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Abstract. Globally, potato is one of the staple foods eaten by a lot of people. It processed into different kinds of

food for mankind. Climate change has brought a lot of changes with respect to the output of global food stock due

to problems such as drought, diseases, etc. In this study, a potato disease model is formulated in a fractional-order

derivative with the nonlocal and nonsingular operator (AB). The reproduction number of the potato model and the

steady states are determined. The existence and uniqueness of solutions are established using the Banach space

approach, and Hyers-Ulam stability is carried out to determine if the existence and uniqueness solution is stable.

A numerical simulation is carried out with and without stochastic components, which indicates a similar result.

However, the stochastic aspect depicts a random effect. It is established that the fractional-order derivative has

effect on the dynamics of the potato disease.
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1. INTRODUCTION

Potato is a starchy rich food originated from Andes of South America. Today, potato related

foods can be found in every continent using technology. This important crop is vulnerable to a

number of diseases, including a viral one, which is more dangerous to the survival of the crop.
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One of the most common viral diseases of the crop is the Potato leaf roll [13]. The disease

accounts for about 50% of the global loss of potato yield. The disease is found in all parts of

the world where potato crop production is undertaken. In quantifying, the amount of volume of

Potatoes tonnage lost annually due to this disease is roughly around 20 million tons [13].

The basic infection of potatoes occurs when they are bitten by a virus named Caring Aphid. This

aphis obtains the virus through the infected Potatoes with leaf roll. So far as the plants have

been infected by the aphid, they contain the disease throughout their life cycles. Another mode

of infection is the planting of infectious plants, and this is known as the secondary infection

as the tuber from the beginning becomes infectious. Mathematical models present qualitative

information in the absence of experimental data, which is costly and time-consuming to carry

out [9, 12]. Numerous plant-related mathematical models have been constructed to explain the

dynamics of existing situations[19, 20, 21]. Modeling using fractional order derivative from

literature is better than the classical derivative [4, 5]. Of the existing fractional-order operators,

the Atangana-Baleanu operator based on the generalised Mittag-Leffler function is preferred

because it is nonsingular and nonlocal [1, 4, 15, 16]. It has crossover property which allows it

to stretch from one operator to one another, leading to good predictions [1].

The author in [6] constructed an epidemiological model including vector population dynamics

with respect to Africa cassava mosaic virus disease. In [7], the authors developed a mathemati-

cal model solely for pest-insect control employing mating disruption and trapping. Chapwanya

and Dumont [8] investigated crop vector-borne disease, specifically the impact of virus lifespan

and contact rate on the traveling–wave speed of infective fronts. Authors in [10], constructed a

mathematical model on guava plants and examined the pest control relationship using the frac-

tional calculus concept. In [11], the authors developed a mathematical model of vector-borne

plant disease incorporating the memory on the host and vector.

To the best of the researcher’s knowledge, there is no existing study incorporating the Mittag-

Leffler function in deterministic and stochastic forms. The study compares the two scenarios’

numerical analysis results.
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2. PRELIMINARIES

This section presents few imperative mathematical concepts necessary to further analyse the

rest of the work. These crucial concepts include the following definitions and theorems associ-

ated with the operators:

3. MATHEMATICAL PRELIMINARIES

This section presents few imperative mathematical concepts necessary to further analyse the

rest of the work. These crucial concepts include the following definitions and theorems associ-

ated with the operators:

(1) C
0 Dq

t f (t) =
1

T (1−q)

t∫
0

d
dϖ

f (ϖ)(t−ϖ)−qdϖ

(2) RL
0 Dq

t f (t) =
1

T (1−q)
d
dt

t∫
0

f (ϖ)(t− τ)−qdϖ

(3) CF
0 Dq

t f (t) =
M(q)
1−q

t∫
0

d
dϖ

f (ϖ)exp
[
− q

1−q
(t−ϖ)

]
dϖ

(4) AB
0 Dq

t f (t) =
AB(q)
1−q

t∫
0

d
dt

f (ϖ)Eq

[
− q

1−q
(t−ϖ)q

]
dτ

(5) ABR
0 Dq

t f (t) =
AB(q)
1−q

d
dt

t∫
0

f (ϖ)Eq

[
− q

1−q
(t−ϖ)q

]
dϖ

where

Eq (−tq) =
∞

∑
k=0

(−t)qk

T (qk+1)
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4. MAIN RESULTS

5. MATHEMATICAL MODEL FORMULATION

The model is a modified version of Gatachew et al. [13] in a fractionalised form which com-

prises potato and vector population respectively with bi-linear incidence rate. The total Potato

population (Na(t)) at time t, is subdivided into susceptible potato (Sa(t)) exposed potato (Ea(t))

and infected potato (Ia(t)). The total vector population (Nb(t)) is partitioned into susceptible

vector (Sb(t)) and infected vector (Ib). The potato recruitment rate is denoted by Λa and force

of infection of susceptible potato is given by 2bSa(t)Ib(t)
Sa(t)+Ib(t)

. The rate of exposed class move into

infectious individual class is denoted by φ . γ1 is the induced mortality rate and γ2 is the rate of

removing potato infected with disease. The natural mortality rate of potato is µa. The rate of

infection of susceptible vector is denoted by c and Λb is the recruitment rate of vector. µb is the

natural mortality of the vector.

(6)



ABDq
0,t [Sa(t)] = Λa− 2bSa(t)Ib(t)

Sa(t)+Ib(t)
−µaSa(t),

ABDq
0,t [Ea(t)] =

2bSa(t)Ib(t)
Sa(t)+Ib(t)

− (µa +φ)Ea(t),

ABDq
0,t [Ia(t)] = φEa(t)− (µa + γ1 + γ2)Ia(t),

ABDq
0,t [Sb(t)] = Λb− cSb(t)Ia(t)−µbSb(t),

ABDq
0,t [Ib(t)] = cSb(t)Ia(t)−µbIb(t),

Sa(t)> 0,Ea(t)≥ 0, Ia(t)≥ 0,Sb(t)> 0, Ib(t)≥ 0.

.

6. EXISTENCE AND UNIQUENESS OF THE COUPLED SOLUTIONS

In this section, Banach space by D(Ξ) with Ξ = [0,b], which possesses a real valued con-

tinuous function with sup norm where Q = D(Ξ)×D(Ξ)×D(Ξ)×D(Ξ)×D(Ξ) with norm

‖(Sa,Ea, Ia,Sb, Ib)‖ = ‖Sa‖+ ‖Ea‖+ ‖Ia‖+ ‖Sb‖+ ‖Ib‖ where ‖Sa‖ = supt∈J |Sa(t)| ,‖Ea‖ =
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supt∈J |Ea(t)| ,‖Ia‖ = supt∈J |Ia(t)| ,‖Sb‖ = supt∈J |Ib(t)| ,‖Ib‖ = supt∈J |Ib(t)| Utilising AB in-

tegral operator with respect to (6). The following results is obtained:

(7)



Sa(t)−Sa(0) = AB
0 Dq

0,t [Sa(t)]
{

Λa− 2bSa(t)Ib(t)
Sa(t)+Ib(t)

−µaSa(t),
}

Ea(t)−Ea(0) = AB
0 Dq

0,t [Ea(t)]
{

2bSa(t)Ib(t)
Sa(t)+Ib(t)

− (µa +φ)Ea(t),
}

Ia(t)− Ia(0) = AB
0 Dq

0,t [Ia(t)]{φEa(t)− (µa + γ1 + γ2)Ia(t),}

Sb(t)−Sb(0) = AB
0 Dq

0,t [Sb(t)]{Λb− cSb(t)Ia(t)−µbSb(t),}

Ib(t)− Ib(0) = AB
0 Dq

0,t [Ib(t)]{cSb(t)Ia(t)−µbIb(t).}

Following the mathematical preliminaries, the following is arrived at:

(8)

Sa(t)−Sa(0) =
1−q

AB(q)R1(q, t,Sa(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1(q,ϖ ,Sa(ϖ))dϖ ,

Ea(t)−Ea(0) =
1−q

AB(q)R2(q, t,Ea(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R2(q,ϖ ,Ea(ϖ))dϖ ,

Ia(t)− Ia(0) =
1−q

AB(q)R3(q, t, Ia(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R3(q,ϖ , Ia(ϖ))dϖ ,

Sb(t)−Sb(0) =
1−q

AB(q)R4(q, t,Sb(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R4(q,ϖ ,Sb(ϖ))dϖ ,

Ib(t)− Ib(0) =
1−q

AB(q)R5(q, t, Ib(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R5(q,ϖ , Ib(ϖ))dϖ .

where,

(9)

R1(q, t,Sa(t)) = Λa− 2bSa(t)Ib(t)
Sa(t)+Ib(t)

−µaSa(t),

R2(q, t,Ea(t)) =
2bSa(t)Ib(t)
Sa(t)+Ib(t)

− (µa +φ)Ea(t),
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R3(q, t, Ia(t)) = φEa(t)− (µa + γ1 + γ2)Ia(t),

R4(q, t,Sb(t)) = Λb− cSb(t)Ia(t)−µbSb(t),

R5(q, t, Ib(t)) = cSb(t)Ia(t)−µbIb(t).

The R1,R2,R3,R4 and R5 fulfil Lipschitz condition only whenever Sa(t),Ea(t), Ia(t),Sb(t) and

Ib(t) have an upper bound. If Sa(t) and S∗a(t) are considered as couple functions, then one has,

(10) ‖R1 (q, t,Sa(t))−R1 (q, t,S∗a(t))‖=
∥∥∥∥−( 2Ib(t)

Sa(t)+ Ia(t)
+µa

)
(Sa(t)−S∗a(t))

∥∥∥∥
Considering,

ψ1 =

∥∥∥∥−( 2Ib(t)
Sa(t)+ Ia(t)

+µa

)∥∥∥∥
one arrives at the following,

(11) ‖R1(q, t,Sa(t))−R1(q, t,S∗a(t))‖ ≤ ψ1 ‖Sa(t)−,S∗a(t)‖

Following a similar approach, one obtains the following:

(12)

‖R2(q, t,Ea(t))−R2(q, t,E∗a(t))‖ ≤ ψ2 ‖Ea(t)−,E∗a(t)‖ ,

‖R3(q, t, Ia(t))−R3(q, t, I∗a (t))‖ ≤ ψ3 ‖Ia(t)−, I∗a (t)‖ ,∥∥R4(q, t,Sb(t))−R2(q, t,S∗b(t))
∥∥≤ ψ4

∥∥Sb(t)−,S∗b(t)
∥∥ ,∥∥R5(q, t, Ib(t))−R5(q, t, I∗b (t))

∥∥≤ ψ5
∥∥Ib(t)−, I∗b (t)

∥∥ .
where,

ψ2 = (µa +φ),ψ3 = (µa + γ1 + γ2),ψ4 = µb,ψ5 = µa

This suggests that the Lipschitz condition has embraced all the five functions and in a recursive

manner the equation (7) gives:

(13)

San(t)−Sa(0) =
1−q

AB(q)R1(q, t,San−1(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1(q,ϖ ,San−1(ϖ))dϖ ,

Ean(t)−Ea(0) =
1−q

AB(q)R2(q, t,Ean−1(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R2(q,ϖ ,Ean−1(ϖ))dϖ ,

Ian(t)− Ia(0) =
1−q

AB(q)R3(q, t, Ian−1(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R3(q,ϖ , Ian−1(ϖ))dϖ ,
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Sbn(t)−Sb(0) =
1−q

AB(q)R4(q, t,Sbn−1(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R4(q,ϖ ,Sbn−1(ϖ))dϖ ,

Ibn(t)− Ib(0) =
1−q

AB(q)R5(q, t, Ibn−1(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R5(q,ϖ , Ibn−1(ϖ))dϖ .

in addition to Sa0(t) = Sa(0),Ea0(t) = Ea(0), Ia0(t) = Ia(0),Sb0(t) = Sb(0), Ib0(t) = Ib(0). By

considering successive terms difference the following results are yielded:

(14)

ΦSa,n(t) = San(t)−San−1(t)−
1−q

AB(q)

(
R1(q, t,San−1(t))−R1(q, t,San−2(t))

)
+ q

AB(q)Γ(q)

t∫
0
(t−ϖ)q−1 (R1(q,ϖ ,San−1(t))−R1(q,ϖ ,San−2(ϖ))

)
dϖ ,

ΦEa,n(t) = Ean(t)−Ean−1(t)−
1−q

AB(q)

(
R2(q, t,Ean−1(t))−R2(q, t,Ean−2(t))

)
+ q

AB(q)Γ(q)

t∫
0
(t−ϖ)q−1 (R2(q,ϖ ,Ean−1(t))−R2(q,ϖ ,Ean−2(ϖ))

)
dϖ ,

ΦIa,n(t) = Ian(t)− Ian−1(t)−
1−q

AB(q)

(
R3(q, t, Ian−1(t))−R3(q, t, Ian−2(t))

)
+ q

AB(q)Γ(q)

t∫
0
(t−ϖ)q−1 (R3(q,ϖ , Ian−1(t))−R3(q,ϖ , Ian−2(ϖ))

)
dϖ ,

ΦSb,n(t) = Sbn(t)−Sbn−1(t)−
1−q

AB(q)

(
R4(q, t,Sbn−1(t))−R4(q, t,Sbn−2(t))

)
+ q

AB(q)Γ(q)

t∫
0
(t−ϖ)q−1 (R4(q,ϖ ,San−1(t))−R4(q,ϖ ,San−2(ϖ))

)
dϖ ,

ΦIb,n(t) = Ian(t)− Ian−1(t)−
1−q

AB(q)

(
R5(q, t, Ian−1(t))−R5(q, t, Ian−2(t))

)
+ q

AB(q)Γ(q)

t∫
0
(t−ϖ)q−1 (R5(q,ϖ , Ibn−1(t))−R5(q,ϖ , Ibn−2(ϖ))

)
dϖ .

It is imperative to note that,

San(t) = ∑
n
i=0 ΦSa,i(t),Ean(t) = ∑

n
i=0 ΦEa,i(t), Ian(t) = ∑

n
i=0 ΦIa,i(t),

Sbn(t) = ∑
n
i=0 ΦSb,i(t), Ibn(t) = ∑

n
i=0 ΦIb,i(t).

Furthermore, utilizing Eqs. (11) and (12) and having in mind that,

ΦSa,n−1(t) = San−1(t)−San−2(t),ΦEa,n−1(t) = Ean−1(t)−Ean−2(t),ΦIa,n−1(t) = Ian−1(t)− Ian−2(t)

ΦSb,n−1(t) = Sbn−1(t)−Sbn−2(t),ΦIb,n−1(t) = Ibn−1(t)− Ibn−2(t).

This leads to

(15)

∥∥ΦSa,n(t)
∥∥≤ 1−q

AB(q)ψ1
∥∥ΦSa,n−1(t)

∥∥ q
AB(q)Γ(q)ψ1×

t∫
0
(t−ϖ)q−1

∥∥ΦSa,n−1(ϖ)
∥∥dϖ ,∥∥ΦEa,n(t)

∥∥≤ 1−q
AB(q)ψ2

∥∥ΦEa,n−1(t)
∥∥ q

AB(q)Γ(q)ψ2×
t∫

0
(t−ϖ)q−1

∥∥ΦEa,n−1(ϖ)
∥∥dϖ ,∥∥ΦIa,n(t)

∥∥≤ 1−q
AB(q)ψ3

∥∥ΦIa,n−1(t)
∥∥ q

AB(q)Γ(q)ψ3×
t∫

0
(t−ϖ)q−1

∥∥ΦIa,n−1(ϖ)
∥∥dϖ ,
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∥∥∥≤ 1−q

AB(q)ψ4

∥∥∥ΦSb,n−1(t)
∥∥∥ q

AB(q)Γ(q)ψ4×
t∫

0
(t−ϖ)q−1

∥∥∥ΦSb,n−1(ϖ)
∥∥∥dϖ ,∥∥ΦIb,n(t)

∥∥≤ 1−q
AB(q)ψ5

∥∥ΦIb,n−1(t)
∥∥ q

AB(q)Γ(q)ψ5×
t∫

0
(t−ϖ)q−1

∥∥ΦIb,n−1(ϖ)
∥∥dϖ .

Theorem 1. Considering that the following condition exists

(16)
1−q
AB(q)

ψi +
q

AB(q)Γ(q)
dq

ψi < 1, i,1,2,3, ...,5.

Then, (6) possesses a distinctive solution for t ∈ [0,b] .

Proof. It is demonstrated, Sa(t),Ea(t), Ia(t),Sb(t), Ib(t) are bounded functions. Furthermore, as

can observe with respect to Eqs. (11) and (12), the symbols R1,R2,R3,R4 and R5 represent

or hold for the Lipchitz condition. Hence, making use of Eq. (15) together with recursive

hypothesis yields

(17)

∥∥ΦSa,n(t)
∥∥≤ ‖Sa0(t)‖

(
1−q

AB(q)ψ1 +
qdq

AB(q)Γ(q)ψ1

)n
,∥∥ΦEa,n(t)

∥∥≤ ‖Ea0(t)‖
(

1−q
AB(q)ψ2 +

qdq

AB(q)Γ(q)ψ2

)n
,∥∥ΦIa,n(t)

∥∥≤ ‖Ia0(t)‖
(

1−q
AB(q)ψ3 +

qdq

AB(q)Γ(q)ψ3

)n
,∥∥∥ΦSb,n(t)

∥∥∥≤ ∥∥Sb0(t)
∥∥( 1−q

AB(q)ψ4 +
qdq

AB(q)Γ(q)ψ4

)n
,∥∥ΦIb,n(t)

∥∥≤ ∥∥Ib0(t)
∥∥( 1−q

AB(q)ψ5 +
qdq

AB(q)Γ(q)ψ5

)n
.

�

Therefore, one can simply infer that these sequences exist and satisfy∥∥ΦSa,n(t)
∥∥→ 0,

∥∥ΦEa,n(t)
∥∥→ 0,

∥∥ΦIa,n(t)
∥∥→ 0,

∥∥∥ΦSb,n(t)
∥∥∥→ 0,

∥∥ΦIb,n(t)
∥∥→ 0 as n→ ∞

In addtion, from Eq. (17) and making use of the triangle inequality, for any k , one arrives at

the following

(18)

∥∥San+k(t)−San(t)
∥∥≤ n+k

∑
j=n+1

U j
1 =

Un+1
1 −Un+k+1

1
1−U1∥∥Ean+k(t)−Ean(t)

∥∥≤ n+k
∑

j=n+1
U j

2 =
Un+1

2 −Un+k+1
2

1−U2∥∥Ian+k(t)− Ian(t)
∥∥≤ n+k

∑
j=n+1

U j
3 =

Un+1
3 −Un+k+1

3
1−U3∥∥Sbn+k(t)−Sbn(t)

∥∥≤ n+k
∑

j=n+1
U j

4 =
Un+1

4 −Un+k+1
4

1−U4∥∥Ibn+k(t)− Ibn(t)
∥∥≤ n+k

∑
j=n+1

U j
5 =

Un+1
5 −Un+k+1

5
1−U5
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with Ui =
1−q

AB(q)ψi +
q

AB(q)Γ(q)d
qψi < 1 by an assumption. Hence, San,Ean, Ian,Sbn, Ibn is consid-

ered as a Cauchy sequences in the light of Banach space B (J). This demonstrates that these

sequences are uniformly convergent. Applying the limit theorem with regard to Eq. (14) as

n→ ∞ supports the fact that the limit of these sequences possess the unique solution of (6).

This presents the existence of a single solution for Eq. (6) under the condition established in

(16).

7. HYERS–ULAM STABILITY AND APPROXIMATION TECHNIQUE

Definition 7.1. The AB fractional integral Eq. (6) is considered to be Hyers–Ulam stable when-

ever there exists a constant ∆i > 0, i ∈ N5 satisfying: Given that qi > 0, i ∈ N5, for

(19)

∣∣∣∣Sa(t)− 1−q
AB(q)R1(q, t,Sa(t))+

q
AB(q)Γ(q) ×

t∫
0
(t−ϖ)q−1R1(q,ϖ ,Sa(ϖ))dϖ

∣∣∣∣≤ ξ1,

∣∣∣∣Ea(t)− 1−q
AB(q)R2(q, t,Ea(t))+

q
AB(q)Γ(q) ×

t∫
0
(t−ϖ)q−1R2(q,ϖ ,Ea(υ))dϖ

∣∣∣∣≤ ξ2,

∣∣∣∣Ia(t)− 1−q
AB(q)R3(q, t, Ia(t))+

q
AB(q)Γ(q) ×

t∫
0
(t−ϖ)q−1R3(q,ϖ , Ia(ϖ))dϖ

∣∣∣∣≤ ξ3,

∣∣∣∣Sb(t)− 1−q
AB(q)R4(q, t,Sb(t))+

q
AB(q)Γ(q) ×

t∫
0
(t−ϖ)q−1R4(q,ϖ ,Sb(ϖ))dϖ

∣∣∣∣≤ ξ4,

∣∣∣∣Ib(t)− 1−q
AB(q)R5(q, t, Ib(t))+

q
AB(q)Γ(q) ×

t∫
0
(t−ϖ)q−1R5(q,ϖ , Ib(ϖ))dϖ

∣∣∣∣≤ ξ5.

there exist
(
Ṡa(t), Ėa(t), İa(t), Ṡb(t), İb(t)

)
which are fulfilling:

(20)

Ṡa(t) =
1−q

AB(q)R1 (q, t,Sa(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1

(
q,ϖ , Ṡa(ϖ)

)
dϖ

Ėa(t) =
1−q

AB(q)R1 (q, t,Ea(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1

(
q,ϖ , Ėa(ϖ)

)
dϖ

İa(t) =
1−q

AB(q)R1 (q, t, Ia(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1

(
q,ϖ , İa(ϖ)

)
dϖ

Ṡb(t) =
1−q

AB(q)R1 (q, t,Sb(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−ϖ)q−1R1

(
q,ϖ , Ṡb(ϖ)

)
dϖ

İb(t) =
1−q

AB(q)R1 (q, t, Ib(t))+
q

AB(q)Γ(q) ×
t∫

0
(t−υ)q−1R1

(
q,ϖ , İb(ϖ)

)
dϖ
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Indicating that

(21)

∣∣Sa(t)− Ṡa(t)
∣∣≤ ϖ1ζ1,

∣∣Sa(t)− Ṡa(t)
∣∣≤ ϖ2ζ2,

∣∣Sa(t)− Ṡa(t)
∣∣≤ ϖ3ζ3,∣∣Sa(t)− Ṡa(t)

∣∣≤ ϖ4ζ4,
∣∣Sa(t)− Ṡa(t)

∣∣≤ ϖ5ζ5

Theorem 2. Using the assumption J, the proposed model of fractional order (6) is considered

Hyers–Ulam stable

Proof. Employing the Theorem (1), the proposed Potato disease AB fractional model (6) pos-

sesses a singular solution. Let (Sa(t),Ea(t), Ia(t),Sb(t), Ib(t)) represents an approximate solu-

tion of the model (6) fulfilling the conditions of Equation system (8) .

(22)

∥∥Sa(t)− Ṡa(t)
∥∥≤ 1−q

AB(q)

∥∥R1 (q, t,Sa(t))−R1
(
q, t, Ṡa(t)

)∥∥
1−q

AB(q)

t∫
0
(t−ϖ)q−1

∥∥R1 (q, t,Sa(t))−R1
(
q, t, Ṡa(t)

)∥∥dϖ[
1−q

AB(q)+
q

AB(q)Γ(q)

]
Θ1
∥∥Sa− Ṡa

∥∥ ,∥∥Ea(t)− Ėa(t)
∥∥≤ 1−q

AB(q)

∥∥R2 (q, t,Ea(t))−R2
(
q, t, Ėa(t)

)∥∥
1−q

AB(q)

t∫
0
(t−ϖ)q−1

∥∥R2 (q, t,Ea(t))−R2
(
q, t, Ėa(t)

)∥∥dϖ[
1−q

AB(q)+
q

AB(q)Γ(q)

]
Θ1
∥∥Ea− Ėa

∥∥ ,∥∥Ia(t)− İa(t)
∥∥≤ 1−q

AB(q)

∥∥R3 (q, t, Ia(t))−R3
(
q, t, İa(t)

)∥∥
1−q

AB(q)

t∫
0
(t−ϖ)q−1

∥∥R3 (q, t, Ia(t))−R3
(
q, t, İa(t)

)∥∥dϖ[
1−q

AB(q)+
q

AB(q)Γ(q)

]
Θ1
∥∥Ia− İa

∥∥ ,∥∥Sb(t)− Ṡb(t)
∥∥≤ 1−q

AB(q)

∥∥R4 (q, t,Sb(t))−R4
(
q, t, Ṡb(t)

)∥∥
1−q

AB(q)

t∫
0
(t−ϖ)q−1

∥∥R4 (q, t,Sb(t))−R4
(
q, t, Ṡb(t)

)∥∥dϖ[
1−q

AB(q)+
q

AB(q)Γ(q)

]
Θ1
∥∥Sb− Ṡb

∥∥ ,∥∥Ib(t)− İb(t)
∥∥≤ 1−q

AB(q)

∥∥R5 (q, t, Ib(t))−R5
(
q, t, İb(t)

)∥∥
1−q

AB(q)

t∫
0
(t−ϖ)q−1

∥∥R5 (q, t, Ib(t))−R5
(
q, t, İb(t)

)∥∥dϖ[
1−q

AB(q)+
q

AB(q)Γ(q)

]
Θ1
∥∥Ib− İb

∥∥ .
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In a similar manner, one obtains the following:

(23)

∥∥Ea(t)− Ėa(t)
∥∥≤ ξ ∆2,∥∥Ia(t)− İa(t)
∥∥≤ ξ ∆3,∥∥Sb(t)− Ṡb(t)
∥∥≤ ξ ∆4,∥∥Ia(t)− İa(t)
∥∥≤ ξ ∆5.

Utilising the Eqs. (22) and (23) , the AB Potato disease model in fractional integral of (6) is

Hyers–Ulam and also the AB-fractional order model (6) is Hyers–Ulam stable. This ends the

proof. �

7.1. Model Equilibria.

7.1.1. The Potato Disease Free Equilibrium Point. In the absence of potato infected or vector

infected individual, that is E∗a = I∗a = I∗b = 0. The system (6) leads to the following potato free

equilibrium point denoted by D0 and expressed as:

D0 = (S0
a,E

0
a , I

0
a ,S

0
b, I

0
b ) = (

(2bΛb

µa
,0,0,

cΛb

µb
,0).

The long term behaviour of potato disease model will be examined by first of all obtaining the

basic reproduction number via next generation matrix method in the subsequent subsection.

7.1.2. The Basic Reproduction Number. The basic reproduction number R0 is obtained util-

ising the next-generation matrix method [14] and initially let F and V constitute the current

infections and transfer matrices of the potato disease model (6) in that order (see [14]. The

associated Jacobian matrices computed with respect to the DFE point is given by:

F =


0 0 2bΛa

µa

0 0 0

0 cΛb
µb

0

 and V =


φ +µa 0 0

−φ γ1 + γ2 +µa 0

0 0 µb

 .

The reproduction number R0 is determined by the spectral radius of the corresponding next

generation matrix, thus FV−1,

R0 = ρ(FV−1) = R0 =

√
2bcφ 2ΛaΛb

φ µaµ2
b (µa + γ1 + γ2)(µa +φ)

·
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7.1.3. The Potato Disease Endemic Equilibrium Point. This subsection presents the endemic

equilibrium solution of the Potato disease model (6) given by

E1 =
(

S∗a,E
∗
a , I
∗
a ,S
∗
b, I
∗
a

)
,

where,

S∗a =

√(
−I∗b µa +Λa−2bI∗b

)
2 +4I∗b Λaµa + I∗b µa−Λa +2bI∗b

2µa

E∗a =
2bI∗b S∗a(

S∗a + I∗b
)
(µa +φ)

I∗a =
E∗a φ

µa + γ1 + γ2

S∗b =
Λb

µb + I∗a c

I∗b =
I∗a cΛb

µb (µb + I∗a c)

7.2. Local Stability of the DFE.

Theorem 3. The DFE is considered locally asymptotically stable whenever R0 < 1 and unstable

otherwise.

Proof. The Theorem 3 is proved by showing that the eigenvalues of the corresponding Jacobian

matrix of system model (6) fulfils the condition |arg(qi)| > pπ

2 , where qi represents the eigen-

values evaluated at DFE on the Jacobian matrix J(E0), for i ∈ {1,2, ...,5}. The results of the

Jacobian matrix J(E0) in the fractional order context of the system model (6) is evaluated at the

DFE is given by
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J(E0) =



−µa 0 0 0 −2bΛa
µa

0 −(φ +µa) 0 0 2bΛa
µa

0 φ −(γ1 + γ2 +µa) 0 0

0 0 −cΛb
µb

−µb 0

0 0 cΛb
µb

0 −µb



.

Evidently, −µa, −µb are eigenvalues of J(E0) are negatives, therefore, satisfies the condition

|arg(qi)|> pπ

2 . The rest of the eigenvalues of J(E0) obtained from the sub matrix

J0 =



−(φ +µa) 0 2bΛa
µa

φ −(γ1 + γ2 +µa) 0

0 cΛb
µb

−µb


.

The associated characteristic polynomial equation of J0 is expressed as

q(m) =−q3m3 +q2m2 +q1m+q0,

where,

q3 = −µaµb,(24)

q2 = −µaµb (2µa +µb + γ1 + γ2 +φ) ,(25)

q1 = −µaµb ((µa + γ1 + γ2)((µa +φ))−µb (2µa + γ1 + γ2 +φ)) ,(26)

q0 = (Ro−1),(27)
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q3, q2, q1 are negative and q0 depicts negative whenever R0 < 1. It can be observed that no

sign change occurs in the coefficients of the polynomial m(q). Based on Descartes law of signs,

conclusion can be drawn that the roots of the polynomial are negative.Therefore, the matrix

J0 possesses only negative eigenvalues whenever R0 < 1 and the eigenvalues therefore fulfil

the condition |arg(qi)| > pπ

2 , for i ∈ {1,2, ...,5}. Therefore, the DFE is locally asymptotically

stable whenever R0 < 1 and unstable otherwise. �

8. NUMERICAL SCHEME FOR FRACTIONAL STOCHASTIC MODEL

In this section, we present a numerical scheme of the fractional stochastic model based on

the Atangana-Baleanu operator.

(28)

Sa (t) =
(

Λa− 2bSaIb
Sa+Ib

−µaSa(t)
)

dt +θ1Sa(t)dX1(t)

Ea (t) =
(

2bSaIb
Sa+Ib

− (φ +µa)Ea(t)
)

dt +θ2Ea(t)dX2(t),

Ia (t) = (φEa− (γ1 + γ2 +µa)Ia)dt +θ3Ia(t)dX3(t)

Sb (t) = (Λb− cSbIa−µbSb.)dt +θ4Sb(t)dX4(t)

Ib (t) = (cSbIa−µbIb) .dt +θ5Ib(t)dX5(t)

where Xi(t), i= 1,2,3,4,5 constitute the standard Brownian motion and θi, i= 1;2,3,4,5 depict

the stochastic constant. This fractional stochastic model in the Atangana-Baleanu operator is

solved utilising a numerical scheme with Newton polynomial with varying fractional derivative

order as in [18]. In order to execute this, the model 28 is reorganised in Atangana-Baleanu

operator in Caputo sense as follows:

(29)

AB
0 Dq

t Sa (t) =
(

Λa− 2bSaIb
Sa+Ib

−µaSa

)
+θ1Q1(t,Sa)X ′1(t),

AB
0 Dq

t Ea (t) =
(

2bSaIb
Sa+Ib

− (φ +µa)Ea

)
+θ2Q2(t,Ea)X ′2(t),
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AB
0 Dq

t Ia (t) = (φEa− (γ1 + γ2 +µa)Ia)+θ3Q3(t, Ia)X ′3(t),

AB
0 Dq

t Sb (t) = (Λb− cSbIa−µbSb.)+θ4Q4(t,Sb)X ′4(t),

AB
0 Dq

t Ib (t) = (cSbIa−µbIb) .+θ5Q5(t, Ib)X ′5(t).

In making the model 29 easy to work with, the above system equation is rearranged as follows:

(30)

AB
0 Dq

t Sa (t) = Sa(t,Sa,Ea, Ia,Sb, Ib)+θ1Q1(t,Sa)X ′1(t),

AB
0 Dq

t Ea (t) = Ea(t,Sa,Ea, Ia,Sb, Ib)+θ2Q2(t,Ea)X ′2(t),

AB
0 Dq

t Ia (t) = Ia(t,Sa,Ea, Ia,Sb, Ib)+θ3Q3(t, Ia)X ′3(t),

AB
0 Dq

t Sb (t) = Sb(t,Sa,Ea, Ia,Sb, Ib)+θ4Q4(t,Sb)X ′4(t),

AB
0 Dq

t Ib (t) = Ib(t,Sa,Ea, Ia,Sb, Ib)+θ5Q5(t, Ib)X ′5(t).

Employing the AB definition, the following numerical scheme based on Newton polynomial is

obtained as:

Sn+1
a = Sn

a +
1−q

AB(q)Sa
(
tn,Sn

a,E
n
a , I

n
a ,S

n
b, I

n
b

)
+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

Sa

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)
×Ψ

+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

θ1Q1(t j−2,S
j−2
a )

(
X1(t j−1)−X1(t j−2)

)
×Ψ
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+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


θ1Q1(t j−1,S

j−1
a )

(
X1(t j)−X1(t j−1)

)
−θ1Q1(t j−2,S

j−2
a )

(
X1(t j−1)−X1(t j−2)

)
×∑

q(∆t)q

AB(q)Γ(q+3)

n
∑
j=2



θ1Q1(t j,S
j
a)
(
X1(t j−1)−X1(t j)

)
−2θ1Q1(t j−1,S

j−1
a )

(
X1(t j)−X1(t j−1)

)
+θ1Q1(t j−2,S

j−2
a )

(
X1(t j−1)−X1(t j−2)

)


×∆

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


Sa

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

−Sa

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)

×∑

+ q(∆t)q

2AB(q)Γ(q+3)

n
∑
j=2



Sa

(
t j,S

j
a,E

j
a, I

j
a,S

j
b, I

j
b

)

−2Sa

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

+Sa

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)


×∆
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En+1
a = En

a +
1−q

AB(q)Ea
(
tn,Sn

a,E
n
a , I

n
a ,S

n
b, I

n
b

)
+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

Ea

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)
×Ψ

+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

θ2Q2(t j−2,E
j−2
a )(X2(t j−1)−X2(t j−2))×Ψ

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


θ2Q2(t j−1,E

j−1
a )(X2(t j)−X2(t j−1))

−θ2Q2(t j−2,E
j−2
a )(X2(t j−1)−X2(t j−2))

×∑

q(∆t)q

AB(q)Γ(q+3)

n
∑
j=2



θ2Q2(t j,E
j
a)(X2(t j−1)−X2(t j))

−2θ2Q2(t j−1,E
j−1
a )(X2(t j)−X2(t j−1))

+θ2Q2(t j−2,E
j−2
a )(X2(t j−1)−X2(t j−2))


×∆

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2



Ea

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

−Ea

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)

×∑

+ q(∆t)q

2AB(q)Γ(q+3)

n
∑
j=2



Ea

(
t j,S

j
a,E

j
a , I

j
a ,S

j
b, I

j
b

)

−2Ea

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

+Ea

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)


×∆
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In+1
a = In

a +
1−q

AB(q) Ia
(
tn,Sn

a,E
n
a , I

n
a ,S

n
b, I

n
b

)
+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

Ia

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)
×Ψ

+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

θ3Q3(t j−2, I
j−2

a )(X3(t j−1)−X3(t j−2))×Ψ

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


θ3Q3(t j−1, I

j−1
a )(X3(t j)−X3(t j−1))

−θ3Q3(t j−2, I
j−2

a )(X3(t j−1)−X3(t j−2))

×∑

q(∆t)q

AB(q)Γ(q+3)

n
∑
j=2



θ3Q3(t j, I
j

a)(X3(t j−1)−X3(t j))

−2θ3Q3(t j−1, I
j−1

a )(X3(t j)−X3(t j−1))

+θ3Q3(t j−2, I
j−2

a )(X3(t j−1)−X3(t j−2))


×∆

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2



Ia

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

−Ia

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)

×∑

+ q(∆t)q

2AB(q)Γ(q+3)

n
∑
j=2



Ia

(
t j,S

j
a,E

j
a , I

j
a ,S

j
b, I

j
b

)

−2Ia

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

+I∗a
(

t j−2,S
j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)


×∆
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Sn+1
b = Sn

b +
1−q

AB(q)Sb
(
tn,Sn

a,E
n
a , I

n
a ,S

n
b, I

n
b

)
+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

Sb

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)
×Ψ

+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

θ4Q4(t j−2,S
j−2
b )(X5(t j−1)−X5(t j−2))×Ψ

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


θ4Q4(t j−1,S

j−1
b )(X5(t j)−X5(t j−1))

−θ4Q4(t j−2,S
j−2
b )(X5(t j−1)−X5(t j−2))

×∑

q(∆t)q

AB(q)Γ(q+3)

n
∑
j=2



θ4Q4(t j,S
j
b)(X5(t j−1)−X5(t j))

−2θ4Q4(t j−1,S
j−1
b )(X5(t j)−X5(t j−1))

+θ4Q4(t j−2,S
j−2
b )(X5(t j−1)−X5(t j−2))


×∆

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2



Sb

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

−Sb

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)

×∑

+ q(∆t)q

2AB(q)Γ(q+3)

n
∑
j=2



Sb

(
t j,S

j
a,E

j
a , I

j
a ,S

j
b, I

j
b

)

−2Sb

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

+Sb

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)


×∆
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In+1
b = In

b +
1−q

AB(q) Ib
(
tn,Sn

a,E
n
a , I

n
a ,S

n
b, I

n
b

)
+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

Ib

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)
×Ψ

+ q(∆t)q

AB(q)Γ(q+1)

n
∑
j=2

θ5Q5(t j−2, I
j−2

b )(X5(t j−1)−X5(t j−2))×Ψ

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2


θ5Q5(t j−1, I

j−1
b )(X5(t j)−X5(t j−1))

−θ5Q5(t j−2, I
j−2

b )(X5(t j−1)−X5(t j−2))

×∑

q(∆t)q

AB(q)Γ(q+3)

n
∑
j=2



θ5Q5(t j, I
j

b)(X5(t j−1)−X5(t j))

−2θ5Q5(t j−1, I
j−1

b )(X5(t j)−X5(t j−1))

+θ5Q5(t j−2, I
j−2

b )(X5(t j−1)−X5(t j−2))


×∆

+ q(∆t)q

AB(q)Γ(q+2)

n
∑
j=2



Ib

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

−Ib

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)

×∑

+ q(∆t)q

2AB(q)Γ(q+3)

n
∑
j=2



Ib

(
t j,S

j
a,E

j
a , I

j
a ,S

j
b, I

j
b

)

−2Ib

(
t j−1,S

j−1
a ,E j−1

a , I j−1
a ,S j−1

b , I j−1
b

)

+Ib

(
t j−2,S

j−2
a ,E j−2

a , I j−2
a ,S j−2

b , I j−2
b

)


×∆
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where

Ψ = [(n− j+1)q− (n− j)q] ,

∑ =


(n− j+1)q− (n− j+3+2q)

−(n− j)q(n− j+3+3q)

 ,

∆ =



(n− j+1)q

 2(n− j)2 +(3q+10)(n− j)

+2q2 +9q+12



−(n− j)

 2(n− j)2 +(5q+10)(n− j)

+6q2 +18q+12





9. NUMERICAL SIMULATION AND DISCUSSION

In this section, a numerical simulation is undertaken to provide support to the analytical re-

sults obtained. The parameter values were adopted in Getachew et al.(2021) Λ1 = 0.8,Λ2 =

0.19,b = 0.00022,γ1 = 0.033,γ2 = 0.01,µa = 0.04,µb = 0.0028,φ = 0.05,c = 0.005 and the

intial condition utilized in this work are Sa0 = 600,Ea0 = 400, Ia0 = 200,Sb0 = 100, Ib0 = 10 In

Figure 1, the numerical simulation is based on Newton polynomial with AB without stochastic

component. Figure 1(a) is the number of susceptible potatoes class (Sa(t)) grown in a given

environment, and as the fractional-order derivative increases from 0.65 towards one, the num-

ber of the susceptible reduces. Figure 1(b) depicts the number of exposed class (Ea(t)) and

as the fractional-order derivative increases within the first six days, the number of the exposed

class increases. In the subsequent days, the number of the exposed class begins to decrease as

the fractional-order derivative increases from 0.65 to 1. In Figure 1(c), the number of infected

potatoes class (Ia(t)) decreases as the fractional-order derivative increases from 0.65 to 1. Fig-

ure 1(d) represents the susceptible vector (Sb(t)) in the environment, and the number decreases

as the fractional-order derivative increases from 0.65 to 1. The infected vector class (Ib(t)) in

Figure 1 (e) indicates that the number of infected vector increase within the first three days
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as the fractional order increases and subsequently decreases as the fractional-order derivative

increases from 0.65 to 1.
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FIGURE 1. Simulation results of model (28), Mittag-Leffler function at q =

0.65,0.75,0.80,0.90,1
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Figure 2 is the numerical simulation results based on Newton polynomial with AB with a

stochastic component. In Figure 2(a), the number of susceptible potatoes class (Sa(t)) de-

creases as the fractional-order derivative increases from 0.65 to 1. Figure 2(b) shows that as

the fractional-order derivative increases from 0.65 to 1 within the first six days, the number of

exposed class (Ea(t)) increases. However, the exposed class decreases as the fractional-order

derivative increases from 0.65 to 1 after the 6th day. In Figure 2(c), the number of infected

potatoes (Ia(t)) decreases as the fractional-order derivative increases from 0.65 to 1. Figure 2

(d) is the susceptible vector class (Sb(t)) in which as the fractional-order derivative increases

from 0.65 to 1, the number of susceptible vectors decreases in the environment. In Figure 2 (e),

the number of infected vectors (Ib(t)) increase within the first three days as the fractional-order

derivative increases from 0.65 to 1, and the number of infected vectors decreases subsequently

as the fractional-order derivative increases from 0.65 to 1.
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FIGURE 2. Simulation results of model (28), Mittag-Leffler function at q =

0.65,0.75,0.80,0.90,1 and stochastic constants θ = 0.2,0.4,0.6,0.8,0.9.

10. CONCLUSION

In this work, a potato disease model was formulated in the concept of nonlocal and nonsin-

gular operators perspectives. The reproduction number of the potato model had been computed,

and steady states of the model were determined. The local stability analysis was carried out and

found to be locally asymptotically stable. The study established the existence and uniqueness of

solutions of the potato model using the Banach space approach. Hyers- Ulam stability analysis

was carried out to determine the robust nature of ABC analysis of the existence and uniqueness

of solutions of the potato model. A stochastic component was included in the AB operator

potato model and numerically solved. Two numerical results were obtained with and without

stochastic components. Similar results were obtained in each situation. However, the fractional

stochastic model depicted some random effects indicating fluctuations in the increases or de-

creases at the various compartments. The stochastic numerical simulation results indicated the

movement of the dynamics of the potato disease which is not fixed or linear. The stochastic

component provided enough evidence of fluctuations in the spread of epidemics unlike a deter-

ministic model. It is established from the numerical simulation results that the fractional-order

derivative played a crucial role in the dynamics of the potato model. It can be suggested that

since it was highly uncertain to predict the exact number of individuals that may add up or
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leave a compartment, the fractional stochastic approach ought to be considered in examining

the dynamics of complex models.
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