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Abstract. Ever since the COVID-19 outbreak, numerous researchers have attempted to train accurate Deep Learn-

ing (DL) models, especially Convolutional Neural Networks (CNN), to assist medical personnel in diagnosing

COVID-19 infections from Chest X-Ray (CXR) images. However, data imbalance and small dataset sizes have

been an issue in training DL models for medical image classification tasks. On the other hand, most researchers

focused on complex novel methods instead and few explored this problem. In this research, we demonstrated

how Self-Supervised Learning (SSL) can assist DL models during pre-training, and Transfer Learning (TL) can

be used in training the models, which can produce models that are more robust to data imbalance. The Swapping

Assignment between Views (SwAV) algorithm in particular has been known to be outstanding in enhancing the
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accuracy of CNN models for classification tasks after TL. By training a ResNet-50 model pre-trained using SwAV

on a severely imbalanced CXR dataset, the model managed to greatly outperform its counterpart pre-trained in a

standard supervised manner. The SwAV-TL ResNet-50 model attained 0.952 AUROC with 0.821 macro-averaged

F1 score when trained on the imbalanced dataset. Hence, it was proven that TL using models pre-trained through

SwAV can achieve better accuracy even when the dataset is severely imbalanced, which is usually the case in

medical image datasets.

Keywords: deep learning; self-supervised learning; SwAV; chest X-Ray; data imbalance.
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1. INTRODUCTION

Ever since its outbreak in December 2019, the coronavirus disease 2019 (COVID-19) has be-

come a burden for humanity due to global massive incidences of the disease that are perpetuated

by its contagious and rapid spreading. The symptoms of COVID-19 are dependent on its host

and variant. According to the U.S. Centers for Disease Control and Prevention (CDC) 2020,

people who developed noticeable symptoms mainly experienced mild or moderate symptoms

(81%), while the rest developed severe (14%) and critical symptoms (5%) [1]. The moderate

symptoms were often followed by mild pneumonia, while severe and critical symptoms com-

monly involved hypoxia, dyspnea, respiratory failure, or multiorgan dysfunction. The chest

X-Ray imaging also showed more than 50% lung involvement [2]. To detect infections, the

Reverse Transcription Polymerase Chain Reaction (RT-PCR) test has been widely considered

the standard to confirm COVID-19 infection using samples from nasopharyngeal swabs [3].

Aside from RT-PCR, imaging detection can also be utilized for COVID-19 screening, such

as chest X-Ray (CXR) imaging and computed tomography [4, 5]. In most cases, the CXR-

based diagnosis of pneumonia caused by COVID-19 was determined based on the presence of

rounded morphology with ground-glass opacities in the chest imaging, which is characterized

by bilateral peripheral distribution associated with crazy-paving patterns [6]. In some peak

stages of COVID-19 infection, architectural distortion marked with subpleural bands also oc-

curred [7]. Those are typically used to differentiate cases of pneumonia caused by COVID-19

from those caused by other factors. Using those features, radiologists can manually interpret

the images to annotate the presence of COVID-19 pneumonia. As manual diagnoses are not
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efficient, researchers across the globe have attempted to implement computer-aided COVID-

19 diagnosis using Machine Learning (ML), especially the Deep Learning (DL) approach using

Convolutional Neural Networks (CNN), which can increase the efficiency and accuracy of early

diagnoses to assist radiologists in rapidly finding suspicious patterns on lung images [8].

Supervised learning is the most straightforward DL approach for early detection of COVID-

19 from CXR images by training DL models on labeled images [9]. The models are then

evaluated on an ‘unseen’ test set with the assumption that both the training and test sets are

obtained from the same data distribution. However, DL requires enormous volumes of data

to be accurate [10, 11] and minimize the risk of overfitting, which means that it may be inef-

fective when the number of available data is insufficient. Moreover, training the models from

scratch for a single specific task is exhaustive, which prompts researchers to deploy the Transfer

Learning (TL) approach. For tasks related to medical images, the approach utilizes the learned

knowledge of the models pre-trained on a large computer vision dataset such as the ImageNet

dataset and repurposes the knowledge to another computer vision task [12]. This transferred

knowledge can then be fine-tuned by using the zero, partial, or full network adaption [13]. TL

has been extensively implemented in many research publications on CXR-based COVID-19

classification. For example, in our previous work, we developed a CXR-based classification

model by using a DenseNet-121 backbone fine-tuned to classify lung diseases by combining

two public CXR datasets and obtained AUC scores above 80% for different task configurations

[14].

Another existing challenge in training DL models on medical datasets is the imbalanced

condition of the datasets [15]. As high-risk patients may be rarer, it is common for severe

imbalance to occur which will influence the performance of ML models, where the models’

predictions may lean towards the class with more samples [16]. For most studies related to

DL in analyzing CXR images, researchers typically preferred either augmenting the minority

classes as a method of oversampling or performing Random Undersampling (RUS) [17, 18, 19].

However, both have their own weaknesses. RUS may remove valuable data randomly and

cause sampling bias. In addition, the reduced number of data may be insufficient to train DL

models. On the other hand, the usage of oversampling will consume more training time and
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may possibly cause the models to overfit if the augmented samples were too similar [20]. In

other words, when the imbalance is too severe and too many augmented images were generated,

the model may focus too much on specific features of the images from the minority class and

fail to capture the relevant general features, resulting in accuracy degradation when evaluated

on unseen samples of the minority class.

More recent studies had delved into several pre-training algorithms for TL. The Self-

Supervised Learning (SSL) algorithm, especially the Swapping Assignments between Views

(SwAV) algorithm, in particular, has been conspicuous, proving that it can allow CNN models

to attain better accuracy on downstream tasks [21, 22]. This means that performing TL using

models that had been pre-trained using SwAV can yield better results, implying that they are

more capable of determining detailed distinguishing features of objects. A previous research

had proven this fact by pre-training a CNN on a CXR dataset using SwAV and performing TL

to train it on another CXR dataset, which proved that this method outperformed regular TL

models pre-trained in a supervised manner [23]. However, few have explored other potentials

of this method, including whether it is more robust against data imbalance. In this research, we

evaluated two types of CNN models, specifically the ResNet-50 CNN architecture, pre-trained

using SwAV and standard supervised learning on classifying CXR images without oversam-

pling. As the dataset is also imbalanced, the model pre-trained using SwAV may generalize

better as it possesses more knowledge on distinguishing similar features without regard to the

classes. This paper is organized as follows: section 2 presents some previous works related to

CXR classification using TL, section 3 describes the details of how the experiments in this study

were conducted, section 4 presents the obtained results and analyses, and section 5 presents the

conclusion of this research.

2. RELATED WORKS

The emergence of research dedicated to the analysis of CXR images to diagnose COVID-19

by using TL becomes more prevalent during the peak of the COVID-19 pandemic. In 2020,

Loey et al. used a Generative Adversarial Network (GAN) to augment CXR images from the

only available public CXR COVID-19 dataset at the time for retraining three different pre-

trained models (Alexnet, Googlenet, and Restnet18). Their finding showed that GoogleNet
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achieved an accuracy of 0.806 in classifying four classes of CXR images [24]. Similarly, Ra-

haman et al. compared 15 pre-trained CNN architectures to classify normal, regular pneumo-

nia, and COVID-19 CXR images, where the VGG19 model obtained an astounding accuracy

of 0.893 and F1 score of 0.90 albeit augmentation was still involved [25]. In another sim-

ilar research, Minaee et al. evaluated four pre-trained CNNs, namely ResNet18, ResNet50,

SqueezeNet, and DenseNet-121, in detecting COVID-19 infections from collected CXR im-

ages that were analyzed by certified radiologists to determine the labels. By using TL and

augmentation, the CNN models obtained around 0.9 specificity rates [26]. Overall, standard TL

had been successful in classifying CXR images when trained using augmentations.

Chouhan et al. utilized the ensembling of CNN models after TL to classify pneumonia on

the CXR images using five popular pre-trained CNN models. The output of each model were

then assembled to produce the final output. By using augmented images from the Guangzhou

Women and Children’s Medical Center dataset, the model achieved 0.964 accuracy and 0.9962

recall, respectively [27]. In another research, a similar method was also performed using four

public CXR datasets, where three pre-trained ResNet models were trained to perform binary

classifications using three datasets (Normal-COVID, Pneumonia-COVID, Normal-Pneumonia).

The models were then ensembled and further fine-tuned using the other dataset. The proposed

method outperformed the individual models with a precision of 0.94 and a recall of 1.0 [28].

However, such methods require huge computation workloads as standard DL is already com-

putationally expensive [29], not to mention the massive amount of data required to train the

models and the augmented images.

On the other hand, various SSL-based approaches had been exploited in recent studies of

CXR imaging classification. Liu et al. on elaborated self-supervised mean-teacher model pre-

training with semi-supervised fine-tuning called S2MT S2 method that was evaluated on CXR

datasets to perform multilabel classification. Using different proportions of the labeled and

unlabeled data, their method produced similar results on the CXR dataset with the supervised

approaches [30]. Azizi et al. proved that self-supervised pre-training on ImageNet followed

by further self-supervised pre-training on unlabeled CXR images improved the model’s perfor-

mance on CXR classification on test sets. Combining with an alternative of contrastive learning
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called Multi-Instance Contrastive Learning they showed that the method can beat the perfor-

mance of supervised approaches on the testing sets [31].

More recent studies have demonstrated how SSL can be exploited for CXR-based COVID-19

classification. Abbas et al. proposed a TL approach to repurpose large-scale image classification

tasks to COVID-19 detection on CXR using a self-supervised sample decomposition method.

The approach called 4S-DT can deal with imbalanced class distribution in the dataset. Their

method can attain high accuracies for the classification task [32]. In another study, Gazda et

al. utilized self-supervised pre-training of deep CNN on CheXpert images with removed labels

using contrastive learning approaches. The pre-trained models were then used to classify pneu-

monia types and COVID-19 recognition on different datasets. The results showed comparable

results with supervised methods without using a large number of labeled datasets [33], which

further proved the prowess of SSL. All in all, SSL and SwAV have yet to be fully explored for

CXR image classification.

3. RESEARCH METHODOLOGY

3.1. Dataset. This research utilized the COVID-19 Radiography Database as a training

dataset to run the CXR image classification task [18, 34]. The data acquired was split into

four classes, containing 3616 images of positive COVID-19 cases, 10192 normal, 6012 lung

opacity (non-COVID lung infections), and 1345 cases of viral pneumonia. The creator of the

dataset also provides lung segmentation masks for all images, enabling segmentation to be done

before training the DL models. Figure 1 shows the original image samples along with their re-

spective segmentation masks for each class provided by the dataset. Images with irregularities

were shown in the figure, such as texts and an arrow in Figure 1(A), an arrow in Figure 1(B),

black-padded different-sized images in Figure 1(C), and cropped lung images in Figure 1(D).

Therefore, the segmentation masks are used in segmenting the images before feeding them into

the DL models and allowing the models to focus only on the lung areas of the images.
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FIGURE 1. Examples of irregularities for each class of the dataset: (A)

COVID, (B) Lung Opacity, (C) Normal, and (D) Viral Pneumonia

FIGURE 2. Distribution of images in each class of the train set
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3.2. Data Pre-processing. All of the images were first segmented using the segmentation

masks provided. The segmented images were then scaled down to 224 × 224 pixels. After-

wards, the images were split into train, validation, and test sets with a ratio of 60:20:20. In this

research, the impact of data imbalance was also studied. Therefore, an undersampled version

of the dataset was generated using Random Undersampling (RUS). It should be noted that RUS

was only performed on the train set. As a result, two versions of the train set: (a) original imbal-

anced and (b) undersampled balanced were used and compared in training the models, meaning

that two experiment scenarios were performed. The distribution of data for each version of the

train set were listed in Figure 2. Following the approach from the previous research [14], the

images were augmented using random horizontal flipping. However, it should be noted that the

augmentation was only performed on the train set. All of the images were then normalized to

floats in the range of 0 to 1 and standardized where the values of mean and standard deviation

were set to [0.485, 0.456, 0.406] and [0.229, 0.224, 0.225]. These standardized images were

the ones used as inputs for the models.

3.3. Transfer Learning from Self Supervised Learning. In cases where the size of the

dataset is insufficient to allow DL models to generalize, TL has been a broadly adopted method

to assist the training of the models [35, 36]. Its main goal is to aid the models in obtaining

better target predictive function fT (.) for the target task TT based on the target domain DT .

The models are first trained on a pretext task using the source domain DS and source task TS,

and the knowledge they obtained is transferred by retraining the models using DT and TT for a

downstream task. Mathematically, TL can be formulized as follows:

DS = {(xS1,yS1),(xS2,yS2), ...,(xSn,ySn)},TS = {yS, f (.)}

DT = {(xT 1,yT 1),(xT 2,yT 2), ...,(xT n,yT n)},TT = {yT , f (.)}
(1)

where x and y denotes the input data and their labels, respectively. The goal is to improve f (.)

by using the transferred knowledge from DS and TS [37]. In this research, the heterogenous TL

method was adopted, in which DS 6= DT and TS 6= TT . The ImageNet dataset [38] in particular,

which contains more than three million images, has been widely used to pre-train proposed DL
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models through supervised learning [39, 40, 41]. In general, this method has proven effective

in various DL studies [36, 42, 43].

Aside from the supervised learning approach, SSL in the form of Contrastive Learning (CL)

has been a prominent approach in pre-training DL models on pretext tasks [23]. CL trains DL

models to cluster samples, allowing them to identify the same object from different augmented

views [21]. This means that models trained using CL should be capable of distinguishing differ-

ent representations of the same object, making them more robust compared to standard super-

vised models. The SwAV algorithm in particular is one of the most successful algorithms with

the best accuracy among similar CL algorithms albeit inferior to standard supervised models.

Inspired by contrastive instance learning, SwAV trains the models to differentiate various views

of an image by comparing the cluster assignments produced instead of their features. This was

done by utilizing the multi-crop strategy and trainable prototypes.

Figure 3 illustrates how SwAV was performed. First, the multi-crop augmentation was per-

formed to generate various views of the input image X , resulting in the randomly cropped X1 and

X2 which were further augmented using random horizontal flip. Color distortion and Gaussian

blurring were then performed on X1 and X2, which were later fed into the model Fθ . The output

embeddings Z1 and Z2 were produced, and dot product operations were performed on Z1 and

Z2 by using the prototype vector C to produce the scores Z1.C and Z2.C. The Sinkhorn-Knopp

algorithm was used to assign the clusters from Z1.C and Z2.C, resulting in the codes Q1 and Q2.

In computing the loss, the assignments were then swapped as described in the equations below.

p(k)t =
exp(1

τ
(Zt ·Ck))

∑k′ exp(1
τ
(Zt ·Ck′))

(2)

L(Zt ,Qs) =−∑
k

Q(k)
s ∗ log(p(k)t ) (3)

L(Zt ,Zs) = L(Zt ,Qs)+L(Zs,Qt) (4)

where k denotes the number of prototypes used and τ is a temperature variable used for softening

the scores. As shown in equation 3, the loss function used is the Cross-Entropy (CE) loss, which

were later averaged and the mean CE loss was used in back-propagating the model’s parameters

as well as C [22].
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FIGURE 3. Illustration of the process of SwAV: (1) multi-crop augmentation,

(2) output forward pass, (3) dot product, (4) cluster assignment, and (5) loss

calculation

On most computer vision downstream tasks, performing TL on models trained using SwAV

had produced better results compared to standard supervised learning [21, 22]. In a recent re-

search, TL from SwAV had also been used for distinguishing COVID and normal lung X-Ray

images and had proven to be superior to other TL models [23]. However, this implementation

was still limited to binary classification and has yet to be tested on independent test sets. There-

fore, deeper analyses on TL using SwAV for X-Ray image classification were conducted in this

research by using four classes of chest X-Ray images. The results were also compared to that

of TL using standard supervised method.

In this research, two ResNet-50 models were trained on the COVID-19 Radiography Data-

base. Both models were pre-trained on the ImageNet dataset, one pre-trained using SwAV,

which will be referred to as SwAV-TL in the following sections of this paper, and the other

using standard supervised learning. First, all layers of the models were frozen and the output

layer was directly attached on top of them. As the architecture of ResNet-50 consists of five

convolution blocks and TL can still be performed by unfreezing some of the models’ layers,

the models were then trained with various number of unfrozen convolution blocks. Each model

was fine-tuned by performing hyperparameter grid search. Five fine-tuned models were trained

in total for the SwAV-TL and supervised versions, respectively, with 0, 1, 2, 3, and 4 unfrozen

blocks counted from the output layer. The models were then evaluated on the test set and the

results are presented in section 4.
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3.4. Evaluation Metrics. For this multiclass CXR image classification task, confusion ma-

trices were generated for each model. Several classification metrics were then derived from the

matrices. In addition, the Area Under Receiver Operating Characteristic curve (AUROC) was

also calculated.

3.4.1. Confusion Matrix. The confusion matrix or the error matrix is a visualization of clas-

sification tasks that presents the actual and predicted classes of data used by the classification

algorithm [44]. For DL classification models, the matrix has widely been used to provide de-

tailed information about the number of True Positives (TP), True Negatives (TN), False Posi-

tives (FP), and False Negatives (FN) for each class of the dataset. An illustration of the matrix

is provided in Table 1.

TABLE 1. An illustration of a binary-class confusion matrix.

Actual

Predicted
Positive Negative

Positive T P FN

Negative FP T N

As the dataset used is imbalanced, the accuracy metric is not calculated in this experiment.

It should also be noted that the models were also trained using the imbalanced dataset without

resampling, meaning that it is possible for some of the models to have null precision in some

classes. Therefore, only the recall/sensitivity/True Positive Rate (TPR), specificity/True Nega-

tive Rate (TNR), miss rate/False Negative Rate (FNR), and fall-out/False Positive Rate (FPR)

are calculated in this research. These metrics are calculated as follows.

Recall = T PR =
T P

T P+FN
(5)

T NR =
T N

T N +FP
(6)

FNR =
FN

T P+FN
= 1−T PR (7)

FPR =
FP

T N +FP
= 1−T NR (8)
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The precision and F1 score were only calculated for the best model of the research to compare

the models to that of previous studies. These two metrics were calculated as follows:

Precision =
T P

T P+FP
(9)

F1score = 2∗ Precision∗T PR
Precision∗T PR

(10)

3.4.2. AUROC. In addition to the metrics explained above, the AUROC has also been a reli-

able performance indicator for classification models. The ROC is a plot of TPR on the Y-axis

and FPR on the X-axis for each class on various discrimination thresholds in the form of a

probability curve. In other words, it describes the prowess of a classification model in distin-

guishing each class from the other classes of the dataset, meaning that it evaluates the binary

classification ability of each class. The AUROC represents the degree of separability for each

class. The higher its value is, the better the model is at distinguishing the specified class from

other classes. The value of AUROC ranges from 0 to 1, where 1 indicates a better classification

ability [45].

3.5. Experiment Setup. The experiments were conducted using the Python programming

language and PyTorch DL framework. In tuning the hyperparameters, the HyperOpt library

[46] was utilized to perform a grid search in determining the optimal learning rate lr and L2

regularizer weight decay λ , where lr ∈ {1e−2,1e−3,1e−4,1e−5} and λ ∈ {0,1e−1,1e−

2,1e−3,1e−4,1e−5,1e−6}. All of the models were trained for 50 epochs using the Adam

optimizer and CE loss. For each type of TL, the models were trained on the two scenarios:

(a) using the original imbalanced dataset and (b) using the undersampled balanced dataset.

This means that a total of 20 models were trained, 10 for each TL type. Class weighting was

utilized in training the models on the imbalanced dataset. As a multiclass classification task was

performed in this research, all of the reported metrics had been macro-averaged.

4. RESULTS & DISCUSSION

4.1. Training Results. Figure 4 summarizes the performance of each model during the train-

ing phase. It can be seen that the SwAV-TL models are able to obtain lower validation loss, both

on the imbalanced and balanced dataset. On the imbalanced dataset, only the SwAV-TL model
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with 4 unfrozen blocks attained validation loss < 0.1. Similar results were also observed on

the balanced dataset, where the SwAV-TL models with 3 and 4 unfrozen blocks obtained less

than 0.10625 validation losses. However, increasing the number of unfrozen blocks resulted in

overfitting on all of the models despite the lower validation losses. Such results indicate that

the number of training data is insufficient for the ResNet-50 models to generalize well on both

datasets. The gap between the train and validation losses is even larger on the models trained

using the balanced dataset, an outcome which is expected as RUS was used which reduces the

number of train data as shown in Figure 2. To further validate whether TL using SwAV is more

robust to overfitting, the models’ performance on the test data had to be analyzed.

FIGURE 4. Comparison of the training and validation CE loss of each model

trained using TL with: (A) 0 unfrozen blocks, (b) 1 unfrozen block, (C) 2

unfrozen blocks, (D) 3 unfrozen blocks, and (E) 4 unfrozen blocks
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TABLE 2. Evaluation results of the models trained on the imbalanced dataset.

Pre-training Method Unfrozen Blocks TPR TNR FNR FPR AUROC

Supervised

0 blocks 0.25 0.75 0.75 0.25 0.825

1 block 0.285 0.77 0.715 0.23 0.88

2 blocks 0.416 0.847 0.584 0.153 0.914

3 blocks 0.25 0.75 0.75 0.25 0.863

4 blocks 0.25 0.75 0.75 0.25 0.862

SwAV

0 blocks 0.445 0.848 0.555 0.152 0.886

1 block 0.808 0.938 0.192 0.062 0.952

2 blocks 0.472 0.878 0.528 0.122 0.934

3 blocks 0.487 0.885 0.513 0.115 0.944

4 blocks 0.46 0.873 0.54 0.127 0.933

4.2. SwAV-TL Showed Exceptional Capability in Facing Data Imbalance. Evaluation re-

sults on the models trained on the imbalanced dataset were compiled in Table 2. From the

AUROC alone, it is clear that the SwAV-TL models outperform the supervised models on this

downstream task, a result that parallels the findings from previous studies [23, 21, 22]. This

means that SwAV-TL is confirmed to be more robust to overfitting, even when trained on the

imbalanced dataset. Further observation on the TPR and TNR also implies that the supervised

models were greatly affected by the class imbalance. Most of the supervised models obtained

exactly 0.25 TPR and 0.75 TNR in four-classes classification, which implies that the models

classify all of the test samples into a single class. Such results are expected in cases where the

train data are severely imbalanced, as the ”Normal” class contains almost eight times more sam-

ples compared to the class with the least number of samples, which is the ”Viral Pneumonia”

class. Even the class with the second largest number of samples, which is ”Lung Opacity”, only

contains 58.98% of the number of samples in the ”Normal” class.

On the other hand, the SwAV-TL models obtained considerably better results, with the best

model acquiring 0.952 AUROC. This model, which only has one unfrozen block, obtained an

astounding performance with 0.808 TPR and 0.938 TNR. These results are vastly better than
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the rest of the models, as the other SwAV-TL models failed to even achieve 0.5 TPR despite the

high TNR. The low TPR means that the models are prone to false negatives, which can lead to

a lot of undetected diseases. Such results parallel with a similar research on TL, which have

proven that albeit models with more unfrozen blocks can achieve lower validation losses, they

may not be the best on the independent test dataset [42].

In spite of the high AUROC, the supervised model with two unfrozen blocks still possessed

lower TPR and TNR compared to the worst SwAV-TL model, which is the model with 0 un-

frozen blocks which achieved 0.886 AUROC. Such results may be attributed to the fact that the

SwAV-TL models were previously trained to cluster similar features of augmented images to-

gether [21], meaning that such models may have better general knowledge in grouping images

with details and features that are generally similar on the downstream tasks while being robust

to image transformations [22]. In simpler words, the models could have better knowledge in

grouping images that are similar by highlighting detailed features that are more general com-

pared to the supervised models which were trained to focus on extracting detailed distinguishing

features of each class. Therefore, it can be inferred that TL using SwAV pre-training can result

in better performance for models trained on imbalanced datasets.

4.3. Undersampling Resulted in Generally Better Results. To further verify whether TL

using SwAV-TL is only advantageous on imbalanced datasets, experiments were also conducted

on the undersampled version of the dataset. However, the number of samples used in training

was significantly reduced and sampling bias may have affected the models due to the usage of

RUS. The evaluation results were listed in Table 3. Although the performance of most of the

models greatly improved when trained on the imbalanced dataset, the SwAV-TL models still

managed to outperform all of their supervised counterparts. The best results were achieved by

the SwAV-TL model with 3 unfrozen blocks, which maintained 0.948 AUROC, which is only

slightly lower than that of the best SwAV-TL model on the imbalanced dataset. The difference

is that on the imbalanced dataset, the other SwAV-TL models were unable to obtain at least

0.5 TPR whereas on the balanced dataset most of the models managed to obtain more than

0.76 TPR. Such results were expected as imbalanced distribution of data can severely affect the

models.
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TABLE 3. Evaluation results of the models trained on the undersampled

dataset.

Pre-training Method Unfrozen Blocks TPR TNR FNR FPR AUROC

Supervised

0 blocks 0.251 0.75 0.749 0.25 0.791

1 block 0.586 0.822 0.414 0.178 0.888

2 blocks 0.532 0.801 0.468 0.199 0.921

3 blocks 0.378 0.801 0.622 0.227 0.904

4 blocks 0.643 0.845 0.357 0.155 0.928

SwAV

0 blocks 0.608 0.84 0.392 0.16 0.861

1 block 0.769 0.898 0.231 0.102 0.928

2 blocks 0.77 0.909 0.23 0.091 0.929

3 blocks 0.817 0.923 0.183 0.077 0.948

4 blocks 0.794 0.921 0.206 0.079 0.945

One intriguing fact from the results is that the performance boosts of the supervised models

are much greater than the SwAV-TL models. They obtained an average of 68.31% and 3.44%

improvement in TPR and TNR respectively compared to the ones trained on the imbalanced

dataset. The supervised model with 4 unfrozen blocks in particular had the highest improve-

ment with 157.09% and 12.62% higher TPR and TNR. However, the SwAV-TL models only

obtained an average of 46.94% and 1.62% improvement of TPR and TNR, with the highest im-

provement of 72.55% and 5.55% better TPR and TNR on the SwAV-TL model with 4 unfrozen

blocks. Such results also indicate that the SwAV-TL models are more robust when trained on

imbalanced data. Additionally, the performances of the SwAV-TL models are still superior to

the supervised models, which means that in the future, the usage of DL models trained using

SSL for TL purposes can bring about significantly better results in cases where the used dataset

is small or imbalanced.

4.4. The Impact of Dataset Size and Class Imbalance. Figure 5 presents the confusion

matrices of the best models. Due to the severe data imbalance, the supervised models trained on

the imbalanced dataset were unable to classify the images as COVID or Viral Pneumonia, which
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FIGURE 5. Confusion matrices of the best models for each scenario

FIGURE 6. ROC curves of the best (A) SwAV-TL and (B) supervised models

explains the low TPR in Table 2 and is an expected behavior for the model as the imbalance

is severe. On the contrary, the SwAV-TL model still managed to correctly classify most of the

images despite the imbalanced training dataset, further proving the idea that models trained

using SwAV may be more robust to data imbalance on downstream tasks. When trained on the

balanced dataset, the supervised model managed to make more correct predictions for COVID,

lung opacity, and viral pneumonia cases. However, its TPR plummets as a lot of false negatives
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for the normal class emerged. Such occurrences may be attributed to the sampling bias and the

insufficient number of data as the balanced dataset only contained 25.43% data from the original

dataset. More details on the classification metrics of the models are listed in Table 4, which

shows that the SwAV-TL model trained on the imbalanced dataset is the overall best model

with 0.821 F1 score. Evaluation results of the supervised model trained on the imbalanced

dataset were not included as the precisions were null for the COVID and Viral Pneumonia

classes. Figure 6 visualizes the ROC curves for the best SwAV-TL (trained on the imbalanced

dataset) and supervised (trained on the balanced dataset) models.

TABLE 4. Evaluation results of the best models.

Model Dataset Precision Recall / TPR F1 AUROC

SwAV - 1 Unfrozen Block Imbalanced 0.843 0.808 0.821 0.952

SwAV - 3 Unfrozen Blocks Balanced 0.717 0.817 0.744 0.948

Supervised - 4 Unfrozen Blocks Balanced 0.685 0.643 0.587 0.928

Although the balanced dataset increased the number of TP for COVID and viral pneumonia

classes, the TP of the other 2 classes got reduced for the SwAV-TL models. As the model

still obtained good results even when trained on the imbalanced dataset, it can be inferred that

the key factor of performance degradation here is the smaller number of training samples. In

other words, models that are transferred after being trained using SwAV may be able to achieve

better results when trained on larger datasets, even if the datasets are imbalanced. However,

the limits for the imbalance severity have yet to be determined, which may be further studied

in future studies. All in all, this method may bring positive impacts for other medical image

classification tasks where the dataset is imbalanced and augmenting the data is not preferable

due to hardware limitations, or when the imbalance is so severe that too much augmentation is

required to balance the data distribution.

4.5. Discussion. While the best SwAV-TL model managed to obtain 0.952 AUROC, there

were still some false negatives, especially in the COVID class. This means that the model

can still be improved. As the images were not enhanced during the pre-processing and only
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TABLE 5. Comparison of the best SwAV-TL model with previously developed

CNNs using the same dataset.

Reference

Number of

Classes and

Samples Used

Resampling Method Accuracy F1 AUROC

[23]
COVID: 3615

Normal: 3647

Undersampling

on the train and

test sets

ResNet-50

pre-trained using

SwAV on the

iNat2021 Mini

dataset

0.9917, 0.8824

for the standard

supervised

ResNet-50

0.99175, 0.8232

for the standard

supervised

ResNet-50

-

[18]

COVID: 423

Non-COVID

Pneumonia: 423

Healthy: 423

Undersampling

on the train,

validation, and

test sets

CheXNet 0.9774 0.9661 -

[47]

COVID: 3616

Lung Opacity:

6012

Normal: 10192

Viral Pneumonia:

1345

-

Keras

InceptionV3 with

2 hidden layers

0.9972 - -

[48]

COVID: 3616

Lung Opacity:

6012

Normal: 10192

Viral Pneumonia:

1345

Augmentation to

oversample

EfficientNetB1

with 1 hidden

dense, batch

normalization,

and dropout

layers,

respectively

0.9613 0.975 -

Ours

COVID: 3616

Lung Opacity:

6012

Normal: 10192

Viral Pneumonia:

1345

-
ResNet-50 TL

using SwAV
- 0.821 0.952

horizontal flipping was used to augment the data, such methods may further be explored along

with the SwAV-TL models or other CNN architectures pre-trained using SwAV in future studies.

However, it should be noted that most similar studies utilizing this dataset did not use the four

available classes [23, 18]. The ”Lung Opacity” class was rarely used, and a lot of previous
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studies that utilized the COVID-19 Radiography Database combined it with X-Ray images

from other datasets to allow DL models to learn from more data and enhance their accuracy.

In studies that include usages of lung opacity classes, some performance degradations may be

noticeable, which are signified by the reduction in F1 scores as shown in Table 5.

Table 5 summarizes the comparison of the SwAV-TL model with models deployed in previ-

ous studies using the COVID-19 radiography database. It can be seen that the results obtained

by the SwAV-TL model are inferior to all of the listed studies. However, it should be noted that

the datasets were configured differently, where some even undersampled the test set [23, 18]

which may be affected by sampling bias. Additionally, the different proportions of the dataset

subsets will produce different results due to the larger number of training data. In one of the

cited study, 70% of the images in the dataset was used for training the models and the former

was further augmented to handle the data imbalance, which yield an astounding F1 score of

0.9275 [48]. In one study that is similar to this research, no further details were provided re-

garding the proportions or model architectures albeit the authors stated that no augmentation

was performed in one of the experiment scenarios, which results were included in Table 5. To

summarize, the proposed SwAV-TL model is inferior to the ones in previous studies, but fur-

ther experiments are still required as slightly different training configurations can greatly affect

the model. In future studies, TL using SwAV can be further tested by training the models on

oversampled train sets and more modifications on the model may be conducted as no modifica-

tions nor hidden layers were implemented in this experiment. Specifically, model compression

methods can also be considered to be adopted in future studies to improve the efficiency of the

models in deployment stages.

5. CONCLUSION

Overall, TL using models pre-trained through SwAV had brought positive impacts for the task

of classifying chest X-Ray images even when the available datasets are either imbalanced or

small. The ResNet-50 models used in this study had proven to be more robust to the severe data

imbalance and attained a great AUROC value when pre-trained using SwAV, proving that it is

superior to standard supervised pre-training. Even though TL using SwAV pre-training allowed

the models to perform better, further experiments are required to discover to what extent it can
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improve the accuracy. The experiments conducted in this research are limited to the training

of ResNet-50 without resampling and with undersampling. In the future, oversampling with

augmentations can be tested on TL using SwAV, and smaller models may be deployed as large

models such as the ResNet-50 require massive volumes of data.
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