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Abstract: Small Area Estimation is a good method for estimating parameters with a limited number of samples or 

none at all. The method’s development is continuously carried out in line with the development of types of data 

encountered in research. One of developments is in estimating parameters for the case of panel data with auxiliary 

variables containing measurement errors. This condition is often encountered in the use of survey data. One of most 

useful surveys in Indonesia about this issue is Susenas or the National Socio-Economic Survey. Since 2015, the 

Susenas has been implemented in two periods a year, that is in March and September. In March, data is collected with 

a representative sample size for an estimate at up to the district/city level. As for the Susenas in September, the data 

collected is less representative for an estimate at up to the provincial level. The September data collection object is 

part of the March data collection object, thus some repeated sample units are found in the September and March data. 

A variable of concern in this study is the average consumption per capita that has an asymmetrical distribution. One 

approach for this case is the lognormal distribution-based modeling. The use of information that has measurement 

error as an auxiliary variable in the form of a random variable is deemed capable of producing a better estimate. For 
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the repeatedly-obtained data, a first-order autoregressive model approach is applied. In this study, a Small Area 

Estimation method was developed to handle a small sample size under the repeated data condition, as well as the use 

of information in the March period as an auxiliary variable with measurement errors. 

Keywords: first-order autoregressive; small area estimation; Susenas; measurement error. 

2010 AMS Subject Classification: 97K80, 91G70. 

 

1. INTRODUCTION 

The general survey design challenge is to draw conclusions at a specified level of precision at 

minimal cost, or to achieve the best precision at a given cost. In addition, a lower response rate to 

the survey may increase the risk of non-response bias. The influential factor is a proper sample 

selection, which provides an accurate response in a survey or research. When the response to a 

survey differs from the actual expected response, a measurement error occurs. Besides, a 

measurement bias occurs when the response tends to differ from the true value in one direction. 

The measurement error and bias should be considered and minimized at the survey design stage 

[14]. 

The assumption in the Small Area Estimation model is that auxiliary variables are measured 

without error [9]. Therefore, the commonly-used auxiliary information is data from the census and 

administrative or registry data. The development of a Small Area Estimation model with 

measurement errors occurs when the auxiliary variable in the Small Area Estimation is assumed 

to contain no errors as it comes from the census or administrative data. However, in reality, the 

census and administrative data are often times completely unavailable and up-to-date to serve as 

auxiliary information. Accordingly, the solution is to use survey data as auxiliary information in 

the Small Area Estimation model despite a consequence that the use of survey data may contain 

sample errors. Modeling the Small Area Estimation with a measurement error is necessary to 

minimize a bias in the model. 

In order to meet the government’s needs of data, especially in shorter time intervals (from 

once to twice a year or more), since 2011, the Statistics Indonesia has made changes in the 
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implementation of Susenas or the National Socio-Economic Survey. Important changes in the 2011 

Susenas implementation, which were continued until 2014, include: (1) data collection is carried 

out four times a year, from the previous twice a year; (2) consumption data is collected in all the 

periods of data collection (to produce representative poverty rate figures at up to district/city level), 

from the previous once a year, except in the year the consumption/expenditure module changes, 

to twice that year to produce provincial and national poverty rates [18]. 

In general, direct estimation is a classic approach to estimate small-area parameters based 

on the application of a design-based model [7]. In relation to the 2015 Susenas data collection, the 

small sample size in September became a consideration of the Small Area approach in making 

estimates. The direct estimation method on a small area does not have sufficient accuracy due to 

the small size of samples taken to obtain the estimates. Direct estimation of a small area is an 

unbiased estimator but it has a large variance as it is obtained from small sample size [7]. 

Fuller (1987) stated that measurement error affects the slope of the regression curve and the 

presence of measurement error weakens the regression coefficient [19]. The measurement error 

causes bias in parameter estimation in statistical models, the detection of relationships between 

variables is lost, and analysis of graphical models becomes difficult due to the fact that the data 

depiction is unreal [15]. 

Sample data from a survey can be used to obtain direct estimates for a large area. For example, 

estimates of the average monthly household income in a sub-district are based solely on survey 

data available or obtained from that sub-district. In a research related to income and personal 

wealth, an asymmetrical observation response, which is skewing to the right, is often found. 

Karlberg (2000) estimated the total population of survey variables with very long skewing from 

small sample size [4]. Doing so by applying the direct method would be problematic for two 

reasons: (i) when there are no extreme values in the sample, the prediction is too small, and (ii) if 

there are extreme values in the example, the prediction becomes very large. The traditional method 

of dealing with outliers usually compensates for outliers in the example, so the reason point (ii) is 

avoided, while a small negative bias in point (i) remains. Thorburn (1991) suggested to use the 
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lognormal superpopulation model to estimate in such cases [1].  

Muchlisoh et al. (2017) [17], developed a Small Area Estimation model with a first-order 

autoregressive random effect which was the development of a model by Rao-Yu (1994) [8]. In 

estimation using the model by Rao-Yu (1994) [8], the variance of the sampling error is assumed 

to be known, but in practice, it is frequently unknown. Datta et al. (2002) made an estimate by 

applying the Jackknife method and several smoothing techniques [6]. Esteban et al. (2012) 

implemented the Generalized Variance Function (GVF) approach [10].  

Battese et al. (1988) [5] and Prasad and Rao (1990) [13] used a unit-level nested error linear 

regression model in which the covariate was not subject to measurement error. When the auxiliary 

information is available at the individual level, the underlying model is called a nested error 

regression model. Ghosh et al. (2006) proposed a nested error linear regression population model 

with an area-level covariate, x, which is a subject with a measurement error [11]. 

Tanur et al. (2018) [2] applied the 2015 Susenas data to the model in Torabi et al. (2009) 

[12]. This study applied Small Area Estimation to improve the accuracy of the estimated average 

consumption per capita from the September data collection by using information from the March 

period. In this study, the model approach by Ghosh et al. (2006) [11] was compared with the model 

by Torabi et al. (2009) [12] to estimate the average consumption per capita in West Java Province 

in 2015. 

Tanur et al. (2021) conducted a study that developed a method of estimating small areas in 

populations that were asymmetrical with the auxiliary variables from the survey results [3]. 

Developing the Small Area Estimation method is important to improve the effectiveness of the 

small sample size for the September period, so that the estimator value for per-capita expenditure 

or consumption is obtained by using information available in the March survey. 

The remaining part of the paper is organized as follows: Section 2 discusses the research 

objectives; Section 3 describes the basic model in detail; Section 4 describes the development 

model in detail; Section 5 describes the results of the model evaluation; Section 6 discusses the 

results of the application of the developed model; and Section 7 concludes the paper. 
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The 2015 Susenas data collection case shows that the September data collection is part of 

samples that become the object of the March data collection (partially repeated). In this case, 

results of the March and September data collection of Susenas are interrelated panel surveys. 

Information from the March data collection can also be used as an auxiliary variable that has 

measurement errors in making estimates. It is necessary to develop an alternative for small area 

estimation for partially repeating data (autoregressive model) with the auxiliary variables for the 

March data collection as variables containing measurement errors. More details can be seen in 

Figure 1. 

 

 

 

 

 

 

 

 

 

Figure 1. Research Problem Formulation 

 

From the background and problems presented, the research question is on how to obtain a 

small-area estimation that uses the September data collection by considering the effect of time 

element, with March as the first period (t1) and September as the second period (t2). 

 

2. RESEARCH OBJECTIVES 

This study aimed to obtain a Small Area Estimation model by considering the condition of partial 

panel data at the unit level and the presence of non-repeating sample elements as auxiliary 

variables, as well as the use of information with measurement errors because it was the result of a 

Registered 

September 

Susenas 

Not 

Registered 

The sample size is 

small, which can only 

predict the provincial 

level 

Data 

Panel 

The sample size is large, 

which can predict the 

provincial to the 

district/city levels 

March 

Susenas 

Registered 

Not 

Registered 



6 

TANUR, KURNIA 

survey. The model development was carried out under a condition in which some sub-districts (as 

the unit level in the study) were recorded twice. This was identified as a panel case or AR(1) by 

considering information on other sub-districts recorded in March only. Information from the 

March data collection would be used as an auxiliary variable for the area level that had 

measurement errors in the two periods. 

The September data of Susenas could be identified as some examples that become the object 

of the March data collection (partially repeated). There were units (sub-districts) recorded twice 

and some were only recorded once in the two periods of the 2015 Susenas data collection. In 

addition, there was information obtained from the March Susenas data collection for the 

district/city level that could be used as additional information. However, because the information 

from the March Susenas is the result of survey data, it is assumed that there is a measurement error 

in its use. It is necessary to develop an alternative for Small Area Estimation for partially repeating 

data (panel) by using information on auxiliary variables containing measurement errors. This study 

applied a lognormal approach in estimating the average consumption per capita for the first-order 

autoregressive model by considering the occurrence of measurement errors in the auxiliary 

variables. Due to the limited information from the September survey results, making Small Area 

Estimation is the right approach to this problem. 

 

3. BASIC MODEL 

The basic model in this estimation refers to the model proposed by Muchlisoh (2017), hereinafter 

referred to as the SAE-AR1 model [17].  

𝑦𝑖𝑡𝑗 = x𝑖𝑡𝑗
′ 𝛽 + 𝑣𝑖 + 𝑢𝑖𝑡 + e𝑖𝑡𝑗, (1) 

𝑢𝑖𝑡 = 𝜌𝑢𝑖,𝑡−1 + 𝜀𝑖𝑡,       |𝜌| < 1, 

The 𝛽 component is the coefficient of the auxiliary variable. The notation 𝑖 is a small area index 

which is defined to move from 1 to 𝑚 (the number of small areas). The notation 𝑡 is a time index 

that moves from 1 to 𝑇. The notation 𝑗 is the sample unit in the 𝑖-th small area at the 𝑡-th time, 

which moves from 1 to 𝑛𝑖𝑡 (the number of sample units in each small area). The component 𝑣𝑖 
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is the random effect of area 𝑖 which is assumed to follow a normal distribution with a mean of 0 

and a variance of 𝜎𝑣
2 (𝑣𝑖~𝑁(0, 𝜎𝑣

2)). The 𝑢𝑖𝑡 component is a time-area random effect which is 

assumed to follow a first-order autoregressive process in every small area 𝑖. The component 𝜀𝑖𝑡 

is the error of 𝑢𝑖𝑡  which is assumed to follow a normal distribution with a mean of 0 and a 

variance of 𝜎𝜀
2 (𝜀𝑖𝑡~𝑁(0, 𝜎𝜀

2)). The e𝑖𝑡𝑗 component is the error of y𝑖𝑡𝑗 which is assumed to 

follow a normal distribution with a mean of 0 and a variance of 𝜎e
2 (e𝑖𝑡𝑗~𝑁(0, 𝜎e

2)). The 𝜌 

component is an autoregressive coefficient with an absolute value of less than 1. The random 

effects of 𝑣𝑖, 𝑢𝑖𝑡 and e𝑖𝑡𝑗 are assumed to be independent.  

The next basic model is a Small Area Estimation model with measurement errors on the 

auxiliary variables proposed by Tanur et al. (2021) [3]. 

y𝑖𝑗
∗ = X𝑖𝑗

′ β + w𝑖𝛼 + 𝑣𝑖 + e𝑖𝑗, (2) 

with: W𝑖 = w𝑖 + 𝜂𝑖. 

where y𝑖𝑗
∗ = 𝑙𝑜𝑔(y𝑖𝑗), 𝑦𝑖𝑗 is the value of the research response variable for the 𝑗-th unit in the 

𝑖-th area. The variable X𝑖𝑗 is a auxiliary variable at the unit level in the 𝑖-th area (fixed effect). 

The variable w𝑖  is an unknown true area-specific covariate with respect to 𝑦𝑖𝑗 , where w𝑖 

follows a normal distribution with mean μ𝑤 and variance σ𝑤
2 . The variable W𝑖 is the auxiliary 

variable with measurement error. The component 𝜂𝑖 is the measurement error in the auxiliary 

variable, with 𝜂𝑖 assumed to follow a normal distribution with a mean of 0 and a variance of σ𝜂
2 . 

The component 𝑣𝑖 is an area random effect, where 𝑣𝑖 is assumed to follow a normal distribution 

with a mean of 0 and a variance of σ𝑣
2. The e𝑖𝑗 component is the model error assumed to follow 

a normal distribution with a mean of 0 and a variance of σe
2. The components 𝑣i, eij and wi are 

assumed to be independent. The coefficient of fixed effect is denoted by β, and the coefficient of 

the auxiliary variable which has measurement error is denoted by α. 

To answer the research problems in this discussion, a combination of the two equations is 

carried out. This results in a small area estimation model for the first-order autoregressive random 
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effect with measurement error on the covariates (SAE-AR1-ME). 

 

4. DEVELOPMENT MODEL 

The variable of concern in this study is the average consumption per capita, which is first 

transformed into logarithmic form. The development model proposed in this study is: 

y𝑖𝑡𝑗
∗ = X𝑖𝑡𝑗

′ β + w𝑖𝑡α + 𝑣𝑖 + 𝑢𝑖𝑡 + e𝑖𝑡𝑗, (3) 

with: W𝑖𝑡 = w𝑖𝑡 + 𝜂𝑖𝑡, y𝑖𝑡𝑗
∗ = 𝑙𝑜𝑔(𝑦𝑖𝑡𝑗).  

The response variable 𝑦𝑖𝑡𝑗  is the 𝑗-th sample unit in a small area 𝑖 at time 𝑡 which is 

assumed to have a relationship with a vector of the auxiliary variables X𝑖𝑡𝑗, which is assumed to 

be available for each population unit in a small area 𝑖. The β component is the coefficient of the 

auxiliary variable which is constant. The notation 𝑖 is a small area index which is defined to move 

from 1 to 𝑚 (the number of small areas). The notation 𝑡 is a time index that moves from 1 to 𝑇. 

The notation 𝑗 is the sample unit in the 𝑖-th small area at the 𝑡-th time, which moves from 1 to 

𝑛𝑖𝑡 (the number of sample units in each small area). The variable w𝑖𝑡 is the unknown true area-

specific covariate for time 𝑡-th, corresponding to 𝒚𝑖𝑡𝑗 , with the mean μ𝑤  and variance σ𝑤
2 . 

While W𝑖𝑡 is the auxiliary variable with measurement error for the 𝑡-th time. The component 𝜂𝑖𝑡 

is the measurement error in the auxiliary variable for time 𝑡, 𝜂𝑖𝑡 is assumed to follow a normal 

distribution with an average of 0 and a variance of σ𝜂
2 . The 𝑣𝑖 component is the random effect of 

the 𝑖-th area which is assumed to follow a normal distribution with a mean of 0 and a variance of 

𝜎𝑣
2. The 𝑢𝑖𝑡 component is a time-area random effect which is assumed to follow a first-order 

autoregressive process in every small area 𝑖. The component 𝜀𝑖𝑡  is the error of 𝑢𝑖𝑡  which is 

assumed to follow a normal distribution with a mean of 0 and a variance of 𝜎𝜀
2 . The e𝑖𝑡𝑗 

component is the error of y𝑖𝑡𝑗 which is assumed to follow a normal distribution with a mean of 0 

and a variance of 𝜎𝑒
2. The 𝜌 component is an autoregressive coefficient with an absolute value 

of less than 1. The random effects of w𝑖𝑡, 𝑣𝑖, 𝑢𝑖𝑡 and e𝑖𝑡𝑗 are assumed to be independent.  

Equation (3) can be written in matrix form as:  
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𝐲∗ = 𝐗𝛃 + 𝐙1𝐰α + 𝐙2𝒗 + 𝐙3𝒖 + 𝐞 (4) 

where, 𝐲∗ = (𝐲𝑖1
∗ , … , 𝐲𝑚𝑇

∗ )′  is a response variable vector of size nt × 1 , with 𝐲𝑖𝑡
∗ =

(𝑦𝑖11
∗ , … , 𝑦𝑖𝑇𝑛𝑖𝑡

∗ )
′
 size n𝑖t × 1. 𝐗 = (𝐗𝑖1, … , 𝐗𝑚𝑇)′ matrix of constant variables of size nt × p, 

with 𝐗𝑖𝑡 = (x𝑖11, … , x𝑖𝑇𝑛𝑖𝑇
)
′
, size nit × p. 𝜷 = (𝛽𝟏, … , 𝛽𝒑)

′
 is a constant vector of coefficient 

variables of size p × 1 , α  is the value of the coefficient of the auxiliary variable with a 

measurement error of size 1 × 1. 𝐰 = (𝐰𝑖1, … ,𝐰𝑚𝑡)
′ is a vector of auxiliary variables with a 

measurement error of size mt × 1  with 𝐰𝑖𝑡 = (w𝑖11, … , w𝑖𝑡𝑛𝑖𝑡
)
′
. 𝒗 = (𝒗𝑖1, … , 𝒗𝑚𝑡)

′  is a 

random effect vector of area size mt × 1. 𝐮 = (𝐮𝑖1, … , 𝐮𝑚𝑡)
′ is a random effect vector of area 

size mt × 1 , 𝐞 = (𝒆𝑖1, … , 𝒆𝑚𝑡)
′  is a model error vector of size nt × 1 , with 𝐞𝑖𝑡 =

(e𝑖11, … , e𝑖𝑡𝑛𝑖𝑡
)
′

. 𝐙1 = 𝐈𝑚 ⊗ 𝐙1𝑖 , 𝐙2 = 𝐈𝑚 ⊗ 𝐙2𝑖 , 𝐙3 = 𝐈𝑚 ⊗ 𝐙3𝑖 . Z1, Z2 and Z3 

components are size 𝑛 × mt , where 𝐙𝟏𝑖 = 𝐙𝟐𝑖 = 𝟏𝑛𝑖
 and 𝐙𝟑𝑖 = (𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡

)  with ⊗  is 

kronecker multiplication, 𝐈𝑚  is an identity matrix of size m × m, 𝟏𝑛𝑖
 is a vector of size 𝑛𝑖 

where all the elements are valuable 1, 𝟏𝑛𝑖𝑡
 is -a vector of size 𝑛𝑖𝑡 where all the elements are 

valuable 1 and 𝐈𝑇 is an identity matrix of size T × T. 

Assume that the element 𝑢𝑖𝑡 in (3) is stationary, then the expected value and the structure 

of the variance matrix for the vector 𝐮 are: 

𝐸(𝐮) = 0 and 𝐶𝑜𝑣(𝐮) = 𝑮3𝑖 = 𝜎𝜀
2𝚪 , (5) 

where 𝚪 is a symmetric matrix of size 𝑇 × 𝑇 with element to (𝑡. 𝑡′) worth 
𝜌|𝑡−𝑡′|

1−𝜌2
. Matrix 𝚪 is: 

𝚪 =
1

1−𝜌2

[
 
 
 
 1 𝜌 ⋯

𝜌 ⋱ ⋯

⋮ ⋮ ⋱

𝜌𝑇−1

⋮
𝜌

𝜌𝑇−1 ⋯ 𝜌 1 ]
 
 
 
 

. (6) 

In equation (4), 𝐞𝑖𝑡 is assumed to be independent so that the expected value and the variance 

matrix structure of 𝐞𝑖 = (𝐞𝑖1
′ , … , 𝐞𝑖𝑇

′ )′ are: 

𝐸(𝐞𝑖) = 0 and 𝐶𝑜𝑣(𝐞𝑖) = 𝑹𝑖 = 𝜎e
2𝐈𝑛𝑖

.  (7) 
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If G1𝑖 = 𝐶𝑜𝑣(𝒗𝑖) = 𝜎𝑣
2  and G2𝑖 = 𝑐𝑜𝑣(𝒘𝑖) = 𝜎𝑤

2 , and it is assumed that 𝒗𝑖 , 𝐮𝑖, 𝐞𝑖  and 𝐰𝑖 

are independent, the variance matrix of 𝐲𝑖
∗ in equation (3): 

𝐕𝑖 = 𝐶𝑜𝑣(𝐙1𝑖𝒗𝑖) + 𝑐𝑜𝑣(𝐙2𝑖𝒘𝑖α) + 𝐶𝑜𝑣(𝐙3𝑖𝐮𝑖) +  𝐶𝑜𝑣(𝐞𝑖), 

𝐕𝑖 = 𝐙1𝑖𝐶𝑜𝑣(𝒗𝑖)𝐙1𝑖
′ + α2𝐙2𝑖𝑐𝑜𝑣(𝒘𝑖)𝐙2𝑖

′ + 𝐙3𝑖𝐶𝑜𝑣(𝐮𝑖)𝐙3𝑖
′ +  𝐶𝑜𝑣(𝐞𝑖), 

𝐕𝑖 = 𝐙1𝑖G1𝑖𝐙1𝑖
′ + α2𝐙2𝑖G2𝑖𝐙2𝑖

′ + 𝐙3𝑖𝐆3𝑖𝐙3𝑖
′ + 𝐑𝑖, 

𝐕𝑖 = 𝐙1𝑖𝜎𝑣
2𝐙1𝑖

′ + α2𝐙2𝑖𝜎𝑤
2𝐙2𝑖

′ + 𝐙3𝑖𝜎𝜀
2𝚪𝐙3𝑖

′ + 𝜎e
2𝐈𝑛𝑖

, 

𝐕𝑖 = 𝜎𝑣
2𝐙1𝑖𝐙1𝑖

′ + α2𝜎𝑤
2𝐙2𝑖𝐙2𝑖

′ + 𝜎𝜀
2𝐙3𝑖𝚪𝐙3𝑖

′ + 𝜎e
2𝐈𝑛𝑖

, 

𝐕𝑖 = 𝜎𝑣
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + α2𝜎𝑤
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + 𝜎𝜀
2(𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡

)𝚪(𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡
)
′
+ 𝜎e

2𝐈𝑛𝑖
, 

𝐕𝑖 = 𝜎𝑣
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + α2𝜎𝑤
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + 𝜎𝜀
2(𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡

)(𝚪𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡
)
′
+ 𝜎𝑒

2𝐈𝑛𝑖
, 

𝐕𝑖 = 𝜎𝑣
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + α2𝜎𝑤
2𝟏𝑛𝑖

 𝟏𝑛𝑖

′ + 𝜎𝜀
2(𝐈𝑇𝚪𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡

𝟏𝑛𝑖𝑡

′ ) + 𝜎𝑒
2𝐈𝑛𝑖

, 

𝐕𝑖 = 𝜎𝑣
2𝐉𝑛𝑖

+ α2𝜎𝑤
2 𝐉𝑛𝑖

+ 𝜎𝜀
2(𝚪 ⊗ 𝐉𝑛𝑖𝑡

) + 𝜎𝑒
2𝐈𝑛𝑖

. (8) 

The components 𝟏𝑛𝑖
 and 𝟏𝑛𝑖𝑡

 are vectors of size 𝑛𝑖 and 𝑛𝑖𝑡, respectively, whose elements are 

all 1. The components 𝐉𝑛𝑖
 and 𝐉𝑛𝑖𝑡

 are square matrices of size 𝑛𝑖 × 𝑛𝑖 and 𝑛𝑖𝑡 × 𝑛𝑖𝑡, where all 

elements are 1.  

In equation (3) it is assumed that 𝒗𝑖~𝑖𝑖𝑑𝑁(0. 𝜎𝑣
2)  and 𝒘𝑖~𝑖𝑖𝑑𝑁(𝜇𝑤, 𝜎𝑤

2) , so that the 

expected values and the variance matrix structure of the vectors 𝒗 = (𝑣1, … , 𝑣𝑚)′  and 𝐰 =

(w1, … ,w𝑚)′: 

𝐸(𝐯) = 0 and 𝐶𝑜𝑣(𝐯) = 𝐆1 = 𝜎𝑣
2𝐈𝑚,   (9) 

𝐸(𝐰) = 𝜇𝑤 and 𝑐𝑜𝑣(𝐰) = 𝐆2 = 𝜎𝑤
2𝐈𝑚. (10) 

Furthermore, in equation (4), 𝐮 and 𝐞 are assumed to be independent, so that the expected value 

and the structure of the variance matrix of the vector 𝐮 = (𝑢1
′ , … , 𝑢𝑚

′ )′ and 𝐞 = (𝑒1
′ , … , 𝑒𝑚

′ )′ 

respectively are: 

𝐸(𝐮) = 0 and 𝐶𝑜𝑣(𝐮) = 𝐆3 = 𝐈𝑚⨂𝜎𝜀
2𝚪,   (11) 

𝐸(𝐞) = 0 and 𝑐𝑜𝑣(𝐞) = 𝐑 = 𝐈𝑚⨂𝜎𝑒
2𝐈𝑛𝑖

= 𝜎𝑒
2𝐈𝑛, (12) 
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where 𝑛 = ∑ 𝑛𝑖
𝑚
𝑡=1  and 𝐈𝑛 is an identity matrix of size 𝑛 × 𝑛. 

Assuming 𝐯,𝐰, 𝐮, and 𝐞 are independent of each other, then the variance matrix of 𝐲∗ in 

equation (4) is: 

𝐕 = 𝐶𝑜𝑣(𝐙1𝒗) + 𝐶𝑜𝑣(𝐙2𝐰α) + 𝐶𝑜𝑣(𝐙3𝒖) + 𝐶𝑜𝑣(𝐞), 

𝐕 = 𝐙1𝐶𝑜𝑣(𝒗)𝐙1′ + α2𝐙2𝐶𝑜𝑣(𝐰)𝐙2′ + 𝐙3𝐶𝑜𝑣(𝒖)𝐙3′ + 𝐶𝑜𝑣(𝐞), 

𝐕 = 𝐙1𝐆1𝐙1′ + α2𝐙2𝐆2𝐙2′ + 𝐙3𝐆3𝐙3′ + 𝐑, 

𝐕 = (𝐈𝑚 ⊗ 𝐙1𝑖)𝜎𝑣
2𝐈𝑚(𝐈𝑚 ⊗ 𝐙1𝑖)

′ + α2(𝐈𝑚 ⊗ 𝐙2𝑖)𝜎𝑤
2𝐈𝑚(𝐈𝑚 ⊗ 𝐙2𝑖)

′ + (𝐈𝑚 ⊗

𝐙3𝑖)(𝐈𝑚⨂𝜎𝜀
2𝚪)(𝐈𝑚 ⊗ 𝐙3𝑖)

′ + 𝐑, 

𝐕 = 𝜎𝑣
2(𝐈𝑚 ⊗ 𝐙1𝑖𝐙1𝑖

′) + α2𝜎𝑤
2(𝐈𝑚 ⊗ 𝐙2𝑖𝐙2𝑖

′) + 𝜎𝜀
2(𝐈𝑚 ⊗ 𝐙3𝑖𝚪𝐙3𝑖

′) + 𝐈𝑚⨂𝜎𝑒
2𝐈𝑛𝑖

, 

𝐕 = 𝐈𝑚 ⊗ (𝜎𝑣
2𝐙1𝑖𝐙1𝑖

′ + α2𝜎𝑤
2𝐙2𝑖𝐙2𝑖

′ + 𝜎𝜀
2𝐙3𝑖𝚪𝐙3𝑖

′ + 𝜎𝑒
2𝐈𝑛𝑖

), 

𝐕 = 𝐈𝑚 ⊗ (𝜎𝑣
2𝐉𝑛𝑖

+ α2𝜎𝑤
2 𝐉𝑛𝑖

+ 𝜎𝜀
2(𝚪 ⊗ 𝐉𝑛𝑖𝑡

) + 𝜎𝑒
2𝐈𝑛𝑖

), 

𝐕 = 𝐈𝑚 ⊗ 𝐕𝑖. (13) 

Equation (4) produces the equations for 𝐸(𝐲∗|𝒗, 𝒖) and 𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖) which are written in 

matrix form, respectively: 

𝐸(𝐲∗|𝒗, 𝒖) = 𝐗𝜷 + 𝜇𝑤α𝟏𝑛 + 𝐙2𝒗 + 𝐙3𝒖, (14) 

𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖) = α2𝜎𝑤
2𝟏𝑛 + 𝜎𝑒

2𝟏𝑛, (15) 

𝐙2 = 𝐈𝑚 ⊗ 𝐙2𝑖 , 𝐙3 = 𝐈𝑚 ⊗ 𝐙3𝑖 . The 𝐙2 and 𝐙3 components of a matrix of size 𝑛 × mt, 

where 𝐙𝟐𝑖 = 𝟏𝑛𝑖
 and 𝐙𝟑𝑖 = (𝐈𝑇 ⊗ 𝟏𝑛𝑖𝑡

)  with ⊗  is kronecker multiplication, 𝐈𝑚  is an 

identity matrix of size m × m, 𝟏𝑛𝑖
 is a vector of size 𝑛𝑖 where all elements are 1, 𝟏𝑛𝑖𝑡

 is a 

vector of size 𝑛𝑖𝑡 where all elements are 1,𝟏𝑛 is a vector of size 𝑛 where all elements are 1, and 

𝑛 = ∑ 𝑛𝑖
𝑚
𝑡=1 , 𝐈𝑇 is an identity matrix of size T×T. 

From equations (14) and (15), then 𝐸(𝐲|𝒗, 𝒖) or �̂� is found by doing the back transformation, it 

is obtained as follows: 

�̂� = 𝐸(𝐲|𝒗, 𝒖) = 𝑒𝑥𝑝[𝐸(𝐲∗|𝒗, 𝒖) + 0.5𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖)], (16) 

�̂� = 𝑒𝑥𝑝[(𝐗𝜷 + 𝜇𝑤α𝟏𝑛 + 𝐙2𝒗 + 𝐙3𝒖) + 0.5(α2𝜎𝑤
2𝟏𝑛 + 𝜎𝑒

2𝟏𝑛)]. (17) 

According to the estimation of the model parameters from the available sample data, equation (17) 



12 

TANUR, KURNIA 

can be written: 

�̂� = 𝑒𝑥𝑝[(𝐗�̂� + �̂�𝑤α̂𝟏𝑛 + 𝐙2�̂� + 𝐙3�̂�) + 0.5(α̂2�̂�𝑤
2𝟏𝑛 + 𝟏𝑛�̂�𝑒

2𝟏𝑛)]. (18) 

Parameters that are of concern in this study are obtained from the sum of the values of observations 

that are members of the sample, with index (𝑠), and unit values that are not members of the sample, 

with index (𝑟). Estimated average total observations based on area is: 

�̅�i =
1

𝑁𝑖
(∑ 𝒚(𝑠) + ∑ 𝒚(𝑟) ). (19) 

Equation (19) is then estimated in the form of equation: 

�̂̅�i =
1

𝑁𝑖
(∑ 𝒚(𝑠) + ∑ �̂�(𝑟) ). (20) 

To estimate the parameter �̅�i (�̂̅�i), it is obtained by the following steps:  

a. Predict the variance component (�̂�𝑤
2 , �̂�𝑣

2, �̂�𝜀
2, �̂�𝑒

2) using the REML (restricted maximum 

likelihood) method approach,  

b. Predict 𝜌  (�̂�)  in the equation 𝒖𝑖𝑡 = 𝜌𝒖𝑖.𝑡−1 + 𝜺𝑖𝑡  by regressing the residual value 

obtained. 

c. Predict the variance of 𝑢𝑖𝑡, with the form of equation: 

�̂�𝑢
2 =

�̂�𝜀
2

(1 − �̂�2)⁄ , (21) 

d. Predicting coefficients of random variables containing measurement errors, �̂�, with α̂ =

𝑘𝑤
−1 ∝̂𝑂𝐿𝑆𝑡

, where ∝̂𝑂𝐿𝑆=
𝑆𝑦𝑤

𝑆𝑤𝑤
, 𝑆𝑦𝑤 =

1

2
∑ (𝑦𝑖 − �̅�𝑠)(𝑤𝑖 − �̅�𝑠)𝑖𝜖𝑠 , 𝑆𝑤𝑤 =

1

2
∑ (𝑤𝑖 −𝑖𝜖𝑠

�̅�𝑠)
2, 𝑘𝑤 =

�̂�𝑤
2

�̂�𝑤
2 +�̂�𝜂

2. �̂�𝜂
2 =

∑ ∑ (𝑊𝑖𝑡−�̅�𝑖𝑡)
2𝑛𝑖

𝑗=1
𝑚
𝑖=1

𝑛𝑇−𝑚
,  𝑛𝑇 = ∑ 𝑛𝑖

𝑚
𝑖=1  

e. Calculate the average value of a random variable that has a measurement error (𝜇𝑤), 

which is estimated by the equation �̂�𝑤 =
1

𝑚
∑�̅�𝑖𝑡.  

f. Calculate variance value, 𝐕(y𝑖𝑡𝑗
∗ ), where: 

𝐕(y𝑖𝑡𝑗
∗ ) = α̂2�̂�𝑤

2 + �̂�𝑣
2 + �̂�𝑢

2 + �̂�𝑒
2, (22) 

g. Estimate the value 𝜷, with the equation: 

�̂� = (𝐗′𝐕−1𝐗)−1(𝐗′𝐕−1𝒚∗ − 𝐗′𝐕−1α̂𝜇𝑤), (23) 
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h. Predict the random effect of 𝒗𝑖, with the equation: 

�̂�𝑖 = 𝛾𝑖(𝑣)(�̅�𝑖
∗ − �̅�𝑖�̂� − 𝒘𝑖α̂), (24) 

where 𝛾𝑖(𝑣) =
�̂�𝑣

2

�̂�𝑣
2+�̂�𝑡

2�̂�𝑤
2 +

�̂�𝑒
2

𝑛𝑖
⁄ +�̂�𝜀

2
,  

i. Predict the random effect of time-area 𝒖𝑖𝑡, with the equation: 

�̂�𝑖𝑡 = 𝛾𝑖(𝑢)(�̅�𝑖
∗ − �̅�𝑖�̂� − 𝒘𝑖α̂), (25) 

where 𝛾𝑖(𝑢) =
�̂�𝜀

2

�̂�𝑣
2+�̂�𝑡

2�̂�𝑤
2 +

�̂�𝑒
2

𝑛𝑖
⁄ +�̂�𝜀

2
  

j. Estimating the value of variance on the condition that 𝑣 and 𝑢 are known 𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖), 

is obtained in the form of equation: 

𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖) = α2𝜎𝑤
2𝟏𝑛 + 𝜎𝑒

2𝟏𝑛,  (26) 

k. Calculate the expected value of 𝐲∗ provided 𝒗𝑖 and 𝒖𝑖𝑡 are known, 

𝐸(𝐲∗|𝒗, 𝒖) = 𝐗𝜷 + 𝜇𝑤α𝟏𝑛 + 𝐙2𝒗 + 𝐙3𝒖, (27) 

l. Predict the value of �̂� obtained from: 

�̂� = 𝑒𝑥𝑝[𝐸(𝐲∗|𝒗, 𝒖) + 0.5𝑉𝑎𝑟(𝐲∗|𝒗, 𝒖)], (28) 

m. Calculate the average value of the district/city: 

�̂̅�i =
1

𝑁𝑖
(∑ 𝒚(𝑠) + ∑ �̂�(𝑟) ), (29) 

n. Calculate the provincial average: 

Ŷ̅ =
1

𝑁
∑ �̂̅�i ∗ 𝑁𝑖

𝑚
𝑖=1 , (30) 

where Ŷ̅ is the estimator for the average consumption per capita at the provincial level, �̂̅�𝑖 

is the estimator for the average consumption per capita at the district/city level, 𝑁 is the 

total population in the province and 𝑁𝑖 is the population in each district/city.  

o. Next calculate the value of 𝑚𝑠𝑒 (mean square of error): 

𝑚𝑠𝑒(�̂̅�i) = 𝐵−1 ∑ (�̂̅�𝑖∗
𝐻(𝑏) − �̂̅�𝑖∗(𝑏))

2
𝐵
𝑏=1  (31) 

 

5. MODEL EVALUATION 

As previously discussed, the form of the proposed development model is in accordance with 
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equation (3), is: 

y𝑖𝑡𝑗
∗ = X𝑖𝑡𝑗

′ β + w𝑖𝑡α + 𝑣𝑖 + 𝑢𝑖𝑡 + e𝑖𝑡𝑗, 

with: W𝑖𝑡 = w𝑖𝑡 + 𝜂𝑖𝑡, y𝑖𝑡𝑗
∗ = 𝑙𝑜𝑔(𝑦𝑖𝑡𝑗).  

The response variable 𝑦𝑖𝑡𝑗 is the 𝑗-th sample unit in a small area 𝑖 at time 𝑡 which is assumed 

to have a relationship with a vector of auxiliary variables X𝑖𝑡𝑗 , which is assumed to be also 

available for each population unit in a small area 𝑖. The β component is the coefficient of the 

auxiliary variable which is constant. The notation 𝑖 is a small area index which is defined to move 

from 1 to 𝑚 (the number of small areas). The notation 𝑡 is a time index that moves from 1 to 𝑇. 

The notation 𝑗 is the sample unit in the 𝑖-th small area at the 𝑡-th time, which moves from 1 to 

𝑛𝑖𝑡 (the number of sample units in each small area). The variable w𝑖𝑡 is the unknown true area-

specific covariate for time t, corresponding to 𝒚𝑖𝑡𝑗, with the mean μ𝑤 and variance σ𝑤
2 . While 

W𝑖𝑡 is the auxiliary variable with measurement error for the 𝑡-th time. The component 𝜂𝑖𝑡 is the 

measurement error on the auxiliary variable for 𝑡-th time, 𝜂𝑖𝑡  is assumed to follow a normal 

distribution with an average of 0 and a variance of σ𝜂
2 . The 𝑣𝑖 component is the random effect of 

the 𝑖-th area which is assumed to follow a normal distribution with a mean of 0 and a variance of 

𝜎𝑣
2. The 𝑢𝑖𝑡 component is a time-area random effect which is assumed to follow a first-order 

autoregressive process in every 𝑖-th small area. The component 𝜀𝑖𝑡 is the error of 𝑢𝑖𝑡 which is 

assumed to follow a normal distribution with a mean of 0 and a variance of 𝜎𝜀
2 . The e𝑖𝑡𝑗 

component is the error of y𝑖𝑡𝑗 which is assumed to follow a normal distribution with a mean of 0 

and a variance of 𝜎𝑒
2. The 𝜌 component is an autoregressive coefficient with an absolute value 

of less than 1. The random effects of w𝑖𝑡 , 𝑣𝑖 , 𝑢𝑖𝑡  and e𝑖𝑡𝑗  are assumed to be independent. 

Simulations are conducted to further evaluate the goodness of the proposed model.  

Simulation data is generated according to the characteristics of the data used in the 

application, namely the population generated with variables that have measurement errors. 

Simulations are carried out to observe the effect of autoregressive coefficient (𝜌), area random 

effect (𝑣), auxiliary variable (𝑤) on the estimation results. When generating the data population, 
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a combination of values is given;  

o Three types of autoregressive coefficient values (𝜌), that are small, medium and large. 

o Three types of area random effect variance values (𝜎𝑣
2), that are small, medium and large. 

o Three types of value for the variance auxiliary variable (𝜎𝑤
2), that are small, medium and 

large. 

The evaluation is carried out by comparing the results of scenarios determined against the two 

Small Area Estimation models applied, namely:  

- Small Area Estimation of the autoregressive model with measurement error in the auxiliary 

variable (SAE-AR1-ME).  

- Small Area Estimation of the autoregressive model without measurement error in the 

auxiliary variables (SAE-AR1).  

The evaluation of the model is then performed by comparing the value of the goodness of the 

model in each estimation methods carried out (SAE-AR1-ME and SAE-AR1), including Relative 

Bias (RB), Root Mean Square of Error (RMSE) and Coefficient of Variation (CV) for each area 

and also calculated the average value of each size for the entire area.  

5.1. SIMULATION 

At this stage, the population data generation process would be carried out, as well as sample data 

collection for 1000 replications for further analysis using the SAE-AR1-ME and SAE-AR1 models. 

The stages of the simulation process for each scenario are as follows:  

a. Designing population data, X, for the first and second periods  

i. Determining the number of areas (𝑖), with 𝑖 = 1,… ,𝑚, (m =  27) 

- Specifying the unit size in the area, each of which is 40, 44, 31, 31, 36, 39, 26, 31, 40, 

26, 26, 31, 29, 16, 29, 23, 16, 10, 6, 7, 29, 5, 12, 11, 3, 10 and 4. The unit size in this 

area is made for two periods with the same value for each period (𝑛𝑖𝑡, 𝑡 = 1,2). 

- To describe the condition of a small area, the number of population in each area (𝑁𝑖) 

is determined for two periods. The population size is set at 100 times the number of 

unit sample sizes in each area for two periods. So that the total sample population for 
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each period is 4000, 4400, 3100, 3100, 3600, 3900, 2600, 3100, 4000, 2600, 2600, 

3100, 2900, 1600, 2900, 2300, 1600, 1000, 600, 700, 2900, 500, 1200, 1100, 300, 1000 

and 400. 

- Generating population data X1𝑡  (𝑡 = 1,2) which is assumed to follow a uniform 

distribution with a range of values from 0 to 0.03.  

- Generating population data X2𝑡  (𝑡 = 1,2) which is assumed to follow a uniform 

distribution with a range of values from 0 to 0.0003. 

ii. Determining the value of the coefficients of the fixed auxiliary variable, among others;  

𝛽0 = 0.96, 𝛽1 = −9.34, 𝛽2 = 4186.77 and the coefficient of the random auxiliary 

variable, ∝= 0.92.  

iii. Determining the value of the autoregressive coefficient (𝜌) that is small (0.1), medium 

(0.5) and large (0.9).  

iv. Setting the value of the area random effect variance (𝜎𝑣
2), that is small (0.006), medium 

(0.06) and large (0.6). 

v. Setting the value of the variance of the auxiliary variable with measurement errors 

(𝜎𝑤
2 ), that is small (0.002), medium (0.02) and large (0.2). 

vi. Setting the variance value for the error from 𝑢𝑖𝑡 i.e. 𝜎𝜀
2 = 0.01, 

vii. Setting the variance value for the error of 𝑦𝑖𝑡𝑗, which is 𝜎𝑒
2 = 0.12. 

viii. Calculating the value of the time-area random effect variance 𝜎𝑢
2 , where: 𝜎𝑢

2 =

𝜎𝜀
2

(1 − 𝜌2)⁄ . 

ix. Setting the mean value of wi, μ𝑤 = 13. 

x. Generating the value of 𝐰i for the first t as much area as the distribution for wi,t1 is 

wi,t1~N(μ𝑤, 𝜎𝑤
2). 

xi. Determining the value of wi for the second t is the same as wi for the first t.  

xii. Setting the value of the auxiliary variable with X𝑖𝑡𝑗 = X1𝑡, X2𝑡. 

xiii. Generating the area random effect value 𝒗𝑖  for the first t following a normal 

distribution, 𝒗𝑖,𝑡1~(0, σ𝑣
2).  
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xiv. Determining the value of 𝒗𝑖 for the second t is the same as 𝒗𝑖 for the first t. 

xv. Generating an error value from 𝑢𝑖𝑡, i.e. 𝜀𝑖𝑡 assumed 𝜀𝑖𝑡~𝑖𝑖𝑑𝑁(0, 𝜎𝜀
2). 

xvi. Generating a time area random effect value for the first t, i.e. 𝑢𝑖𝑡1~𝑁(0, σ𝑢
2). 

xvii. Determining the value of the random effect of the time area for the second t, where 

𝑢𝑖𝑡2 = 𝜌𝑢𝑖.𝑡1 + 𝜀𝑖𝑡.  

xviii. Generating model error value, 𝑒𝑖𝑡𝑗 with 𝑒𝑖𝑡𝑗~𝑁(0, 𝜎𝑒
2). 

xix. Calculating the value of 𝑦𝑖𝑡𝑗 for two periods; 

𝑦𝑖𝑡𝑗 = exp(X𝑖𝑡𝑗
′ 𝛽 + 𝑤𝑖𝑡𝛼 + 𝑣𝑖 + 𝑢𝑖𝑡 + 𝑒𝑖𝑡𝑗). 

xx. Calculating the �̅�𝑖 value (mean by area) of the population over two periods: 

�̅�𝑖_𝑝  =
1

𝑁𝑖
(∑𝑦𝑖𝑗). 

b. Estimating small area parameters. 

i. Taking 𝑛𝑖𝑡 random samples of 𝑦𝑖𝑡𝑗_𝑠 for each area. 

ii. Evaluation of sample data using the indirect method.  

Repeating step b.i as many as 𝐵 large numbers, i.e. 𝐵 = 1000. 

a) wi random (Empirical Best Linear Unbiased Prediction/EBLUP Measurement 

Error) in area.  

a.1. Obtaining the value of the variable of concern based on the sample data 

obtained in each iteration (�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸). 

a.2.  Calculating the value of 𝑅𝐵, RMSE, and CV. 

𝑅𝐵𝑖_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸 =
1

𝐵
∑

�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸(𝑙)−�̅�𝑖_𝑝

�̅�𝑖_𝑝

𝐵
𝑙=1 , 

𝑅𝑀𝑆𝐸𝑖_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸 = √
1

𝐵
∑ (�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸(𝑙) − �̅�𝑖_𝑝)

2𝐵
𝑙=1 , 

𝐶𝑉𝑖_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸 =
𝑅𝑀𝑆𝐸𝑖_𝑆𝐴𝐸_𝐴𝑅1_𝑀𝐸

�̅�𝑖_𝑝
× 100%. 

b) wi fixed (EBLUP) by using the auxiliary variable without measurement error.  

b.1. Obtaining the value of the variable of concern based on the sample data 

found in each repetition (�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1). 
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b.2.  Calculating the value of 𝑅𝐵, RMSE, dan CV. 

𝑅𝐵𝑖_𝑆𝐴𝐸_𝐴𝑅1 =
1

𝐵
∑

�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1(𝑙)−�̅�𝑖_𝑝

�̅�𝑖_𝑝

𝐵
𝑙=1 , 

𝑅𝑀𝑆𝐸𝑖_𝑆𝐴𝐸_𝐴𝑅1 = √
1

𝐵
∑ (�̅�𝑖_𝑠_𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡_𝑆𝐴𝐸_𝐴𝑅1(𝑙) − �̅�𝑖_𝑝)

2𝐵
𝑙=1 , 

𝐶𝑉𝑖_𝑆𝐴𝐸_𝐴𝑅1 =
𝑅𝑀𝑆𝐸𝑖_𝑆𝐴𝐸_𝐴𝑅1

�̅�𝑖_𝑝
× 100%. 

Analysis were performed in the SAE-AR1-ME and SAE-AR1 models. The value of the goodness 

of the model being compared includes relative bias (RB), the root mean square error (RMSE) and 

coefficient of variance (CV) and average is also calculated. 

5.2. SIMULATION RESULTS 

The results of the simulation stages were obtained for each measure of the goodness of the model 

(Table 1 – Table 3). Table 1 describes the simulation results of the average relative bias (RB̅̅ ̅̅ ), 

Table 2 describes the simulation results of the average root mean square error (𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅ ), while 

Table 3 explains of the simulation results of the average coefficient of variance (𝐶𝑉̅̅ ̅̅ ) of the SAE-

AR1-ME and SAE-AR1 methods. Simulations were run on the population generated with 

measurement errors on the auxiliary variables.  

a. Relative Bias 

Unbiased means that the expected value of the estimator is the same as the predicted parameter, 

for example the parameter x̅ is an unbiased estimator for 𝜇. If the sampling process is repeated 

many times and each sample is calculated the value of x̅ , the average of x̅ is equal to 𝜇. Table 

1 shows the average relative bias generated under conditions of small, medium and large 

autoregressive coefficients. The average relative bias value in the SAE-AR1-ME model is seen 

always smaller than the SAE-AR1 model.  

In three types of autoregressive coefficient values (𝜌), for the SAE-AR1-ME model on the 

value of variance of the auxiliary variable (𝜎𝑤
2 ), small and medium, the area random effect variance 

value (𝜎𝑣
2) tends to be smaller as well. Slightly different things occur under the condition of the 

large value of variance of the auxiliary variable (𝜎𝑤
2 ) which tends to be larger in value along with 
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the greater value of the area random effect variance (𝜎𝑣
2). While, the SAE-AR1 model tends to be 

stable for the three conditions of area random effect variance (𝜎𝑣
2).  

The Small Area Estimation model is known influenced by the magnitude of the random 

effect value, in this model the area effect (𝑣𝑖) and the time-area random effect (𝑢𝑖𝑡). Based on 

the equation 𝑣𝑖 = 𝛾𝑖(𝑣)(�̅�𝑖
∗ − x̅𝑖�̂� − 𝑤𝑖�̂�)  where 𝛾𝑖(𝑣) =

�̂�𝑣
2

�̂�𝑣
2+�̂�𝑡

2�̂�𝑤
2 +

�̂�𝑒
2

𝑛𝑖
⁄ +�̂�𝜀

2
 and the equation 

�̂�𝑖𝑡 = 𝛾𝑖(𝑢)(�̅�𝑖
∗ − x̅𝑖�̂� − 𝑤𝑖�̂�)  with 𝛾𝑖(𝑢) =

�̂�𝜀
2

�̂�𝑣
2+�̂�𝑡

2�̂�𝑤
2 +

�̂�𝑒
2

𝑛𝑖
⁄ +�̂�𝜀

2
, it appears that 𝑣𝑖  and 𝑢𝑖𝑡  are 

affected by relative unexplained inter-area variability to the total variability (𝛾).  

 

Table 1. The Average Relative Bias of the Whole Area in the Population with the Variance of the 

Covariates of Small, Medium and Large Values According to the Type of Autoregressive 

Coefficient Value and the Type of Area Random Effect Variance Value in the SAE-AR1-

ME and SAE-AR1 Models. 

Auto-

regressive 

Coefficient 

Value (𝜌) 

Area Random 

Effect 

Variance Value 

(𝜎𝑣
2) 

Estimation Method Estimation Method Estimation Method 

SAE-AR1-

ME  

(𝜎𝑤
2  small) 

SAE-AR1 

SAE-AR1-

ME  

(𝜎𝑤
2  

medium) 

SAE-AR1 

SAE-AR1-

ME 

(𝜎𝑤
2  large) 

SAE-AR1 

(1) (2) (3) (4) (5) (6) (7) (8) 

Small 

Small -0.0563 -0.0627 -0.0428 -0.0556 -0.0155 -0.0667 

Medium -0.0594 -0.0670 -0.0374 -0.0608 -0.0250 -0.0627 

Large 0.0115 -0.0627 0.0130 -0.0565 0.0195 -0.0622 

Medium 

Small -0.0263 -0.0508 -0.0195 -0.0560 0.0010 -0.0638 

Medium -0.0086 -0.0598 -0.0349 -0.0632 0.0174 -0.0678 

Large -0.0001 -0.0621 -0.0155 -0.0570 -0.0041 -0.0605 

Large 

Small -0.0560 -0.0627 -0.0505 -0.0649 0.0053 -0.0601 

Medium -0.0207 -0.0603 -0.0224 -0.0571 0.0025 -0.0595 

Large -0.0423 -0.0641 -0.0448 -0.0615 0.0271 -0.0594 

 

b. Root Mean Square Error 

One measure of error in estimation is the root mean square error or RMSE [16]. The RMSE is a 

value that is useful for evaluating the estimation technique of a model. The RMSE is the average 

value of the number of squares of errors, it can also state the size of the error generated by an 
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estimator model. A low value of RMSE indicates that the diversity of values produced by an 

estimator model is close to the diversity of the observed values. Table 2 presents the average value 

of RMSE (RMSE̅̅ ̅̅ ̅̅ ̅̅ ) generated from the simulation process.  

The SAE-AR1-ME model produces a value 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  which is always greater than the SAE-

AR1 model. However, there is a condition that the value 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  of the SAE-AR1-ME model is 

almost the same as the SAE-AR1 model. This happens when the population is derived from a 

variance of auxiliary variables with a small value and when the variance of the area of random 

effect is of small value. The greater value of the variance of the random effect area tends to result 

in the greater value of 𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  generated. The SAE-AR1 model also shows the same thing, that 

the greater value of the variance of the random effect area tends to result in the greater value of 

𝑅𝑀𝑆𝐸̅̅ ̅̅ ̅̅ ̅̅  generated. 

 

Table 2. The Mean of the Root Mean Square Error Overall Area in the Population with Small, 

Medium and Large Variance of Auxiliary Variable Values According to the Type of 

Autoregressive Coefficient Value and the Type of Area Random Effect Variance Value 

in the SAE-AR1-ME and SAE-AR1 Models.  

Auto-

regressive 

Coefficient 

value (𝜌) 

Area 

Random 

Effect 

Variance 

Value 

(𝜎𝑣
2) 

Estimation Method Estimation Method Estimation Method 

SAE-AR1-

ME  

(𝜎𝑤
2  

small) 

SAE-AR1 

SAE-AR1-ME  

(𝜎𝑤
2  

medium) 

SAE-AR1 

SAE-AR1-

ME 

(𝜎𝑤
2  large) 

SAE-AR1 

(1) (2) (3) (4) (5) (6) (7) (8) 

Small 

Small 95009 84499 108027 80986 236381 96667 

Medium 100180 84356 135703 81205 182437 85629 

Large 200403 128720 228235 133100 277504 108773 

Medium 

Small 99362 80044 150478 89350 209128 81196 

Medium 130330 83973 131557 86308 277234 95511 

Large 215714 124627 127669 77683 232365 111535 

Large 

Small 100063 90823 138001 92800 266387 113249 

Medium 118841 84742 124011 85239 243401 102338 

Large 155732 102346 108905 85612 270184 98703 
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c. Coefficient of Variance 

The Coefficient of Variance (CV) is a measure of diversity that can be used to compare a 

distribution of data that has different units. The CV is a comparison between the standard deviation 

and the average of a data distribution and is expressed as a percentage. The magnitude of the CV 

value will affect the quality of the data distribution. The smaller the CV value means the more 

uniform or homogeneous a group of data is, and vice versa. Table 3 presents the mean value of 

CV (CV̅̅̅̅ ) generated from the simulation process.  

 

Table 3. The Average Coefficient of Variance of the Entire Area in the Population under the 

Conditions of Small, Medium and Large Variance of the Auxiliary Variable According 

to the Type of Autoregressive Coefficient Value and the Type of Area Random Effect 

Variance Value in the SAE-AR1-ME and SAE-AR1 Models  

Auto-

regressive 

Coefficient 

Value (𝜌) 

Area 

Random 

Effect 

Variance 

Value (𝜎𝑣
2) 

Estimation Method Estimation Method Estimation Method 

SAE-AR1-

ME  

(𝜎𝑤
2  

small) 

SAE-

AR1 

SAE-AR1-ME  

(𝜎𝑤
2  

medium) 

SAE-

AR1 

SAE-AR1-

ME 

(𝜎𝑤
2  large) 

SAE-

AR1 

(1) (2) (3) (4) (5) (6) (7) (8) 

Small 

Small 12.216 10.865 14.165 10.619 27.527 11.257 

Medium 13.130 11.056 17.820 10.663 23.667 11.108 

Large 17.672 11.351 16.690 9.733 28.519 11.179 

Medium 

Small 12.680 10.214 17.736 10.531 28.388 11.022 

Medium 16.681 10.747 16.433 10.781 33.361 11.494 

Large 19.452 11.238 16.797 10.221 22.984 11.032 

Large 

Small 11.945 10.842 16.550 11.129 25.402 10.799 

Medium 14.931 10.647 15.243 10.477 25.848 10.868 

Large 17.352 11.404 13.499 10.612 27.765 10.143 

 

The SAE-AR1-ME model produces a value 𝐶𝑉̅̅ ̅̅  which is always greater than the SAE-AR1 model. 

When the population comes from a variety of covariates with small and medium measurement 

errors, the value of 𝐶𝑉̅̅ ̅̅  for both models is almost the same. In the SAE-AR1-ME model, the 

greater value of the auxiliary variable with measurement error tends to result in the greater value 
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of 𝐶𝑉̅̅ ̅̅  produced. The greater value of the variance of the random effect area tends to result in the 

greater value 𝐶𝑉̅̅ ̅̅  generated. The SAE-AR1 model shows things that tend to be stable for the 𝐶𝑉̅̅ ̅̅  

value generated by changes in the value of the area random effect variance. The SAE-AR1-ME 

and the SAE-AR1 are models with homogeneous data groups for the population with small and 

medium measurement errors in the covariates. 

 

6. APPLICATION OF THE DEVELOPMENT MODEL 

This section presents the results of the application of the developed method by using actual data. 

The data used is the 2015 Susenas data and the 2014 Village Potential data for West Java Province. 

The application of this development model should be carried out on longer time series data, not 

only using two points. The use of two points, namely March and September, is not satisfactory 

enough to provide an illustration that corresponds to the actual conditions. From this point of view, 

due to limited data available, this can be perceived as an early initiative to use time series data in 

Small Area Estimation for autoregressive models with measurement errors in the auxiliary 

variables.  

The application of the development model is carried out with several variables derived from 

the results of data collection in West Java Province, which is divided into two periods with the 

same size of samples (𝑛𝑖𝑡). For the application to the actual data, an estimator model is used 

according to equation (3), as follows: 

y𝑖𝑡𝑗
∗ = X𝑖𝑡𝑗

′ β + w𝑖𝑡α + 𝑣𝑖 + 𝑢𝑖𝑡 + e𝑖𝑡𝑗, 

with: W𝑖𝑡 = w𝑖𝑡 + 𝜂𝑖𝑡, y𝑖𝑡𝑗
∗ = 𝑙𝑜𝑔(𝑦𝑖𝑡𝑗).  

The variable of concern to 𝑦𝑖𝑡𝑗 is the average household consumption per capita at the sub-district 

level, from the 2015 Susenas for two periods of data collection, namely March and September. 

Index 𝑖 is the area level which in this study, is the district/city. Index 𝑗 is the unit level which in 

this study, is the sub-district. The 𝑡 index is time which, in this study, consists of two periods, 

namely March and September. The auxiliary variable X1 is the proportion of the number of 

restaurants to the total population in each sub-district for two periods. The auxiliary variable X2 
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is the proportion of the number of food and beverage stalls/shops with the total population in each 

sub-district for two periods. The two auxiliary variables are proportions to the total population in 

2014 and 2015. The auxiliary variable containing measurement error (w) in this study is the log of 

the average consumption per capita of the district/city a month ago from information on the results 

of the March 2015 Susenas data collection, which was used in both periods of the study. Based on 

the parameter estimation method presented previously, from the results of data processing using R 

software, the estimation results for each parameter are; �̂�𝑣
2 = 0.059, �̂�𝑒

2 = 0.115, �̂�𝑤
2 = 0.024, 

�̂�𝜀
2 = 0.012 , �̂� = 0.499 , �̂�𝑢

2 = 0.016 , �̅� = 13.66 , �̂�𝑤 = 13.64 , ∝̂= 0.924 , �̂�0 = 0.957 , 

�̂�1 = −9.336, �̂�2 = 4186.775, �̂�𝑦
2 = 0.211, and �̂�𝑦|𝑣𝑖,𝑢𝑖

2 = 0.136. 

The estimated average consumption per capita at the provincial level is 905168 rupiahs by 

the SAE-AR1-ME method and 966767 rupiahs by the SAE-AR1 method. Previously, the results 

of the March data collection of the 2015 Susenas had been submitted in the amount of 896895 

rupiahs and a direct estimator of the province as a result of the September data collection of the 

2015 Susenas at 981968 rupiahs. These results indicate that by using an alternative method of 

estimating a small area of the autoregressive model, which examines the measurement error of 

auxiliary variable, an estimator at the provincial level is possibly obtained by first estimating the 

district/city level, presented in Figure 2 and Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Estimator of the Average Consumption Per Capita of the Province According to the 

Estimation Method and the Period of Data Collection in West Java Province in 2015  
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Furthermore, the more detailed results of the estimation are presented in Table 4. In Table 4, 

an oddity appears, that is the estimate for September which is lower than the direct estimate for 

March for several districts/cities. In fact, in September, many specific household 

expenditures/consumptions should have made the September average consumption per capita 

relatively greater.  

 

 

 

 

 

 

 

 

 

Figure 3. Estimating the Average Consumption Per Capita at the District/City Level According 

to the Estimation Method and the Period of Data Collection in West Java Province in 

2015 
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Table 4. Estimation of the Average Consumption Per Capita at the District/City Level According 

to the Estimation Method and the Period of Data Collection in West Java Province in 

2015 

Number Name of District/City  

March 2015 

Susenas Direct 

Estimator 

(Rupiahs) 

September 2015 

SAE-AR1-ME 

Estimator 

(Rupiahs) 

September 2015 

SAE-AR1 Estimator 

(Rupiahs) 

(1) (2) (3) (4) (5) 

1 Bogor District 907682 872930 938374 

2 Sukabumi District 700506 922168 797681 

3 Cianjur District 553869 939178 659246 

4 Bandung District 834803 828551 817024 

5 Garut District 513366 988430 648836 

6 Tasikmalaya District 489726 959818 605723 

7 Ciamis District 587214 933834 682479 

8 Kuningan District 721786 868323 757879 

9 Cirebon District 619552 924567 710528 

10 Majalengka District 698224 914675 786194 

11 Sumedang District 789992 907778 866075 

12 Indramayu District 629355 935140 734590 

13 Subang District 873718 808375 825099 

14 Purwakarta District 1030583 775037 904521 

15 Karawang District 855416 819626 828081 

16 Bekasi District 1168767 877138 1196513 

17 West Bandung District 605302 847035 624451 

18 Pangandaran District 783266 809734 726469 

19 Bogor City 1324986 1040251 1569321 

20 Sukabumi City 1010902 952071 1118228 

21 Bandung City 1433908 923639 1486214 

22 Cirebon City 828197 1154793 997037 

23 Bekasi City 1434648 943669 1567067 

24 Depok City 1503423 1022586 1806383 

25 Cimahi City 1153348 937919 1286326 

26 Tasikmalaya City 964434 839330 946833 

27 Banjar City 817072 904503 890024 

West Java Province 981968 905168 966767 

 

The results in Table 4 show that the AR(1) model with 2 observation points still gives 

unsatisfactory results. It is necessary to add observation points to make the estimation results better.  
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Tabel 5. The Value of the Goodness of the Estimation Model by District/City, Estimation Method 

and the Period of Data Collection in West Java Province in 2015 

Name of District/City 

Percen-

tage of 

Sub-

district 

Sample 

Recorded 

Direct Estimator 
September 2015 SAE-

AR1-ME Estimator 

September 2015 SAE-

AR1 Estimator 

Standard 

Deviation  

Coefficient 

of Variation 

Standard 

Deviation  

Coefficient 

of Variation 

Standard 

Deviation  

Coefficient 

of Variation 

(1) (2) (3) (4) (5) (6) (7) (8) 

Bogor District 57.50 454226 50.04 213300 23.92 274138 28.22 

Sukabumi District 42.22 248962 35.54 208018 23.32 191772 19.74 

Cianjur District 53.13 130710 23.60 236329 26.50 186933 19.24 

Bandung District 64.52 336764 40.34 225946 25.33 241003 24.81 

Garut District 52.78 153603 29.92 294155 32.98 157768 16.24 

Tasikmalaya District 51.28 134527 27.47 220865 24.76 224089 23.06 

Ciamis District 65.38 140736 23.97 233305 26.16 195370 20.11 

Kuningan District 51.61 163370 22.63 235464 26.40 210765 21.69 

Cirebon District 55.00 191339 30.88 340289 38.15 441753 45.47 

Majalengka District 65.38 211120 30.24 283368 31.77 318086 32.74 

Sumedang District 53.85 197164 24.96 331468 37.17 322818 33.23 

Indramayu District 64.52 126045 20.03 202516 22.71 207142 21.32 

Subang District 53.33 255076 29.19 288419 32.34 254547 26.20 

Purwakarta District 75.00 334324 32.44 264565 29.66 459989 47.35 

Karawang District 68.97 285775 33.41 244085 27.37 233161 24.00 

Bekasi District 65.22 492691 42.15 232800 26.10 528705 54.42 

West Bandung District 81.25 206333 34.09 240959 27.02 189838 19.54 

Pangandaran District 80.00 201413 25.71 290843 32.61 274896 28.29 

Bogor City 83.33 151570 11.44 236956 26.57 577822 59.47 

Sukabumi City 100.00 282980 27.99 300168 33.66 461592 47.51 

Bandung City 62.07 1058837 73.84 298394 33.46 810775 83.45 

Cirebon City 100.00 134414 16.23 323394 36.26 285615 29.40 

Bekasi City 100.00 307722 21.45 372212 41.73 916790 94.36 

Depok City 81.82 434811 28.92 224152 25.13 648399 66.74 

Cimahi City 100.00 176360 15.29 258562 28.99 557129 57.34 

Tasikmalaya City 100.00 366189 37.97 279177 31.30 429757 44.23 

Banjar City 100.00 189586 23.20 276830 31.04 299573 30.83 

West Java Province 62.05 272839 30.11 265057 29.72 366675 37.74 
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In Table 5, the value of the goodness of the estimation model is given, in the form of the 

value of the standard deviation/ RMSE and the CV. The SAE-AR1-ME estimator produces an 

estimator model looks better as a measure of the goodness of the model. The estimator of the 

results of the SAE-AR1-ME model as a whole has an average standard deviation/RMSE and an 

average CV that is smaller than the estimator of the SAE-AR1 model and its direct estimator have. 

The SAE-AR1-ME model produces more efficient and more homogeneous estimates than the 

SAE-AR1 model and its direct estimator have. 

It was previously stated that the September Susenas was only able to produce estimates at 

the provincial level due to the small sample sizes. By using the Small Area Estimation method that 

examines measurement errors in the auxiliary variables (the results of the March Susenas), it is 

possible to produce estimates at the provincial and district/city levels with a measure of the tested 

goodness of the estimation model. Therefore, the use of survey data with limited samples can be 

wider in scope, one of which is by using a Small Area Estimation method with measurement errors 

in the auxiliary variables. 

 

7. CONCLUSION 

The Small Area Estimation for the autoregressive model with measurement error in the auxiliary 

variable (SAE-AR1-ME) has a likely smaller mean RB̅̅ ̅̅  compared to the Small Area Estimation 

for the autoregressive model (SAE AR1). The SAE-AR1-ME is also an estimator as efficient as 

the SAE-AR1 estimator with the mean of the root mean square error (RMSE̅̅ ̅̅ ̅̅ ̅̅ ) as low as the 

estimator small area for the autoregressive model (SAE-AR1) when each variance of the auxiliary 

variable and the variance of area random effect is small. The SAE-AR1-ME is an estimator as 

reliable as the SAE-AR1 estimator, which is indicated by the average value of the coefficient of 

variance (CV̅̅̅̅ ) as low as the SAE-AR1 in the population originating from a variance of auxiliary 

variables with small and medium values of measurement errors.  

The development model application to the 2015 Susenas and 2014 Village Potential data 

shows that the SAE-AR1-ME produces an estimate better than the SAE-AR1 does. The SAE-AR1-
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ME estimator model has an RMSE smaller than the SAE-AR1 estimator model’s. This shows that 

the SAE-AR1-ME estimator has a variety of estimator values closer to the diversity of the actual 

observed values than the SAE-AR1 model’s.  

The SAE-AR1-ME model has a mean CV smaller than the SAE-AR1’s, which shows that 

the SAE-AR1-ME model is a more reliable estimator compared to SAE-AR1 model. The results 

of the application of two development models to the actual data, indicate that the use of the SAE-

AR1-ME, is better than the use of the SAE-AR1. 
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