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Abstract. In this paper, we develop an age-structured viral infection model with latency age, infection age and

general incidence rate. The developed model is formulated by ordinary and partial differential equations. The well

posedness and the existence of equilibria are rigorously investigated. Moreover, the qualitative properties including

uniform persistence, local stability of equilibria as well as the global behavior of the model are fully established.
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1. INTRODUCTION

The main objective of this paper is to propose and analyze the dynamics of an age-structured

viral infection model with latency and general incidence rate. This model is governed by the

following nonlinear system:

∗Corresponding author

E-mail address: warrak.mehdi@gmail.com

Received July 17, 2022
1



2 WARRAK, LASFAR, HATTAF, YOUSFI

(1)



dx(t)
dt

= s−dx(t)− f (x(t),v(t))v(t),

∂e(t,a)
∂ t

+
∂e(t,a)

∂a
=−δ1(a)e(t,a),

∂ i(t,b)
∂ t

+
∂ i(t,b)

∂b
=−δ2(b)i(t,b),

dv(t)
dt

=
∫

∞

0
k2(b)i(t,b)db−µv(t),

with boundary conditions

(2)


e(t,0) = η f (x(t),v(t))v(t),

i(t,0) = (1−η) f (x(t),v(t))v(t)+
∫

∞

0
k1(a)e(t,a)da,

and initial conditions

(3) x(0) = x0, e(0,a) = e0(a), i(0,a) = i0(a), v(0) = v0.

Here, the state variables x(t), e(t,a), i(t,b) and v(t) are the concentrations of uninfected target

cells, latently infected cells of latency age a, productively infected cells of infection age b and

free viruses particles at time t, respectively. The biological meanings of the other parameters in

the system (1) are listed in Table 1. The general incidence function f (x,v) denotes the average

number of cells which are infected by each virus in unit time. It is assumed to be continuously

differentiable in the interior of IR2
+ and satisfies the three fundamental hypotheses given in [1]

and used in [2, 3, 4], that are:

(H1): f (0,v) = 0, for all v≥ 0,

(H2): f (x,v) is a strictly monotone increasing function with respect to x,

for any fixed v≥ 0,

(H3): f (x,v) is a monotone decreasing function with respect to v,

i.e,
∂ f (x,v)

∂v
≤ 0 for all x≥ 0 and v≥ 0.
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TABLE 1. Biological meanings of parameters

Parameter Biological meaning

s Recruitment rate of uninfected cells

d Death rate of uninfected cells

δ1(a) Death rate of latently infected cells with latency age a

δ2(b) Death rate of productively infected cells with infection age b

k1(a) Activation rate of latently infected cells with latency age a

k2(b) Viral production rate of productively infected cells with infection age b

µ Clearance rate of virions

η Fraction of infected cells lead to latency

Throughout this paper, we consider the following assumptions:

(i): s,d,µ > 0.

(ii): δ1(·),δ2(·),k1(·),k2(·) ∈ L1
+[0,∞) and

δ̄1 := ess sup
a∈[0,∞)

δ1(a)< ∞, δ̄2 := ess sup
b∈[0,∞)

δ2(b)< ∞,

k̄2 := ess sup
b∈[0,∞)

k2(b)< ∞, k̄1 := ess sup
a∈[0,∞)

k1(a)< ∞.

(iii): There exists m0 ∈ (0,d], such that δ1(a),δ2(b)≥ m0 for all a,b > 0.

(iv): There exists a maximum age b+> 0, such that k2(b)> 0 for b∈ [0,b+], and k2(b)= 0

for b > b+.

It is important to note that our model described by system (1) improves and generalizes the

recent age-structured model introduced by Wang and Dong [5] in order to model the dynamics

of HIV infection with latency and infection age. More precisely, it suffices to take f (x,v) = βx,

where β > 0 is the infection rate.

The rest of the paper is organized as follows. The next section deals with preliminaries

including properties of solutions and existence of equilibria. Section 3 is devoted to uniform

persistence. Section 4 establishes the local and global stability of equilibria. Section 5 closes

the paper with an application.
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2. PRELIMINARIES

In this section, we present some preliminary results. We first study the existence and unique-

ness of solutions of problem (1)-(3).

Let

σ1(a) = e−
∫ a

0 δ1(ω)dω and σ2(b) = e−
∫ b

0 δ2(ω)dω , for a,b ∈ [0,∞).

According to (iii) and (iv), one has

0≤ σ1(a)≤ e−m0a and 0≤ σ2(b)≤ e−m0b

σ
′
1(a) =−δ1(a)σ1(a) and σ

′
2(b) =−δ2(b)σ2(b).

Integrating the second and third equations of (1) along the characteristic lines t−a = constant

and t−b = constant, respectively, it yields

(4) e(t,a) =


η f (x(t−a),v(t−a))v(t−a)σ1(a), if t > a,

e0(a− t)
σ1(a)

σ1(a− t)
, if t ≤ a,

and

(5) i(t,b) =


[(1−η) f (x(t−b),v(t−b))v(t−b)+M(t−b)]σ2(b), if t > b,

i0(b− t)
σ2(b)

σ2(b− t)
, if t ≤ b,

where M(t) =
∫

∞

0 k1(a)e(t,a)da.

Let

G1(t) = x(t)+
∫

∞

0
e(t,a)da.

Then

dG1(t)
dt

= s−dx(t)− f (x(t)v(t))v(t)+η f (x(t),v(t))v(t)−
∫

∞

0
δ1(a)e(t,a)da

≤ s−m0G1(t).

Hence, we have

limsup
t→+∞

G1(t)≤
s

m0
.

Next, we define

G2(t) = x(t)+
∫

∞

0
e(t,a)da+

∫
∞

0
i(t,b)db.
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Then

dG2(t)
dt

=s−dx(t)− f (x(t),v(t))v(t)+η f (x(t),v(t))v(t)−
∫

∞

0
δ1(a)e(t,a)da

+(1−η) f (x(t),v(t))v(t)+
∫

∞

0
k1(a)e(t,a)da−

∫
∞

0
δ2(b)i(t,b)db

=s−dx(t)+
∫

∞

0
k1(a)e(t,a)da

−
∫

∞

0
δ1(a)e(t,a)da−

∫
∞

0
δ2(b)i(t,b)db

≤s+ k̄1
s

m0
−m0G2(t).

Thus,

limsup
t→+∞

G2(t)≤
s

m0
+

sk̄1

m2
0
.

From the fourth equation of system (1), we obtain

dv(t)
dt

=
∫

∞

0
k2(b)i(t,b)db−µv(t)

≤k̄2

(
s

m0
+

sk̄1

m2
0

)
−µv(t).

Then

limsup
t→+∞

v(t)≤ k̄2

µ

(
s

m0
+

sk̄1

m2
0

)
.

Consequently,

Ω =

{
(x,e, i,v) ∈ R+×L1

+(0,∞)×L1
+(0,∞)×R+ : x(t)+

∫
∞

0
e(t,a)da

+
∫

∞

0
i(t,b)db≤ s

m0
+

sk̄1

m2
0
, v(t)≤ k̄2

µ

(
s

m0
+

sk̄1

m2
0

)
, ∀t ≥ 0

}
,

is a positively invariant set of system (1).

In the following, we use the approach introduced by Thieme [6] in order to reformulate the

system (1) with the boundary and initial conditions as an abstract Cauchy problem. To this end,

define

X = IR×L1((0,+∞), IR)× IR×L1((0,+∞), IR)× IR× IR,

X0 = IR×L1((0,+∞), IR)×{0}×L1((0,+∞), IR)×{0}× IR,

X+ = IR+×L1
+((0,+∞), IR)× IR+×L1

+((0,+∞), IR)× IR+× IR+,
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and

X0+ = X+∩X0.

Let A : Dom(A)⊂X →X be the linear operator defined by

A



x e

0


 i

0


v


=



−dx −e′−δ1(a)e

−e(0)


 −i′−δ2(b)i

−i(0)


−µv


,

with Dom(A) = IR×W 1,1((0,+∞), IR)×{0}×W 1,1((0,+∞), IR)×{0}× IR, where W 1,1 is a

Sobolev space. Define F : X0→X

F



x e

0


 i

0


v



=



s− f (x,v)v 0L1

η f (x,v)v


 0L1

(1−η) f (x,v)v+
∫

∞

0
k1(a)e(t,a)da


∫

∞

0
k2(b)i(t,b)db



,

and

u(t) =



x(t) e(t, .)

0


 i(t, .)

0


v(t)


.

Rewriting system (1), we obtain the following abstract Cauchy problem:

(6)
du(t)

dt
= Au(t)+F(u(t)), for t ≥ 0, with u(0) ∈X0+.



AGE-STRUCTURED VIRAL INFECTION MODEL 7

Using the results in [7, 8, 9], we have the following theorem.

Theorem 2.1. System (6) generates a unique continuous semiflow {U(t)}t≥0 on X0+ that is

bounded dissipative and asymptotically smooth. Furthermore, the semiflow {U(t)}t≥0 has a

global attractor A in X0+, which attracts the bounded sets of X0+.

Next, we investigate the existence of equilibria of our model. Clearly, system (1) has always

one disease-free equilibrium of the form E0(x0,0,0,0), where x0 =
s
d

. Let

N1 =
∫

∞

0
k1(a)σ1(a)da and N2 =

∫
∞

0
k2(b)σ2(b)db.

Hence, we define the basic reproduction number of our model as follows

(7) R0 =
N2(1−η +ηN1) f (x0,0)

µ
.

For the biological meaning, R0 denotes the average number of secondary infections produced

by one infected cell during the period of infection when all cells are uninfected, and the disease-

free equilibrium E0 represents the extinction of the viruses.

To find the other equilibrium of system (1), we solve the following

s−dx− f (x,v)v = 0,(8)

de(a)
da

= −δ1(a)e(a),(9)

di(a)
da

= −δ2(a)i(a),(10) ∫
∞

0
k2(a)i(a)da−µv = 0,(11)

e(0) = η f (x,v)v,(12)

i(0) = (1−η) f (x,v)v+
∫

∞

0
k1(a)e(a)da.(13)

By (9), (10), (12) and (13), we get

(14) e(a) = η f (x,v)vσ1(a), i(b) = (1−η +ηN1) f (x,v)vσ2(b).

From (11) and (14), we have

(15) (1−η +ηN1) f (x,v)N2 = µ.
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By (8) and (15), we deduce that

(16) v =
N2(s−dx)(1−η +ηN1)

µ
.

Substituting (16) into (15) yields

(17) N2(1−η +ηN1) f
(

x,
N2(s−dx)(1−η +ηN1)

µ

)
= µ.

Since v =
N2(s−dx)(1−η +ηN1)

µ
≥ 0, we have x ≤ x0. Thus, system (1) has no biological

equilibrium if x > x0. Define a function g on the interval [0,x0] by

g(x) = N2(1−η +ηN1) f
(

x,
N2(s−dx)(1−η +ηN1)

µ

)
−µ.

We have g(0) =−µ < 0, g(x0) = µ(R0−1) and

g′(x) = N2(1−η +ηN1)

(
∂ f
∂x
− dN2(1−η +ηN1)

µ

∂ f
∂v

)
> 0.

Hence for R0 > 1, the equation g(x) = 0 has a unique solution x∗ ∈ (0,x0). Then system (1)

admits a unique infection equilibrium E∗(x∗,e∗(a), i∗(b),v∗) called the chronic infection equi-

librium, where x∗ ∈ (0,x0), e∗(a) = η f (x∗,v∗)v∗σ1(a), i(b) = (1−η +ηN1) f (x∗,v∗)v∗σ2(b)

and v∗ =
N2(s−dx∗)(1−η +ηN1)

µ
.

In summary, we get the following result.

Theorem 2.2. Let R0 be defined by Eq. (7).

(i): If R0 ≤ 1, then the system (1) has a unique infection-free equilibrium of the form

E0(x0,0,0,0), where x0 =
s
d

.

(ii): If R0 > 1, the infection-free equilibrium E∗ is still present and the system (1)

has a unique chronic infection equilibrium of the form E∗(x∗,e∗(a), i∗(b),v∗) with

x∗ ∈ (0,x0), v∗ =
N2(s−dx∗)(1−η +ηN1)

µ
, e∗(a) = η f (x∗,v∗)v∗σ1(a) and i∗(b) =

(1−η +ηN1) f (x∗,v∗)v∗σ2(b).
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3. UNIFORM PERSISTENCE

This section investigates the uniform persistence of system (1). Let

M̂ =





x e

0


 i

0


v


∈X0+ :

∫ ā

0
e(a)da+

∫ b̄

0
i(b)db+ v > 0



,

and ∂M̂ = X0+ \M̂ , where

b̄ = inf
{

b :
∫

∞

b
k1(θ)dθ = 0

}
and ā = inf

{
a :
∫

∞

a
k2(θ)dθ = 0

}
.

Theorem 3.1. ∂M̂ is positively invariant under the semiflow {U(t)}t≥0 generated by system

(6) on X0+. Moreover, the equilibrium E0



x0 0L1

0


 0L1

0


0


is globally asymptotically stable for

the semiflow {U(t)}t≥0 restricted to ∂M̂ .

Proof. Let



x0 e0(.)

0


 i0(.)

0


v0


∈ ∂M̂ , we have
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∂e(t,a)
∂ t

+
∂e(t,a)

∂a
=−δ1(a)e(t,a),

∂ i(t,b)
∂ t

+
∂ i(t,b)

∂b
=−δ2(b)i(t,b),

dv(t)
dt

=
∫

∞

0
k2(a)i(t,a)da−µv(t),

e(t,0) = η f (x(t),v(t))v(t),

i(t,0) = (1−η) f (x(t),v(t))v(t)+
∫

∞

0
k1(a)e(t,a)da,

e(0,a) = e0(a), i(0,b) = i0(b), v(0) = 0.

Since x(t)≤ x0 for large enough time t, it follows that

(18) e(t,a)≤ ê(t,a), i(t,b)≤ î(t,b) and v(t)≤ v̂(t),

where

(19)



∂ ê(t,a)
∂ t

+
∂ ê(t,a)

∂a
=−δ1(a)ê(t,a),

∂ î(t,b)
∂ t

+
∂ î(t,b)

∂b
=−δ2(b)î(t,b),

dv̂(t)
dt

=
∫

∞

0
k2(a)î(t,a)da−µ v̂(t),

ê(t,0) = η f (x0,0)v̂(t),

î(t,0) = (1−η) f (x0,0)v̂(t)+
∫

∞

0
k1(a)ê(t,a)da,

ê(0,a) = e0(a), î(0,b) = i0(b), v̂(0) = 0.

This yields that

(20) ê(t,a) =


η f (x0,0)v̂(t−a)σ1(a), 0≤ a≤ t

e0(a− t)
σ1(a)

σ1(a− t)
, 0 < t ≤ a

end

(21) î(t,b) =


[(1−η) f (x0,0)v̂(t−b)+ M̂(t−b)]σ2(b), 0≤ b≤ t

i0(b− t)
σ2(b)

σ2(b− t)
, 0 < t ≤ b
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where

M̂(t−b) = η f (x0,0)
∫ t−b

0
k1(a)v̂(t−b−a)σ1(a)da+

∫
∞

t−b
k1(a)ê0(a− t +b)

σ1(a)
σ1(a− t +b)

da.

From the third equation of (19) and Eqs. (20), (21), we have

(22)



dv̂(t)
dt

= (1−η) f (x0,0)
∫ t

0
k2(b)v̂(t−b)σ2(b)db+Fv(t)−µ v̂(t)

+η f (x0,0)
∫ t

0
k2(b)

∫ t−b

0
k1(a)v̂(t−b−a)σ1(a)daσ2(b)db

+
∫ t

0
k2(b)

∫
∞

t−b
k1(a)ê0(a− t +b)

σ1(a)
σ1(a− t +b)

daσ2(b)db,

v̂(0) = 0,

where

Fv(t) =
∫ +∞

t
k(a)i0(a− t)

σ(a)
σ(a− t)

da.

According to
(
k1(a),k2(a)

)
∈
(
L∞
+((0,+∞), IR) \ {0L∞}

)2, we can obtain that Fv(t) ≡ 0 and∫
∞

t−b k1(a)ê0(a− t + b) σ1(a)
σ1(a−t+b)da ≡ 0 for all t ≥ 0. Then system (22) has a unique solution

v̂(t) = 0. It follows from (20) and (21) that
(
ê(t,a), î(t,a)

)
=
(
0,0
)

for t > a. For t ≤ a,, we get

‖ê(t,a)‖L1 =

∥∥∥∥e0(a− t)
σ1(a)

σ1(a− t)

∥∥∥∥
L1
≤ e−m0t‖e0‖L1,

and

‖î(t,a)‖L1 =

∥∥∥∥i0(a− t)
σ2(a)

σ2(a− t)

∥∥∥∥
L1
≤ e−m0t‖i0‖L1,

which means that
(
ê(t,a), î(t,a)

)
→ (0,0) as t→∞. From (18), we know that

(
e(t,a), i(t,a)

)
→

(0,0) and v(t) = 0 as t→∞. Thus, we can show that x(t)→ x0 as t→∞ from the first equation

of system (1). �

Next, we use the method of Magal et al. [10] in order to prove the following result of the

uniform persistence.

Theorem 3.2. Suppose that R0 > 1, the semiflow {U(t)}t≥0 generated by system (6) is uni-

formly persistent with respect to the pair (∂M̂ ,M̂ ), that is, there exists ε > 0 such that for

each y ∈ M̂ ,

liminf
t→+∞

d(U(t)y,∂M̂ )≥ ε.

Furthermore, the semiflow {U(t)}t≥0 has a compact global attractor A0 ⊂ M̃ .
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Proof. Since the equilibrium E0



x0 0L1

0


 0L1

0


0


is globally asymptotically stable in ∂M̂ , by

Theorem 4.2 in [11], we only need to show

W s(E0)∩M̂ = /0,

where

W s(E0) =

{
y ∈ X0+ : lim

t→+∞
U(t)y = E0

}
.

Assume by contradiction that for each n≥ 0, there exists

yn =



xn
0 en
0

0


 in0

0


vn

0


∈
{

y ∈ M̂ : ‖E0− y‖ ≤ 1
n

}

such that

‖E0−U(t)yn‖ ≤
1
n
, ∀t ≥ 0.

Let 

xn(t) en(t, .)

0


 in(t, .)

0


vn(t)


=U(t)yn.
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Then, we can get

‖xn(t)− x0‖ ≤ 1
n
, ‖vn(t)−0‖ ≤ 1

n
.

This implies that x0− 1
n
> 0 for large enough n > 0. For the given n, there exists t̂ > 0 such that

for all t ≥ t̂, we get

x0− 1
n
< xn(t)< x0 +

1
n
, 0≤ vn(t)≤ 1

n
.

Applying comparison principle and

en(t,a)≥ η f (xn(t−a),vn(t−a))vn(t−a)σ1(a),

≥ η f
(

x0− 1
n
,
1
n

)
vn(t−a)σ1(a),

and
in(t,b)≥

[
(1−η) f (xn(t−b),vn(t−b))vn(t−b)+M(t−b)

]
σ2(b),

≥ (1−η) f
(

x0− 1
n
,
1
n

)
vn(t−b)σ2(b)

+η f
(

x0− 1
n
,
1
n

)∫
∞

0
k1(a)σ1(a)vn(t−b−a)daσ2(b),

we obtain

v̂n(t)≤ vn(t),

where v̂n(t) is a solution of the following system

dv̂n(t)
dt

= (1−η) f
(

x0− 1
n
,
1
n

)∫
∞

0
k2(b)σ2(b)v̂n(t−b)db

+η f
(

x0− 1
n
,
1
n

)∫
∞

0
k2(b)σ2(b)

∫
∞

0
k1(b)σ1(b)v̂n(t−b−a)dadb

−µ v̂n(t),

v̂n(0) = vn(0)≥ 0.

When v̂n(0) = 0, we have v̂n(t) > 0. Thus, without loss of generality, we take v̂n(0) > 0. If

R0 > 1, then we can choose the large enough n such that

N2(1−η +ηN1) f
(

x0− 1
n
,
1
n

)
> µ.

From Lemma 3.5 of Browne and Pilyugin [12], we conclude that v̂n(t) is unbounded. Since

v̂n(t) ≤ vn(t), we obtain that vn(t) is unbounded. This is a contradiction with the boundedness
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of vn(t). Hence, W s(E0)∩M̂ = /0. By the results of [13], we show that {U(t)}t≥0 is uniformly

persistent and there exists a compact set A0 ⊂ M̂ which is a global attractor for {U(t)}t≥0. �

4. STABILITY ANALYSIS

In this section, we study the local and global stability of equilibria of system (1).

4.1. Local stability.

Theorem 4.1. The infection-free steady state E0 is locally asymptotically stable if R0 < 1 and

it is unstable if R0 > 1.

Proof. Linearizing system (1) about E0 and defining the perturbation variables

x1(t) = x(t)− s
d
, i1(t,a) = i(t,a), v1(t) = v(t), w1(t) = w(t),

we obtain

(23)



dx1(t)
dt

=−dx1(t)− f (x0,0)v1(t),

∂e1(t,a)
∂ t

+
∂e1(t,a)

∂a
=−δ1(a)e1(t,a),

∂ i1(t,b)
∂ t

+
∂ i1(t,b)

∂a
=−δ (b)i1(t,b),

dv1(t)
dt

=
∫

∞

0
k2(b)i1(t,b)da−µv1(t),

and

(24)


e1(t,0) = η f (x0,0)v1(t),

i1(t,0) = (1−η) f (x0,0)v1(t)+
∫

∞

0
k1(a)e1(t,a)da.

Look for non-trivial solutions of (23) and (24) of the form

(25) x1(t) = c1eλ t , e1(t,a) = e0
1(a)e

λ t , i1(t,b) = i01(b)e
λ t , v1(t) = c2eλ t .



AGE-STRUCTURED VIRAL INFECTION MODEL 15

Substituting (25) into (23) and (24), it follows that

(26)



(λ +d)c1 =− f (x0,0)c2,

∂e0
1(a)
∂a

=−(λ +δ1(a))e0
1(a),

∂ i01(b)
∂b

=−(λ +δ2(b))i01(b),

(λ +µ)c2 =
∫

∞

0
k2(b)i01(b)db,

e0
1(0) = η f (x0,0)c2,

i01(0) = (1−η) f (x0,0)c2 +
∫

∞

0
k1(a)e0

1(a)da.

Integrating the second and third equation of (26) yields

(27) e0
1(a) = e0

1(0)e
−
∫ a

0 (λ+δ1(θ))dθ , i01(b) = i01(0)e
−
∫ b

0 (λ+δ2(θ))dθ .

We derive from the fifth and sixth equation of (26) and (27) that

(28)


e0

1(a) = η f (x0,0)c2e−
∫ a

0 (λ+δ1(θ))dθ ,

i01(b) = f (x0,0)c2
[
1−η +ηN1(λ )

]
e−

∫ b
0 (λ+δ2(θ))dθ .

Substituting e0
1(a) and i01(b) into the fourth equation of (26), we obtain the characteristic equa-

tion

(29)
(

λ +µ

µ
· N2

N2(λ )
· 1−η +ηN1

1−η +ηN1(λ )
−R0

)
= 0,

where

N1(λ ) =
∫

∞

0
k1(a)σ1(a)e−λada and N2(λ ) =

∫
∞

0
k2(a)σ2(a)e−λada.

We claim that if R0 < 1, all roots of equation (29) have negative real parts. Otherwise, equation

(29) has at least one root satisfying Re(λ )> 0, in this case

R0 =

∣∣∣∣λ +µ

µ

N2

N2(λ )

1−η +ηN1

1−η +ηN1(λ )

∣∣∣∣
=

∣∣∣∣λ +µ

µ

∣∣∣∣ ∣∣∣∣ N2

N2(λ )

∣∣∣∣ ∣∣∣∣ 1−η +ηN1

1−η +ηN1(λ )

∣∣∣∣
> 1.
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It condradicts with R0 < 1. Therefore, all roots of equation (29) have negative real parts.

Therefore, E0 is locally asymptotically stable if R0 < 1 and it is unstable if R0 > 1. �

Next, we investigate the local and global stability of the chronic infection equilibrium E∗ by

assuming that R0 > 1 and the incidence function f satisfies the following hypothesis

(H4): f (x,v)+ v
∂ f (x,v)

∂v
≥ 0, for all x≥ 0 and v≥ 0.

Theorem 4.2. Assume R0 > 1 and (H4) holds, then the chronic infection equilibrium E∗ is

locally asymptotically stable.

Proof. Linearizing system (1) about E∗ and defining the perturbation variables

x2(t) = x(t)− x∗, i2(t,a) = i(t,a)− i∗(a), v2(t) = v(t)− v∗, w2(t) = w(t)−w∗,

we obtain

(30)



dx2(t)
dt

=−
(

d + v∗
∂ f (x∗,v∗)

∂x

)
x2(t)−

(
v∗

∂ f (x∗,v∗)
∂v

+ f (x∗,v∗)
)

v2(t),

∂e2(t,a)
∂ t

+
∂e2(t,a)

∂a
=−δ1(a)e2(t,a),

∂ i2(t,b)
∂ t

+
∂ i2(t,b)

∂b
=−δ2(b)i2(t,b),

dv2(t)
dt

=
∫

∞

0
k2(b)i2(t,b)db−µv2(t),

and

(31)



e2(t,0) = ηv∗
∂ f (x∗,v∗)

∂x
x2(t)+η

(
v∗

∂ f (x∗,v∗)
∂v

+ f (x∗,v∗)
)

v2(t),

i1(t,0) = (1−η)v∗
∂ f (x∗,v∗)

∂x
x2(t)+(1−η)

(
v∗

∂ f (x∗,v∗)
∂v

+ f (x∗,v∗)
)

v2(t)∫
∞

0
k1(a)e2(t,a)da.

Look for non-trivial solutions of (30) and (31) of the form

(32) x2(t) = c1eλ t , e2(t,a) = e0
2(a)e

λ t , i2(t,b) = i02(b)e
λ t , v2(t) = c2eλ t .

By using a similar method to the proof of Theorem 4.1, we obtain the characteristic equation

(33)
λ +µ

µ
−

(
λ +d

λ +d + v∗ ∂ f (x∗,v∗)
∂x

)(
N2(λ )

(
1−η +ηN1(λ )

)
N2
(
1−η +ηN1

) )(
f (x∗,v∗)+ v∗ ∂ f (x∗,v∗)

∂v
f (x∗,v∗)

)
= 0,
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where

N1(λ ) =
∫

∞

0
k1(a)σ1(a)e−λada and N2(λ ) =

∫
∞

0
k2(a)σ2(a)e−λada.

If Re(λ )≥ 0, then we obtain ∣∣∣∣λ +µ

µ

∣∣∣∣≥ 1,

∣∣∣∣∣
(

λ +d

λ +d + v∗1
∂ f (x∗1,v

∗
1)

∂x

)(
N2(λ )

(
1−η +ηN1(λ )

)
N2
(
1−η +ηN1

) )(
f (x∗1,v

∗
1)+ v∗1

∂ f (x∗1,v
∗
1)

∂v
f (x∗1,v

∗
1)

)∣∣∣∣∣
=

∣∣∣∣∣ λ +d

λ +d + v∗1
∂ f (x∗1,v

∗
1)

∂x

∣∣∣∣∣
∣∣∣∣N2(λ )

(
1−η +ηN1(λ )

)
N2
(
1−η +ηN1

) ∣∣∣∣∣∣∣∣ f (x∗1,v
∗
1)+ v∗1

∂ f (x∗1,v
∗
1)

∂v
f (x∗1,v

∗
1)

∣∣∣∣< 1,

which is a contradiction to (33). This implies that the chronic infection equilibrium E∗ is locally

asymptotically stable. �

4.2. Global stability.

Theorem 4.3. The infection-free equilibrium E0 of system (1) is globally asymptotically stable

if R0 ≤ 1.

Proof. Considering Lyapunov functional

L0(t) = x(t)− x0−
∫ x(t)

x0

f (x0,0)
f (θ ,0)

dθ +
N2 f (x0,0)

µ

∫
∞

0
α1(a)e(t,a)da

+
f (x0,0)

µ

∫
∞

0
α2(b)i(t,b)db+

f (x0,0)
µ

v(t)

where

α1(a) =
∫

∞

a
k1(θ)e−

∫
θ

a δ1(ξ )dξ dθ and α2(b) =
∫

∞

b
k2(θ)e−

∫
θ

b δ2(ξ )dξ dθ ,

Note that α1(0) = N1 and α2(0) = N2. Further, α1(a) and α2(a) is bounded and its derivative

satisfies

α
′
1(a) = δ1(a)α1(a)− k1(a) and α

′
2(a) = δ2(a)α2(a)− k2(a).
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Calculating the time derivative of L0(t) along the solution of system (1)

dL0(t)
dt

=

(
1− f (x0,0)

f (x,0)

)
dx(t)

dt
+

N2 f (x0,0)
µ

∫
∞

0
α1(a)

∂e(t,a)
∂ t

da

+
f (x0,0)

µ

∫
∞

0
α2(b)

∂ i(t,b)
∂ t

db+
f (x0,0)

µ

dv(t)
dt

=

(
1− f (x0,0)

f (x,0)

)(
s−dx− f (x,v)v

)
− N2 f (x0,0)

µ

∫
∞

0
α1(a)

(
∂e(t,a)

∂a
+ e(t,a)

)
da

− f (x0,0)
µ

∫
∞

0
α2(a)

(
∂ i(t,b)

∂b
+ i(t,b)

)
db

+
f (x0,0)

µ

∫
∞

0
k2(b)i(t,b)db− f (x0,0)v.

Using integration by parts and s = dx0, we get

dL0(t)
dt

= dx0
(

1− x
x0

)(
1− f (x0,0)

f (x,0)

)
+ f (x,v)v

(
R0−1

)
+ f (x0,0)v

(
f (x,v)
f (x,0)

−1
)
.

Since the function f (x,v) is strictly monotonically increasing with respect to x and decreasing

function with respect to v , we have(
1− x

x0

)(
1− f (x0,0)

f (x,0)

)
≤ 0 and

f (x,v)
f (x,0)

−1≤ 0.

Therefore,
dV (t)

dt
≤ 0 for R0 ≤ 1. Further, it is easy to show that the largest invariant set where

dL0(t)
dt

= 0 is the singleton {E0}. By the Lyapunov-LaSalle asymptotic stability theorem, the

disease-free equilibrium E0 is globally asymptotically stable for R0 ≤ 1. �

Theorem 4.4. Assume R0 > 1 and (H4) holds, then the chronic infection equilibrium E∗ is

globally asymptotically stable.

Proof. From Theorem 3.2, let u(t) =
{(

x(t),e(t,a), i(t,b),0,v(t)
)T}

t∈IR⊂A0 be a given entire

solution of U(t). It remains to prove that A0 = {u∗}. Similar to the proof of Lemma 3.6 and

Claim 5.3 in [14], we know that there exist ∆1 > 0 and ∆2 > 0 such that

∆1 ≤ x(t)≤ ∆2, ∆1 ≤ e(t,a)≤ ∆2, ∆1 ≤ i(t,b)≤ ∆2, ∆1 ≤ v(t)≤ ∆2,
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for all t ∈ IR and a,b≥ 0. Now, we consider the following Lyapunov functional

L1(t) = x(t)− x∗−
∫ x(t)

x∗

f (x∗,v∗)
f (θ ,v∗)

dθ +
N2 f (x∗,v∗)

µ

∫
∞

0
α1(a)e∗(a)φ

(
e(t,a)
e∗(a)

)
da

+
f (x∗,v∗)

µ

∫
∞

0
α2(b)i∗(b)φ

(
i(t,b)
i∗(b)

)
db+

f (x∗,v∗)
µ

v∗φ
(

v(t)
v∗

)
,

where φ(x) = x−1− lnx, x ∈ IR+. Obviously, φ : IR+→ IR+ attains its strict global minimum

at x = 1 and φ(1) = 0. Calculating the time derivative of L1(t) along the solution of system (1),

we have

dL1(t)
dt

=

(
1− f (x∗,v∗)

f (x,v∗)

)(
s−dx− f

(
x,v
)
v
)

−N2 f (x∗,v∗)
µ

∫
∞

0
α1(a)

(
1− e∗(a)

e(t,a)

)(
∂e(t,a)

∂a
+δ1(a)e(t,a)

)
da

− f (x∗,v∗)
µ

∫
∞

0
α2(b)

(
1− i∗(b)

i(t,b)

)(
∂ i(t,b)

∂b
+δ2(b)i(t,b)

)
db

+
f (x∗,v∗)

µ

(
1− v∗

v

)(∫
∞

0
k(a)i(t,a)da−µv

)
.

Further, we have

dL1(t)
dt

= dx∗
(

1− x
x∗

)(
1− f (x∗,v∗)

f (x,v∗)

)
− f (x,v)v

+ f (x∗,v∗)v∗
(

1− f (x∗,v∗)
f (x,v∗)

+
v
v∗

f (x,v)
f (x,v∗)

)
+

N1N2 f (x∗,v∗)
µ

e∗(0)φ
(

e(t,0)
e∗(0)

)
−N2 f (x∗,v∗)

µ

∫
∞

0
k1(a)e∗(a)φ

(
e(t,a)
e∗(a)

)
da

+
N2 f (x∗,v∗)

µ
i∗(0)φ

(
i(t,0)
i∗(0)

)
− f (x∗,v∗)

µ

∫
∞

0
k2(b)i∗(b)φ

(
i(t,b)
i∗(b)

)
db

+
f (x∗,v∗)

µ

∫
∞

0
k2(b)i(t,b)db− f (x∗,v∗)v∗

µv

∫
∞

0
k2(b)i(t,b)db

+ f (x∗,v∗)v∗− f (x∗,v∗)v.
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Recall that

i∗(0)− i(0, t) = (1−η)
(

f (x∗,v∗)v∗− f (x,v)v
)
+
∫

∞

0

(
e∗(a)− e(t,a)

)
da

and
η f (x∗,v∗)N1N2

µ
+

(1−η) f (x∗,v∗)N2

µ
= 1.

Hence,

dL1(t)
dt

= dx∗
(

1− x
x∗

)(
1− f (x∗,v∗)

f (x,v∗)

)
+

1
η

(
1− f (x∗,v∗)

f (x,v∗)

)(
e∗(0)− e(t,0)

)
+

1
η

e∗(0)φ
(

e(t,0)
e∗(0)

)
− f (x∗,v∗)

µ

∫
∞

0
k2(b)i∗(b)φ

(
i(t,b)
i∗(b)

)
db

+
N2 f (x∗,v∗)

µ

[
(1−η) f (x∗,v∗)v∗ ln

(
e(t,0)i∗(0)
e∗(0)i(t,0)

)]
+

N2 f (x∗,v∗)
µ

∫
∞

0
k1(a)e∗(a) ln

(
e(t,a)i∗(0)
e∗(a)i(t,0)

)
da

+
f (x∗,v∗)

µ

∫
∞

0
k2(b)i(t,b)db− f (x∗,v∗)v∗

µv

∫
∞

0
k2(b)i(t,b)db

+ f (x∗,v∗)v∗− f (x,v)v.

By using µv∗ =
∫

∞

0 k(a)i∗(a)da and e∗(0) = η f (x∗,v∗)v∗, we have

dL1(t)
dt

= dx∗
(

1− x
x∗

)(
1− f (x∗,v∗)

f (x,v∗)

)
+

f (x∗,v∗)
µ

∫
∞

0
k2(b)i∗(b)

[
1− f (x∗,v∗)

f (x,v∗)
+ ln

(
f (x∗,v∗)
f (x,v)

)]
db

+
f (x∗,v∗)

µ

∫
∞

0
k2(b)i∗(b)

[
1− v∗i(t,b)

vi∗(b)
+ ln

(
v∗i(t,b)
vi∗(b)

)]
db

+ f (x∗,v∗)v∗
(
− v

v∗
+

v f (x,v)
v∗ f (x,v∗)

)
+

N2 f (x∗,v∗)
µ

(1−η) f (x∗,v∗)v∗
[

1− e(t,0)i∗(0)
e∗(0)i(t,0)

+ ln
(

e(t,0)i∗(0)
e∗(0)i(t,0)

)]
+

N2 f (x∗,v∗)
µ

∫
∞

0
k1(a)e∗(a)

[
1− e(t,a)i∗(0)

e∗(a)i(t,0)
+ ln

(
e(t,a)i∗(0)
e∗(a)i(t,0)

)]
da.

Note that

(1−η) f (x∗,v∗)v∗
[

1− e(t,0)i∗(0)
e∗(0)i(t,0)

]
+
∫

∞

0
k1(a)e∗(a)

[
1− e(t,a)i∗(0)

e∗(a)i(t,0)

]
db = 0,
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we have

dL1(t)
dt

= dx∗
(

1− x
x∗

)(
1− f (x∗,v∗)

f (x,v∗)

)
+ f (x∗,v∗)v∗

(
−1− v

v∗
+

f (x,v∗)
f (x,v)

+
v f (x,v)

v∗ f (x,v∗)

)
− f (x∗,v∗)

µ

∫
∞

0
k2(b)i∗(b)

[
φ

(
f (x∗,v∗)
f (x,v∗)

)
+φ

(
f (x,v∗)
f (x,v)

)
+φ

(
v∗i(t,b)
vi∗(b)

)]
db

−N2(1−η)

(
f (x∗,v∗)

µ

)2 ∫ ∞

0
k2(b)i∗(b)φ

(
e(t,0)i∗(0)
e∗(0)i(t,0)

)
db

−N2 f (x∗,v∗)
µ

∫
∞

0
k1(a)e∗(a)φ

(
e(t,a)i∗(0)
e∗(a)i(t,0)

)
da.

Since f (x,v) is strictly monotonically increasing with respect to x, we have(
1− x

x∗

)(
1− f (x∗,v∗)

f (x,v∗)

)
≤ 0.

According to (H3) and (H4), we have

−1− v
v∗

+
f (x,v∗)
f (x,v)

+
v
v∗

f (x,v)
f (x,v∗)

=

(
1− f (x,v)

f (x,v∗)

)(
f (x,v∗)
f (x,v)

− v
v∗

)
≤ 0.

Since φ(x) ≥ 0 for x > 0, we have
dL1(t)

dt
≤ 0. Therefore, L1(t) is a bounded and decreasing

map. Arguing similarly as the end of the proof of Theorem 2.2(i) in Demasse and Ducrot

[14], we get u(t) = u∗, i.e., A0 = {u∗}. By using Theorem 4.2, we deduce that E∗ is globally

asymptotically stable. �

5. APPLICATION

In this section, we apply our main results to the following age-structured viral infection model

with Hattaf-Yousfi functional response:

(34)



dx(t)
dt

= s−dx(t)− βx(t)v(t)
α0 +α1x(t)+α2v(t)+α3x(t)v(t)

,

∂e(t,a)
∂ t

+
∂e(t,a)

∂a
=−δ1(a)e(t,a),

∂ i(t,b)
∂ t

+
∂ i(t,b)

∂b
=−δ2(b)i(t,b),

dv(t)
dt

=
∫

∞

0
k2(b)i(t,b)db−µv(t),
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where α0,α1,α2,α3 ≥ 0 are the saturation factors measuring the psychological or inhibitory

effect and β > 0 is the infection coefficient. The other parameters have the same biological

meanings as those in (1). The boundary condition is as follows:

(35)


e(t,0) =

ηβx(t)v(t)
α0 +α1x(t)+α2v(t)+α3x(t)v(t)

,

i(t,0) =
(1−η)βx(t)v(t)

α0 +α1x(t)+α2v(t)+α3x(t)v(t)
+
∫

∞

0
k1(a)e(t,a)da.

The initial conditions of system (34) are similar to that of system (1). Further, the incidence

rate of infection is modeled by Hattaf-Yousfi functional response [15] of the form f (x,v) =
βx

α0 +α1x+α2v+α3xv
. Moreover, system (34) includes many special cases existing in the

literature. For example, when α0 = 1 and α1 = α2 = α3 = 0, we get the model of Wang and

Dong [5].

On the other hand, it is not hard to see that the Hattaf-Yousfi functional response satisfies the

three hypotheses (H1)-(H3), In addition, we have

f (x,v)+ v
∂ f (x,v)

∂v
=

β (α0 +α1x)
(α0 +α1x+α2v+α3xv)2 ≥ 0.

Hence, the hypothesis (H4) is satisfied. From (7), the basic reproduction number of system (34)

is given by

(36) R̄0 =
N2(1−η +ηN1)β s

µ(α0d +α1s)
.

By applying Theorems 4.3 and 4.4, we obtain the following corollary.

Corollary 5.1.

(i): If R̄0 ≤ 1, then the infection-free equilibrium E0 of system (34) is globally asymptoti-

cally stable.

(ii): If R̄0 > 1, then the infection-free equilibrium E0 becomes unstable and the chronic

infection equilibrium E∗ of system (34) is globally asymptotically stable.
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