω2 the radius is R = 7.

(i) First scenario: Controlling the center area ω1 .

(ii) Second scenario: Controlling the corner of area ω2.

First scenario: Applying controls u1 and u2 by making a good catchability by the fishing

fleets applied to the predators and super predators in the center of the circular areas. In

the figure (4-6), when we use our spatiotemporal control based on two controls. We admit

that optimal strategies begin on days t = 1 which is the same day harvested the predators and

super predators. We observe that the amount of prey decreases at a very slight rate over the

360-day period. In a lesser way compared to the results obtained in the figure (1-3), in which

we note the disappearance of these prey. While there has been a slight increase in the density

of predators and generalist predators during the 360 days. Which is very beneficial and reflects

the importance of our control strategy.

Second scenario: Applying controls u1 and u2 by making good catchability by the fishing

fleets applied to the predators and super predators in the corner of the circular areas. To

realize this strategy in the figure (4-6), we investigate numerical results with two strategies of
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spatial-temporal control (χω(X)u1(t,X), χω(X)u2(t,X)) representing the fishing effort control

of predators and super predators population. These controls are highly noticeable in maintaining

the density of the prey and thus maintaining a different chain system. We see that in this case,

the number of prey decreases at very law but in a way less than the first scenario in the center

areas, however the number of predators and super predators we note a slight increase without

reaching the same number in the first scenarios. the above-mentioned strategy has been proven

to be efficient as a result of the use of these controls.

FIGURE 4. The density of prey behavior within Ω with control: (1) the evolution

of density of these species begins starts from the corner of the controlled area ω1.

(2) the evolution of density of these species begins starts from the middle of the

controlled area ω2.
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FIGURE 5. The density of predator behavior within Ω with control: (1) the evo-

lution of density of these species begins starts from the corner of the controlled

area ω1. (2) the evolution of density of these species begins starts from the mid-

dle of the controlled area ω2.
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FIGURE 6. The density of super predator behavior within Ω with control: (1)

the evolution of density of these species begins starts from the corner of the

controlled area ω1. (2) the evolution of density of these species begins starts

from the middle of the controlled area ω2.
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CASE 2: APPLYING ONLY A REGIONAL CONTROL χωu1

In this subsection, in order to show the influence of the choice of the form of the area, we

choose two controlled regions as a circular area ω1 and ω2 where ω1 with radius is R = 7 when

the interaction of the species starts from the low left corner, ω2 with radius is R = 7 when the

interaction of the species starts from the middle.

The effect of the control implemented on super predators (u2(t,X)) is not being optimized

in this case, whereas the impact of the control applying to predators (u1(t,X)) is therefore op-

timized to observe its influence on the development of the different species (prey, predators

and super predators). In Figures (7-9), we notice the efficiency of the simultaneous application

strategies of spatial-temporel control u1(t,X), such controls are very remarkable in preserv-

ing the density of the density of prey in its absence and consequently in keeping a system of

different chains. We can observe in the figure(1) after 360 days in the lack of the control the

disappearance of the prey population. The prey population is harvested by predators and super

predators (see figure 2 and 3). However, we can remark a decrease in the density of prey with

their continuation in the center and corner of the considerd areas in the presence of the control.

There is also an increase in population density of predators and super predators during 360 days.

This implies that the holistic approach of the intervention strategies is the most effective way to

preserve the prey.
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FIGURE 7. The density of prey behavior within Ω with control u1: (1) the evo-

lution of density of these species begins starts from the corner of the controlled

area ω1. (2) the evolution of density of these species begins starts from the mid-

dle of the controlled area ω2.
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FIGURE 8. The density of predator behavior within Ω with control u1:(1) the

evolution of density of these species begins starts from the corner of the con-

trolled area ω1. (2) the evolution of density of these species begins starts from

the middle of the controlled area ω2.
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FIGURE 9. The density of super predator behavior within Ω with control u1:

(1) the evolution of density of these species begins starts from the corner of the

controlled area ω1. (2) the evolution of density of these species begins starts

from the middle of the controlled area ω2.
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7. CONCLUSION

In this paper, we studied a prey-predator model that describes the population dynamics of the

interaction of three species: two predators and one prey. Our model is a Spatio-temporal model

described by a system of parabolic partial differential equations.

This work is more important in marine ecology because irrational management of marine re-

sources can even lead to the disappearance of some species, which is an attack on the ecology

and its stability and discredits an entire regional economy. It induces a natural imbalance whose

consequences have been, among others, the total disappearance of some species, the distraction

of biomass, the distraction of vital reefs for marine species, the enlargement of toxic zones, as

well as the undesirable growth of specific predators.

To contribute to this topic, we developed a regional control strategy to maximize prey density

and minimize predator density to ensure the sustainability of the marine population while en-

suring optimal harvests. From a practical standpoint, population control of predators and prey

cannot be in a larger spatial domain due to the chance of logistical resources.

The most significant novelty of our work is not only to consider the Spatio-temporal charac-

ter but also to assume that our control strategy is limited to a subarea ω of Ω. The choice of

the sub-area ω is reflected by a concern for cost optimization and by ω as a geographically

accessible area to adopt as spatial support for a possible maneuver or control. This approach

has not yet been applied in fish population systems; their deliberations are limited to theoretical

concepts.

To achieve this goal, we introduced two regional harvest control strategies for a Spatio-temporal

prey-predator model representing the correct catchability to harvest the predator and super-

predator population. Theoretically, we have shown the global existence and the uniqueness of

the strong solution of the controlled system and the subsistence of an optimal couple of con-

trols. We have derived an optimality system and used optimal control techniques to characterize

the controls, a characterization of the optimal regional controls is obtained in terms of assistant

functions and state. To solve the optimality conditions, we used the forward-backward scan-

ning method (FSBM). Numerical simulations demonstrate that the control impact is efficient if

the two harvesting strategies of the regional controls are applied simultaneously, which allowed
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us to compare and see the difference between each scenario in a concrete way. The objective

of this work has been accomplished, the performance of our strategy has been proven, which

allows us to create an ecological balance and preserve the ecosystem.

As a natural continuation of this work we are studying the following problem.

Problem 1. We investigate the same problem presented in (2) but in this study we treat the

case when the sub-domains ω of Ω are different, more precisely we deal with the following

situations

- Case 1: ω1 6= ω2 and ω1∪ω2 = Ω with ω1∩ω2 = /0 .

- Case 2: ω1 = Ω and ω2 = /0.

- Case 3: ω1 = /0 and ω2 = Ω.

Problem 2. We investigate the same problem presented in (2) but in this study we treat the case

when the sub-domains ωn, n = 1,2, ...,∞ of Ω are described as follows

- ωn =C(0, 1
n) where n = 1, n = 2, n = 3, ..., n = ∞ with C(0, 1

n) is a circular domain of

center 0 and radius 1
n .

APPENDIX

First recall a general existence result which we use in the sequel (Proposition 1.2, p.175, [35];

see also [34], [36]). Consider the initial value problem

(29)

 ∂ z
∂ t = Az(t)+ f (t,z(t)) , t ∈ [0,T ]

z(0) = z0

where A is a linear operator defined on a Banach space X , with the domain D(A) and f :

[0,T ]×X → X is a given function. If X is a Hilbert space endowed with the scalar product

(· · · , · · ·), then the linear operator A is called dissipative if (Az,z)≤ 0, (∀z ∈ D(A)).

Theorem 7.1. X be a real Banach space, A : D(A) ⊆ X → X be the infinitesimal generator of

a C0−semigroup of linear contractions S (t) , t ≥ 0 on X , and f : [0,T ]×X → X be a function

measurable in t and Lipschitz continuous in x ∈ X , uniformly with respect to t ∈ [0,T ] .
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(i) If z0 ∈ X, then problem (29) admits a unique mild solution, i.e. a function z∈C ([0,T ] ,X)

which verifies the equality z(t) = S (t)z0 +
∫ t

0 S (t− s) f (s,z(s))ds,(∀t ∈ [0,T ]) .

(ii) If X is a Hilbert space, A is self-adjoint and dissipative on X and z0 ∈ D(A), then the

mild solution is in fact a strong solution and z ∈W 1,2 ([0,T ] ;X)∩L2 (0,T ;D(A)) .
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