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Abstract. Infectious diseases represent a real challenge to humanity and a true challenge for researchers to propose

relevant solutions in order to reduce the number of infected individuals. Mathematical modeling of infectious

diseases represents a better way to understand and control the spread of epidemics. In this work, we propose a

stochastic SIQS epidemic model with a nonlinear incidence function and Markov switching. Firstly, we present

our proposed stochastic model and its parameters. Secondly, we show the global existence and uniqueness of the

positive solution. Then, we show a sufficient condition for the extinction of disease. Finally, we give numerical

simulation to enrich our analytical results.
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1. INTRODUCTION AND PRELIMINARY

The mathematical study of the biological system represents a more important theme in the

field of mathematical biology and draws the attention of several authors (see for example,
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[1, 2, 3, 4, 5, 6]). Khan et al. [19] proposed a heroin epidemic model in partial differen-

tial equations form, including age-dependent susceptibility and recovery-age. They employed

some control optimal theoretical background to determine the existence of optimal control vari-

ables that minimize their objective function. To express the effect of memory on the dynamics

of a generalized SIR epidemic model, Das and Samanta in [20] have used the modeling by the

fractional-order differential equations. Kumar and Goel in [21], formulated an epidemic model

that included a delay and a treatment function, and they gave a detailed analysis of the proposed

system.

Stochastic systems represent an additional degree of realism compared with deterministic

systems and may reveal how random noise affects the population system (see, [4, 22, 23, 24]).

The following system represents the stochastic SIQS epidemic model with withe noise:

(1)



dS(t) = [χ−λSΨ(I)−µS+ γI +θQ]dt−ηSΨ(I)dMB(t),

dI(t) = [λSΨ(I)− (µ +ρ +ϑ + γ)I]dt +ηSΨ(I)dMB(t),

dQ(t) = [ϑ I− (µ +ρ +θ)Q]dt,

where S(t), I(t) and Q(t) represents the number of susceptible, infected, and quarantined pop-

ulations at time t, respectively. The parameters χ represent the recruitment rate of susceptible

corresponding to births and immigration. µ is the natural death rate. ϑ denotes the transfer rate

of infectious individuals from the infective class (I) to the quarantine class (Q). ρ represents the

disease-related death rate constant in class (I) and (Q). Parameters γ and θ represent the rates

at which individuals recover and return to class (S) from class (I) and class (Q), respectively.

MB is a standard Brownian motion defined on a complete probability space (Ω,F ,{Ft}t≥0 ,P)

with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right contin-

uous while F0 contains all P-null sets), and η represents the intensity of MB. The function Ψ

satisfies the following conditions:

• Ψ(y) is non-negative twice continuously differentiable such that Ψ(0) = 0. In addition,

the function Ψ(y)
y is monotonically decreasing on [0,∞).
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Note that the above conditions implies that:

Ψ(y)
y

< Ψ
′(0),∀y > 0.

We inform that in the case where η = 0 and λSΨ(I) = λSI, we find the corresponding deter-

ministic model of (1), presented in [7] by Herbert et al. Then, according to the theoretical part

in [7], the basic reproduction number of the system (1) is

R0 =
β χ

µ (µ +ρ +ϑ + γ)
.

Moreover, if R0 ≤ 1, then the corresponding deterministic model of (1) has only the disease-

free equilibrium E0

(
χ

µ
,0,0

)
which is globally asymptotical stable, and if R0 > 1, E0 becomes

unstable and there exists a global asymptotically stable endemic equilibrium E∗ (S?, I?,Q?),

with

S? =
χ

µR0
, I? =

χ− χ

R0

(µ +ρ)
(

1+ ϑ

µ+ρ+θ

) , Q? =
ϑ I?

µ +ρ +θ
.

The incidence rate of the disease represents an essential aspect in the modeling of infectious

diseases. It’s defined as the number of new cases per unit of time. In the literature review,

many works have employed the bilinear incidence rate or standard incidence rate to model

the transmission of epidemics. However, the bilinear incidence rate βSI or the standard

incidence rate βSI/N, (where N represents the total population number) is not preferable to

describe several situations of epidemic evolution. Take as an example the situation in which the

population is saturated. In this case, the number of infectious diseases in the population is so

large, thus the incidence rate depends non-linearly to (I). To describe the saturated population,

Capasso and Serio in [8] have proposed the saturated incidence rate defined by the quantity

βSI/(1+aI), (where a is a positive constant measures the psychological or inhibitory effect of

the population). There are other forms of nonlinear incidence (see, Table 1) and each represents

some advantages in modeling the dynamics of epidemics.

As is known, the population system fluctuates around a stable average value. But, in reality,

population systems may expose to change abruptly (due to; climate change, nutrition problems,

factors social), which driving the system to switch between different environmental regimes.
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In addition, the classic stochastic systems (with white noise) cannot describe the fact that the

population may suffer from environmental changes. Consequently, to express the switching

between two or more regimes of environment, we use another random noise named (Telegraph

noise or colored noise) [14, 15]. Usually, the switching between various environmental regimes

is memoryless, and the waiting time for the next switch follows the exponential distribution

[16]. Then, the regime-switching can be modeled by a continuous-time Markov chain m(t)

taking values in a finite state space L = {1,2, ...,d}. Hence, in this paper, we propose the

following stochastic model with nonlinear incidence and telegraphic noises

(2)



dS = [χ(m(t))−λ (m(t))SΨ(I)−µ(m(t))S+ γ(m(t))I +θ(m(t))Q]dt

−η(m(t))SΨ(I)dMB(t),

dI = [λ (m(t))SΨ(I)− (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t)))I]dt

+η(m(t))SΨ(I)dMB(t),

dQ = [ϑ(m(t))I− (µ(m(t))+ρ(m(t))+θ(m(t)))Q]dt.

In this paper, the Markov chain {m(t)}t≥0 is supposed independent of the Brownian motion

MB(t) and defined on the complete probability space (Ω,F ,{Ft}t≥0 ,P) with infinitesimal

generator Φ = (φuv)1≤u,v≤d given, for δ > 0, by

P(r(t +δ ) = v | r(t) = u) =

 φuvδ +o(δ ) if u 6= v,

1+φuuδ +o(δ ) if u = v.

Here, φuv is the transition rate from u to v and φuv ≥ 0 if u 6= v, while

φuu =−∑
u6=v

φuv.

Suppose that the Markov chain r(t) is independent of the Brownian motion B(.) and it is

irreducible. Under this condition, the Markov chain has a unique stationary distribution
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π = (π1, .....,πd), which can be determined by solving the linear equation πΦ = 0, subject to
d
∑

i=1
πi = 1, and πi > 0, ∀i ∈ L. Then, for any vector h = (h(1) , ......,h(d))T , let ĥ = min

i∈L
{h(i)}

and ȟ = max
i∈L
{h(i)}.

We consider the following stochastic system

dϑ(t) = f (t,ϑ(t),r(t))dt +g(t,ϑ(t),r(t))dB(t),(3)

where B(t) is a d-dimensional standard Wiener process defined on a complete probability space

(Ω,F ,{Ft}t≥0,P). Denote by C1,2(Rn×L;R+) the family of all nonnegative functions H

defined on Rn×L such that they are continuously twice differentiable in ϑ . The operator L H

associated with (3) is defined as follows

L H (ϑ , i) = Ht(t,ϑ , i)+Hϑ (t,ϑ , i) f (t,ϑ , i)+
1
2

gT (t,ϑ , i)Hϑ ,ϑ (t,ϑ , i)g(t,ϑ , i)

+ ∑
j∈L

φi jH (t,ϑ , j),

where Hϑ and Hϑ ,ϑ represents the gradient and Hessian of H , and T is the transpose of a

matrix.

By Itô’s formula, if H defined on Rn×L, we have

dH (ϑ(t), i) = L H (ϑ(t), i)dt +Hϑ (ϑ(t), i)g(ϑ(t), i)dB(t).

The purpose of this paper is to investigate the extinction of diseases in the model (2). By

proposing the threshold that includes the noises terms, we establish sufficient conditions for

the extinction of diseases. Moreover, our model (2) can be used to represent the impact of

environmental switching on disease transmission. The rest of this article is organized in the

following. In Section 2, we establish that the system (2) is mathematically and biologically

well-posed by showing the global existence, positivity, and boundlessness of the solution. In

Section 3, we show sufficient conditions for the extinction of the diseases. In Section 4, we give

numerical simulations to validate our analytic results.
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TABLE 1. Presentation of some nonlinear incidence rates

Incidence Expression Reference

Half-saturated incidence
βSI

H + I
[9]

Holling-type II incidence rate
βSI

m+S
[10]

Beddington-DeAngelis functional response
βSI

1+ k1S+ k2I
[11]

Crowley-Martin functional response
βSI

1+ k1S+ k2I + k1k2SI
[12]

Incidence with media coverage effect β1−β2
I

I +m
[13]

2. EXISTENCE OF SOLUTION

Our model describes the dynamics of a biological system. Thus, the solution of the system

(2) must be positive, bounded, and unique. For this let

T (t) = S(t)+ I(t)+Q(t).

For any i ∈ L, we have

(µ(m(t))+ρ(m(t)))
[

χ̂

µ̌ + ρ̌
−T (t)

]
dt

≤ [χ(m(t))− (µ(m(t))+ρ(m(t)))T (t)]dt

≤ dT (t)

≤ [χ(m(t))−µ(m(t))T (t)]dt

≤ χ(m(t))
[

χ̌

µ̂
−T (t)

]
.

Hence, we have

d
(

χ̌

µ̂
−T (t)

)
dt

+µ(m(t))
(

χ̌

µ̂
−T (t)

)
≥ 0,

and

d
(

χ̌

µ̂+ρ̂
−T (t)

)
dt

+(µ(m(t))+ρ(m(t)))
(

χ̌

µ̂ + ρ̌
−T (t)

)
≤ 0.
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Therefore

χ̌

µ̂
−T (t) ≥

[
χ̌

µ̂
−T (0)

]
exp
{
−
∫ t

0
µ(m(s))ds

}
,

and

χ̌

µ̂ + ρ̂
−T (t) ≥

[
χ̌

µ̂ + ρ̂
−T (0)

]
exp
{
−
∫ t

0
(µ(m(s))+ρ(m(s)))ds

}
.

Since χ̌

µ̂+ρ̂
≤ T (0)≤ χ̌

µ̂
, thus

χ̌

µ̂ + ρ̂
≤ T (t) ≤ χ̌

µ̂
.

Let

Γ =

{
(S(t), I(t),Q(t)) ∈ R3

+ :
χ̌

µ̂ + ρ̂
≤ T (t)≤ χ̌

µ̂

}
Theorem 2.1. For any given initial value (S(0), I(0),Q(0)) ∈ Γ, there exists a unique solution

(S(t), I(t),Q(t)) ∈ Γ of system (2) on t > 0 and the solution will remain in Γ with probability 1.

Proof. Since the coefficients of stochastic system (2) are locally Lipschitz continuous, then

their exist a unique local solution of system (2) on t ∈ [0,τe) for any given initial value

(S(0), I(0),Q(0)) ∈ Γ (τe is the explosion time, for more detail see, [17]). In order to prove

that the solution is global, we need to show that τe = ∞ a.s.. Next, we define the stopping time

τk for each k > 0 by

τk = inf{t ∈ [0,τe) : S(t)≤ k, or I(t)≤ k, or Q(t)≤ k} .

Throughout this paper setting inf /0 = ∞, with /0 is the empty set. Obviously, τk increase when k

tends towards zero. Let τ0 = lim
k→0

τk, in addition τ0 ≤ τe a.s. Thus, if we show that τ0 = ∞ a.s.,

then τe = ∞ a.s., this implies that the solution (S(t), I(t),Q(t)) the solution belongs to Γ almost

surely for all t ≥ 0. We suppose that this assertion is false then there exist a pair of constants

C > 0 and ε ∈ (0,1) such that P{τ0 ≤C}> ε . Define a C2-function W , by the expression

W (S, I,Q) = ln(S(t)I(t)Q(t)) .
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Using the generalised Itô’s formula, we have

dW (S, I,Q) =

[
χ(m(t)

S
−λ (m(t))Ψ(I)−µ(m(t)+ γ(m(t))

I
S
+θ(m(t))

Q
S

+λ (m(t))
SΨ(I)

I
−µ(m(t))−ρ(m(t))−ϑ(m(t))− γ(m(t))

+ϑ(m(t))
I
Q
−µ(m(t))−ρ(m(t))−θ(m(t))+0.5η

2(m(t))Ψ2(I)

+0.5η
2(m(t))

S2Ψ2(I)
I2

]
dt +

[
η(m(t))

SΨ(I)
I
−η(m(t))Ψ(I)

]
dMB(t).

Then, we have

W (S, I,Q) ≥
∫ t

0
[−λ (m(s))Ψ(I)−3µ(m(s)−2ρ(m(s))−ϑ(m(s))− γ(m(s))

−θ(m(s))]ds+
∫ t

0

[
η(m(s))

SΨ(I)
I
−η(m(s))Ψ(I)

]
dMB(s)

≥
∫ t

0

[
−λ̌Ψ(I)−3µ̌−2ρ̌− ϑ̌ − γ̌− θ̌

]
ds

+
∫ t

0

[
η(m(s))

SΨ(I)
I
−η(m(s))Ψ(I)

]
dMB(s).(4)

Since some components of (S(τk), I(τk),Q(τk)) equal k, then,

lim
k→0

W (S(τk), I(τk),Q(τk)) =−∞.

Letting t→ τk in (4), we obtain

∫ t

0

[
−λ̌Ψ(I)−3µ̌−2ρ̌− ϑ̌ − γ̌− θ̌

]
ds

+
∫ t

0

[
η(m(s))

SΨ(I)
I
−η(m(s))Ψ(I)

]
dMB(s)>−∞.

Letting k tend to zero, leads to the contradiction with our assumption. The proof is complete.

�

3. EXTINCTION

In this section, we present sufficient conditions for the extinction of the disease. For this, we

introduce the following threshold of our stochastic SIQS epidemic model (2) under switching
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as follows:

Rst =
∑

d
i=1 πiλ (i)

χ

µ
Ψ′(0)

∑
d
i=1 πi

(
(µ(i)+ρ(i)+ϑ(i)+ γ(i))+ η2(i)

2

(
χ

µ
Ψ′(0)

)2
)

Theorem 3.1. Assume that (S(t), I(t),Q(t)) be the solution of model (2) with any initial value

(S(0), I(0),Q(0)) ∈ Γ. We have

(a) If Rst < 1, then

limsup
t→∞

ln I(t)
t

≤
d

∑
i=1

πi

(
(µ(i)+ρ(i)+ϑ(i)+ γ(i))+

η2(i)
2

(
χ

µ
Ψ
′(0)
)2
)
[Rst−1]< 0 a.s.

i.e. the infected I(t) go to extinction with probability one.

(b) If
d

∑
i=1

πi
λ 2(m(t))

2η2(m(t))
≤

d

∑
i=1

πi (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t))), then the disease in

system (2) dies out with probability one.

Proof. (a) By virtue of Itô’s formula, we obtain

d ln I(t) =
1
I
{[λ (m(t))SΨ(I)− (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t)))I]

−η2(m(t))
2

(
S

Ψ(I)
I

)2
}

dt +η(m(t))
SΨ(I)

I
dMB(t)

=

{
λ (m(t))S

Ψ(I)
I
− (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t)))

−η2(m(t))
2

(
S

Ψ(I)
I

)2
}

dt +η(m(t))
SΨ(I)

I
dMB(t).(5)

Since the function g is increasing over the interval
[
0, λ (i)

η2(i)

]
and S ∈ Γ, then

d ln I(t) ≤
{

λ (m(t))
χ

µ
Ψ
′(0)− (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t)))

−η2(m(t))
2

(
χ

µ
Ψ
′(0)
)2
}

dt +η(m(t))
SΨ(I)

I
dMB(t).
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Therefore,

ln I(t)
t

≤ ln I(0)
t

+
1
t

∫ t

0

{
λ (m(s))

χ

µ
Ψ
′(0)− (µ(m(s))+ρ(m(s))+ϑ(m(s))+ γ(m(s)))

−η2(m(s))
2

(
χ

µ
Ψ
′(0)
)2
}

ds+
M (t)

t
,(6)

where M (t) =
∫ t

0
η(m(s))S(s)

Ψ(I(s))
I(s)

dMB(s) is local continuous martingale with M (0) = 0

and lim
t→∞

M (t)
t

= 0 a.s. Also, by the ergodic property of the Markov chain, we have

limsup
t→∞

1
t

∫ t

0

{
λ (m(s))

χ

µ
Ψ
′(0)− (µ(m(s))+ρ(m(s))+ϑ(m(s))+ γ(m(s)))

−η2(m(s))
2

(
χ

µ
Ψ
′(0)
)2
}

ds

=
d

∑
i=1

πi

{
λ (i)

χ

µ
Ψ
′(0)− (µ(i)+ρ(i)+ϑ(i)+ γ(i))− η2(i)

2

(
χ

µ
Ψ
′(0)
)2
}
.

By taking the limit superior on both sides of expression (6), we obtain

limsup
t→∞

ln I(t)
t

≤
d

∑
i=1

πi

{
λ (i)

χ

µ
Ψ
′(0)− (µ(i)+ρ(i)+ϑ(i)+ γ(i))− η2(i)

2

(
χ

µ
Ψ
′(0)
)2
}

a.s.

Hence

limsup
t→∞

ln I(t)
t

≤
d

∑
i=1

πi

(
(µ(i)+ρ(i)+ϑ(i)+ γ(i))+

η2(i)
2

(
χ

µ
Ψ
′(0)
)2
)
[Rst−1]< 0 a.s.

Thus, we conclude that lim
t→∞

I(t) = 0 a.s.

(b) If , in view of (5), we get

d ln I(t) =

{
λ 2(m(t))

2η2(m(t))
− (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t)))

−η2(m(t))
2

(
S

Ψ(I)
I
− λ (m(t))

η2(m(t))

)2
}

dt +η(m(t))
SΨ(I)

I
dMB(t).
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Then

limsup
t→∞

ln I(t)
t

≤
d

∑
i=1

πi
λ 2(m(t))

2η2(m(t))
−

d

∑
i=1

πi (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t))) ,

(8)

which implies

lim
t→∞

I(t) = 0 a.s.

�

Remark 3.1. The condition Rst < 1 implies the extinction of disease.

4. NUMERICAL EXAMPLES

In this section, we illustrate our theoretical result with the help of numerical simulations.

For this, we use the Milstein method (see, [18]), and we consider the Markov chain {m(t)}t≥0

taking values on the state space L= 1,2, with a generator defined by:

Φ =

 −1 1

2 −2

 .

and the stationary distribution π = (2/3,1/3). Figure 1 demonstrates the path of the Markov

chain {m(t)}t≥0. Then, we take the parameters in our stochastic system (2) as follows:

χ(1) = 1,λ (1) = 0.05,µ(1) = 0.1,γ(1) = 0.2,θ(1) = 0.1,ρ(1) = 0.1,ϑ(1) = 0.2,α3 = 0.1,

χ(2) = 1,λ (2) = 0.05,µ(2) = 0.1,γ(2) = 0.2,θ(2) = 0.1,ρ(2) = 0.1,ϑ(2) = 0.2,α3 = 0.1,

η(1) = 0.1,η(2) = 0.2

By simple computation we get

Rst =
∑

d
i=1 πiλ (i)

χ

µ
Ψ′(0)

∑
d
i=1 πi

(
(µ(i)+ρ(i)+ϑ(i)+ γ(i))+ η2(i)

2

(
χ

µ
Ψ′(0)

)2
) =< 1.

Therefore, from Theorem 3.1. the epidemic in the system (2) will disappear, Figure 2 support

this result. To see the noise effects on the model 2, we simulate the model 2 with two groups of
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noise values; (i) η(1) = 0.1, η(2) = 0.12, (ii) η(1) = 0.3, η(2) = 0.31. Figure 3.1. shows the

power of environmental noise to stop the propagation of the epidemic in the population. When

the noise value increases the epidemic will disappear quickly from the population.

5. CONCLUSION

In this work, we have proposed a stochastic SIS epidemic model with Markovian switching.

Then, we have proved the global existence of the positive solution. Also, we have given a

threshold value of our stochastic switched system that is used to determine the extinction of

disease in the population. Exactly,

• If Rst < 1, then

limsup
t→∞

ln I(t)
t

≤
d

∑
i=1

πi

(
(µ(i)+ρ(i)+ϑ(i)+ γ(i))+

η2(i)
2

(
χ

µ
Ψ
′(0)
)2
)
[Rst−1]< 0 a.s.

This means that I(t) will extinct with probability one.

• If
d

∑
i=1

πi
λ 2(m(t))

2η2(m(t))
≤

d

∑
i=1

πi (µ(m(t))+ρ(m(t))+ϑ(m(t))+ γ(m(t))), then the disease

in system (2) dies out with probability one.

From our analytical and numerical study, we found that the integration of random noises in the

deterministic system makes them more realistic and can control more rapidly the spread of the

epidemic in the population (see, Figures 2 and 3). In perspective, we want to make the model

(2) more realistic. For this, we will integrate the Lévy jumps into the system to represent the

massive and grave events caused by natural disasters and pandemic, etc.
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