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Abstract: In this study, an aquatic system with fish, zooplankton, and harmful phytoplankton interacting with one 

another through the food chain in a polluted environment was proposed. It was thought about how the dynamics of 

the food chain were affected by fear and harvesting. An alternate food source was included for fish to eat to make the 

model more realistic. The characteristics of every solution were investigated. Both a local and global analysis of the 

system's stability was conducted. The system's persistence was investigated. The effects of changing the system's 

parameters were investigated using the local bifurcation theorem. To validate the discovered theoretical result and 

comprehend the effect of the system's parameters, a numerical example was then provided. It has been found that the 

system responds very quickly to changing the parameter values and exhibits a variety of attractors, including stable 

limit cycles and bi-stable behavior. 
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1. INTRODUCTION 

It is widely acknowledged that plankton is essential to the functioning of the marine ecosystem. 

The two basic forms of plankton are phytoplankton and zooplankton. To simulate phytoplankton-

zooplankton interactions, numerous models have already been created [1-2]. The impact of fish 

and plankton biomass has received a lot of attention in the marine ecosystem. Research on the 

dynamics of populations exploited in fisheries should be prioritized due to the economic 

significance of fishing, fishermen's desire to maximize returns from natural stands, and the 

requirement for responsible authorities to conserve stocks through measures. In aquatic food webs, 

phytoplankton makes up the majority of the main energy sources and contributes significantly to 

fixed global production. Zooplankton, which feeds fish and other aquatic animals, consumes 

phytoplankton. In reality, phytoplankton can provide other species with a significant amount of 

oxygen after absorbing carbon dioxide from the surrounding environment. Plankton is therefore 

the foundation of all aquatic food chains and plays a crucial part in the study of marine ecology 

[3-7]. 

Top-down and bottom-up impacts on plankton-fish dynamics were examined [1, 4]. The authors 

have talked about how zooplankton is regulated by fish predation at high fish densities while algal 

biomass is low or nutrient-limited. In contrast, zooplankton is food-limited and phytoplankton 

abundance is regulated by zooplankton feeding at low fish numbers. To demonstrate how an 

increase in fish predation may alter plankton dynamics in the model and to clarify which type of 

bifurcations may occur, isocline analysis and simulations were discussed in [2]. Anthropogenic 

pollution of freshwater and marine systems has gained attention in recent years. There is a lot of 

research on bloom dynamics, with a focus on toxic algal blooms in particular. In aquatic 

environments, toxic plankton blooms have significantly increased over the last 20 years [8-9]. At 

least eight distinct modes and processes exist for hazardous phytoplankton species to induce 

mortality, physiological impairment, or other adverse in situ impacts, according to studies [10-11]. 

Studies of marine plankton are common and relevant since it is well known that toxin-producing 

phytoplankton has a substantial impact on fish growth. Through the creation of toxins, plankton 
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species have defensive mechanisms against predation. The dynamics of phytoplankton-

zooplankton are significantly impacted by such defensive behavior [5, 12–15]. Such algal blooms 

and fish-on-zooplankton predation have a significant deleterious impact on zooplankton and the 

marine ecology. 

Numerous scholars have considered the study of aquatic food chains in a marine environment that 

has been contaminated by external toxicity. It has been found that external toxicity is crucial to the 

aquatic ecology; several dynamical behaviors in this food chain have been found, for instance [13, 

16-17]. Later on, consideration was given to a three-species plankton-fish system that includes 

nonlinear harvesting and external toxicity [16]. An external toxic substance can have a direct or 

indirect impact on a species' growth, and Holling type II functional responses are when a predator 

feeds on an affected prey. Through sensitivity analysis and the numerical computation of the 

Lyapunov exponents, the existence of limit cycles has been observed in relation to the distinct 

coexisting equilibrium point. Talib et al. [17] recently designed and evaluated an aquatic food 

chain model that included fish, phytoplankton, and zooplankton and lived in a contaminated 

environment. When describing the growth of fish and the movement of food up the food chain, 

they employed modified Leslie-Gower models with Holling type IV functional responses, 

respectively. The food chain has complex dynamics, including chaos, they discovered. 

Additionally, the presence of harmful materials serves as a stabilizing element in the model. 

On the other hand, understanding how a predator affects its prey in predator-prey interactions can 

be done from two different perspectives: direct killing and indirect method. The indirect strategy 

is founded on the predation fear brought on by the prey's anti-predator activities. The majority of 

mathematical ecology research focused on direct predation by predators on prey. However, several 

experimental investigations show that in addition to direct predation, prey species' fear of predators 

substantially alters their physiology and behavior [18]. Predation risk from the predator population 

can sometimes compel prey species to modify their preferred habitat, grazing areas, and 

reproductive zone, which has an impact on their long-term survival and fecundity rate. Recently, 

a 3D plankton-fish dynamical system with species of phytoplankton, zooplankton, and fish was 
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suggested and examined to determine the effects of anti-predator behavior brought on by the fear 

effect and zooplankton refuge [19]. They came to the conclusion that the plankton-fish ecosystem's 

sustainability and coexistence are maintained by the current ecological model's distinct intervals 

of zooplankton refuge and fear impact. 

In this paper, however, an aquatic food chain system in a contaminated environment that consists 

of harmful phytoplankton-zooplankton-fish is proposed and studied. The impact of predation fear, 

external toxic substances, and harvesting are combined in the proposed food chain model. 

 

2. CONSTRUCTION OF A MATHEMATICAL MODEL 

Consider the following simple aquatic food chain model, which includes harmful phytoplankton, 

zooplankton, and fish, as well as a Holling type-II functional response that depicts food movement 

across the chain:  

      

𝑑𝑃

𝑑𝑇
= 𝑟𝑃 [1 − 

𝑃

𝐿
] − 

𝑎1𝑃𝑍

𝑎2+ 𝑃
− 𝑏1𝑃

3,                              

𝑑𝑍

𝑑𝑇
= 

𝑒𝑎1𝑃𝑍

(𝑎2+ 𝑃)(1+𝑘𝐹)
− 𝑑1𝑃𝑍 − 

𝑎3𝑍𝐹

𝑎4+𝑍
− 𝑏2𝑍

2 − 𝑑2𝑍,

𝑑𝐹

𝑑𝑇
= 𝑐1𝐹 [ 1 − 

𝐹

𝑐2+𝑐3 𝑍
 ] −

𝑞𝐸𝐹

𝑙1𝐸+𝑙2𝐹
− 𝑏3𝐹

2,               

                            (1)                                    

where 𝑃(𝑇) , 𝑍(𝑇) , and 𝐹(𝑇)  represent the density at time 𝑇  for the phytoplankton, 

zooplankton, and fish respectively, and 𝑃(0) ≥ 0, 𝑍(0) ≥ 0, and 𝐹(0) ≥ 0. The food chain 

model (1) is constructed according to the following hypotheses:  

1. The environment in which the food chain exists is contaminated, and the pollution directly 

damages phytoplankton while indirectly affecting other species through their consumption 

of phytoplankton.  

2. In the absence of zooplankton, phytoplankton grows logistically and creates a toxic 

substance as a defense against zooplankton predation. 

3. In the absence of other species, zooplankton decays exponentially; yet, it grows by feeding 

on phytoplankton, according to the Holling type II functional response. Fear of fish is 

thought to have an impact on their growth. However, zooplankton decline occurs as a result 

of phytoplankton's antipredator properties and a contaminated environment that has an 



5 

THE IMPACT OF FEAR AND HARVESTING ON PLANKTON 

indirect impact. Finally, according to the Holling type II functional response, it is attacked 

by fish. 

4. It is thought that the fish grows logistically with a carrying capacity based on zooplankton, 

implying that fish have alternative food sources. While a fish population declines as a result 

of nonlinear harvesting and the indirect influence of a polluted environment. 

The following fear function is utilized in the growth term of zooplankton 𝐺(𝑘, 𝐹) =
1

(1+𝑘𝐹)
, which 

satisfies the following properties. 

𝐺(0, 𝐹) = 1 : This suggests that in the absence of the fear component, zooplankton species' 

reproduction rates remain unchanged. 

𝐺(𝑘, 0) = 1: This suggests that zooplankton reproduction is unaffected by the absence of fish 

species. 

lim
𝑘→∞

𝐺(𝑘, 𝐹) = 0: As a result of the large increase in antipredator behavior, the growth rate of 

zooplankton species becomes zero. 

lim
𝐹→∞

𝐺(𝑘, 𝐹) = 0: When the fish population is sufficiently large, the growth rate of zooplankton 

species becomes zero. 

 
𝜕𝐺(𝑘,𝐹)

𝜕𝐾
=

−𝐹

(1+𝑘𝐹 )2
 < 0: This suggests that as anti-predator behavior increases, the growth of 

zooplankton species declines. 

𝜕𝐺(𝑘,𝐹)

𝜕𝐹
=

−𝑘

(1+𝑘𝐹 )2
 < 0: This indicates that as the fish population grows, the growth of zooplankton 

species diminishes. 

Keeping the above in mind, the description of model parameters is given in Table (1). 
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Table 1: The descriptions of parameters 

Parameter Descriptions 

𝑟 The intrinsic growth rate of prey 

𝐿 The carrying capacity of prey 

𝑎1 The attack rate of zooplankton to the phytoplankton 

𝑎2 The half-saturation constant of the zooplankton 

𝑏1 
The coefficient of external toxic substances that affects the phytoplankton 

population 

𝑏2 
The coefficient of external toxic substances that affects the zooplankton 

population 

𝑏3 The coefficient of external toxic substances that affects the fish population 

𝑒 The conversion rate of the food to zooplankton 

𝑘 Level of Fear in zooplankton 

𝑑1 The liberation rate of toxic substances by the harmful phytoplankton 

𝑎3 The attack rate of fish on the zooplankton 

𝑎4 The half-saturation constant of the fish 

𝑑2 The natural death rate of the zooplankton 

𝑐1 The intrinsic growth rate of fish 

𝑐2 The half-saturation constant of the fish in the absence of zooplankton 

𝑐3 The fish's preference rate of zooplankton 

𝐸 The harvest effort. 

𝑞 The catchability rate 

𝑙1 𝑎𝑛𝑑 𝑙2 The appropriate constants. 

 

It's worth noting that system (1) includes 20 parameters, which makes the analysis more difficult. 

As a result, the following dimensionless variables and parameters are used in the system (1) to 

decrease a large number of parameters and then simplify our equations, and the following 
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dimensionless system is obtained. 

    

d𝑥

d𝑡
= 𝑥 [(1 − 𝑥) −

𝑦

𝑢1+𝑥
− 𝑢2𝑥

2] = 𝑥𝑓1(𝑥, 𝑦, 𝑧),

d𝑦

𝑑𝑡
= 𝑦 [

𝑢3𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)
− 𝑢5𝑥 −

𝑧

𝑢6+𝑦
− 𝑢7y − 𝑢8] = 𝑦𝑓2(𝑥, 𝑦, 𝑧),

d𝑧

d𝑡
= 𝑧 [𝑢9 (1 −

𝑢10𝑧

𝑢11+𝑦
) −

𝑢12

𝑢13+𝑧
− 𝑢14z] = 𝑧𝑓3(𝑥, 𝑦, 𝑧),

                   (2)               

where the dimensionless variables and parameters are given as: 

𝑇 =
𝑡

𝑟
, 𝑥 =

𝑃

𝐿
, 𝑦 =

𝑎1

𝑟𝐿
𝑍, 𝑧 =

𝑎1𝑎3

𝑟2𝐿
𝐹, 

𝑢1 =
𝑎2

𝐿
, 𝑢2 =

𝑏1𝐿
2

𝑟
, 𝑢3 =

𝑒𝑎1

𝑟
, 𝑢4 =

𝑟2𝐿𝑘

𝑎1𝑎3
, 𝑢5 =

𝑑1𝐿

𝑟
, 𝑢6 =

𝑎1𝑎4

𝑟𝐿
, 𝑢7 =

𝑏2𝐿

𝑎1
, 

𝑢8 =
d2

𝑟
, 𝑢9 =

𝑐1

𝑟
, 𝑢10 =

𝑟

𝑐3𝑎3
, 𝑢11 =

𝑐2𝑎1

𝑐3𝑟𝐿
, 𝑢12 =

𝑞𝐸𝑎1𝑎3

𝑟3𝐿𝐿2
, 𝑢13 =

𝐿1𝐸𝑎1𝑎3

𝐿2𝑟2𝐿
, 𝑢14 =

𝑟𝑏3𝐿

𝑎1𝑎3
. 

System (2) clearly has 14 parameters, which simplifies the system analysis. Furthermore, the 

domain of system (2) is defined by ℝ+
3 = {(𝑥, 𝑦, 𝑧) ∈ ℝ3: 𝑥 ≥ 0, 𝑦 ≥ 0, 𝑧 ≥ 0}.  

System (2) has a unique solution because the right-hand side functions are continuous and have 

continuous partial derivatives. In addition, the following theorem establishes the solution's 

positivity and boundedness. 

Theorem 1: The nonnegative solutions of the aquatic system (2) are uniformly bounded and reside 

in the positive octant 𝐷 = {(𝑥, 𝑦, 𝑧) ∈ ℝ+
3 : 𝑥(0) > 0, 𝑦(0) > 0, 𝑧(0) > 0}. 

Proof. From the equations of system (2), it is obtained that:  

 𝑥(𝑡) = 𝑥(0) exp∫ [(1 − 𝑥(𝑠)) −
𝑦(𝑠)

𝑢1+𝑥(𝑠)
− 𝑢2𝑥(𝑠)

2] 𝑑𝑠
𝑡

0
, 

 𝑦(𝑡) = 𝑦(0) exp∫ [
𝑢3𝑥(𝑠)

(𝑢1+𝑥(𝑠))(1+𝑢4𝑧(𝑠))
− 𝑢5𝑥(𝑠) −

𝑧(𝑠)

𝑢6+𝑦(𝑠)
− 𝑢7y(s) − 𝑢8] 𝑑𝑠

𝑡

0
, 

 𝑧(𝑡) = 𝑧(0) exp ∫ [𝑢9 (1 −
𝑢10𝑧(𝑠)

𝑢11+𝑦(𝑠)
) −

𝑢12

𝑢13+𝑧(𝑠)
− 𝑢14z(s)] 𝑑𝑠

𝑡

0
. 

Therefore, all solutions belong to 𝐷 all the time provided that 𝑥(0) > 0, 𝑦(0) > 0, 𝑧(0) > 0. 

Now, from the first equation, it is gained that 
d𝑥

d𝑡
≤ 𝑥(1 − 𝑥), which gives for 𝑡 → ∞ that 𝑥(𝑡) <

1. Let, 𝑊1 = 𝑥(𝑡) +
𝑦

𝑢3
, then 

     
𝑑𝑊1

𝑑𝑡
≤ (1 + 𝑢8)𝑥 − 𝑢8𝑥 −

𝑢8

𝑢3
𝑦 ⇒  

𝑑𝑊1

𝑑𝑡
+ 𝑢8𝑊1 ≤ (1 + 𝑢8). 

Therefore, using Gronwall inequality, It is gained that 𝑊1 ≤
(1+𝑢8)

𝑢8
 as 𝑡 → ∞. As a result, it is 
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obtained that 𝑦 ≤ 𝑢3
(1+𝑢8)

𝑢8
= 𝜁1 as 𝑡 → ∞. Using the resulting upper bound of the variable 𝑦 in 

the third equation gives 

 
d𝑧

d𝑡
= 𝑢9𝑧 (1 −

𝑢10𝑧

𝑢11+𝑦
) −

𝑢12𝑧

𝑢13+𝑧
− 𝑢14z

2 ≤ 𝑢9𝑧 (1 −
𝑢10𝑧

𝑢11+𝜁1 
) 

Straightforward computation gives that 𝑧 ≤
𝑢11+𝜁1

𝑢10
= 𝜁2 as 𝑡 → ∞. Thus, the proof is done. 

 

3. STABILITY ANALYSIS 

This section looks at the local stability of the dynamical system (2) around various biologically 

feasible steady-state points (SSPs). There are at most seven nonnegative SSPs in the system (2): 

The disappear steady-state point (DSSP) that is given by 𝐸0 = (0,0,0) exists at all times. 

The phytoplankton steady-state point (PHSSP), which is represented by 𝐸x = (�̅�, 0,0), exists at 

all times, were 

     �̅� =
−1+√1+4𝑢2

2𝑢2
.                                      (3) 

The fish steady-state point (FSSP) can be written as 𝐸𝑧 = (0,0, 𝑧̅), were 

   𝑧̅ =
−𝐵2+√𝐵2

2−4𝐵1𝐵3

2𝐵1
,                                         (4) 

where 𝐵1 = 𝑢9𝑢10 + 𝑢11𝑢14 > 0, 𝐵2 = 𝑢9𝑢10𝑢13 + 𝑢11𝑢13𝑢14 − 𝑢9𝑢11 , and 𝐵3 = 𝑢11(𝑢12 −

𝑢9𝑢13). Obviously, FSSP exists if and only if the following requirement is met 

 𝑢12 < 𝑢9𝑢13.                                  (5) 

The fish-free steady-state point (FFSSP) denoted as 𝐸𝑥𝑦 = (�̂�, �̂�, 0), were 

  �̂� = (1 − �̂� − 𝑢2�̂�
2)(𝑢1 + �̂�).                              (6) 

While �̂� represents a positive root of the following equation: 

 
−𝑢2𝑢7𝑥

4 − (𝑢7 + 2𝑢1𝑢2𝑢3)𝑥
3 + (𝑢5 + 𝑢7 − 2𝑢1𝑢7 − 𝑢1

2𝑢2𝑢7)𝑥
2

+(−𝑢3 + 𝑢1𝑢5 + 2𝑢1𝑢7 − 𝑢1
2𝑢7 + 𝑢8)𝑥 + 𝑢1

2𝑢7 + 𝑢1𝑢8 = 0
               (7)             

As a result, FFSSP exists uniquely in the interior of a positive quadrant of 𝑥𝑦 −plane provided 

that the following requirements are met 

  𝑢2�̂�
2 + �̂� < 1,                                                   (8a) 

with applying one of the conditions listed below to verify that Eq. (7) has a single positive root 
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𝑢5 + 𝑢7 < 2𝑢1𝑢7 + 𝑢1
2𝑢2𝑢7

𝑢3 + 𝑢1
2𝑢7 < 𝑢1𝑢5 + 2𝑢1𝑢7 + 𝑢8

𝑢5 + 𝑢7 < 2𝑢1𝑢7 + 𝑢1
2𝑢2𝑢7 and 𝑢1𝑢5 + 2𝑢1𝑢7 + 𝑢8 < 𝑢3 + 𝑢1

2𝑢7
2𝑢1𝑢7 + 𝑢1

2𝑢2𝑢7 < 𝑢5 + 𝑢7 and 𝑢1𝑢5 + 2𝑢1𝑢7 + 𝑢8 < 𝑢3 + 𝑢1
2𝑢7}

 
 

 
 

           (8b)      

The zooplankton-free steady-state point (ZFSSP) that denoted as 𝐸𝑥𝑧 = (�̅�, 0, 𝑧̅), where �̅� and 𝑧̅ 

are given by Eqs. (3) and (4) respectively. As a result, ZFSSP exists uniquely in the interior of a 

positive quadrant of 𝑥𝑧 −plane provided that condition (5) is met. 

The survival steady-state point (SSSP), which is denoted by 𝐸𝑥𝑦𝑧 = (𝑥
∗, 𝑦∗, 𝑧∗), is obtained by 

solving the system: 

  

𝑓1(𝑥, 𝑦, 𝑧) = 0,

𝑓2(𝑥, 𝑦, 𝑧) = 0,

𝑓3(𝑥, 𝑦, 𝑧) = 0.

                                        (9a) 

The third equation gives that: 

      𝑦 =
(𝑢13+𝑧)[𝑢9𝑢11−(𝑢9𝑢10+𝑢11𝑢14)z]−𝑢11𝑢12

[𝑢12+(𝑢14z−𝑢9)(𝑢13+𝑧)]
.                               (9b) 

Substituting the value of 𝑦 in the first and second equations of (9a) gives the following two 

isoclines: 

 𝑔1(𝑥, 𝑧) = (1 − 𝑥) −

(𝑢13+𝑧)[𝑢9𝑢11−(𝑢9𝑢10+𝑢11𝑢14)z]−𝑢11𝑢12
[𝑢12+(𝑢14z−𝑢9)(𝑢13+𝑧)]

𝑢1+𝑥
− 𝑢2𝑥

2 = 0             (9c) 

 

𝑔2(x, z) =
𝑢3𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)
− 𝑢5𝑥 −

𝑧

𝑢6+
(𝑢13+𝑧)[𝑢9𝑢11−(𝑢9𝑢10+𝑢11𝑢14)z]−𝑢11𝑢12

[𝑢12+(𝑢14z−𝑢9)(𝑢13+𝑧)]

−𝑢7
(𝑢13+𝑧)[𝑢9𝑢11−(𝑢9𝑢10+𝑢11𝑢14)z]−𝑢11𝑢12

[𝑢12+(𝑢14z−𝑢9)(𝑢13+𝑧)]
− 𝑢8 = 0

.            (9d) 

Clearly, for 𝑧 → 0, it is obtained that  

  𝑔1(𝑥, 0) = −𝑢2𝑥
3 − (1 + 𝑢1𝑢2)𝑥

2 + (1 − 𝑢1)𝑥 + 𝑢1 + 𝑢11 = 0 

  𝑔2(𝑥, 0) = −𝑢5𝑥
2 + (𝑢3 − 𝑢1𝑢5 + 𝑢7𝑢11 − 𝑢8)𝑥 + 𝑢1(𝑢7𝑢11 − 𝑢8) = 0 

As a result, using the Discard Rule of sign, 𝑔1(𝑥, 0) intersect the 𝑥 −axis at a unique positive 

point say 𝑥1, while 𝑔2(𝑥, 0) intersects the 𝑥 −axis at a unique positive point 𝑥2 provided that 

the following condition holds. 

  𝑢8 < 𝑢7𝑢11.                                    (10a) 

Consequently, the two isoclines (9c) and (9d) have a unique intersection point in the interior of a 

positive quadrant of the 𝑥𝑧 −plane that is denoted by (𝑥∗, 𝑧∗)  provided that in addition to 
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condition (9e) the following sufficient conditions are met. 

  

𝑥1 < 𝑥2
𝑑𝑧

𝑑𝑥
= −

(𝜕𝑔1 𝜕𝑥⁄ )

(𝜕𝑔1 𝜕𝑧⁄ )
> 0

𝑑𝑧

𝑑𝑥
= −

(𝜕𝑔2 𝜕𝑥⁄ )

(𝜕𝑔2 𝜕𝑧⁄ )
< 0}

 

 

,                                     (10b) 

Substituting the value of 𝑧∗ in Eq. (9b) gives a unique value 𝑦(𝑧∗) = 𝑦∗ that is positive provided 

that the following condition holds. 

 𝑢9(𝑢13 + 𝑧
∗) −

𝑢9𝑢10

𝑢11
z∗(𝑢13 + 𝑧

∗) < 𝑢14z
∗(𝑢13 + 𝑧

∗) + 𝑢12 < 𝑢9(𝑢13 + 𝑧
∗).     (10c)  

Hence the SSSP exists uniquely under the conditions (10a), (10b), and (10c).  

The Jacobian matrix (JM) of the system (2) at the point (𝑥, 𝑦, 𝑧) can be written as: 

      𝐽 =

[
 
 
 
 𝑥

𝑑𝑓1

d𝑥
+ 𝑓1 𝑥

d𝑓1

d𝑦
𝑥
d𝑓1

d𝑧

𝑦
d𝑓2

d𝑥
𝑦
d𝑓2

d𝑦
+ 𝑓2 𝑦

d𝑓2

d𝑧

𝑧
d𝑓3

d𝑥
𝑧
d𝑓3

d𝑦
𝑧
d𝑓3

d𝑧
+ 𝑓3]

 
 
 
 

,                            (11) 

where  

𝑑𝑓1

𝑑𝑥
= −1 +

𝑦

(𝑢1+𝑥)2
− 2𝑢2𝑥,  

   
𝑑𝑓1

𝑑𝑦
= −

1

𝑢1+𝑥
,  

    
𝑑𝑓1

𝑑𝑧
= zero,  

    
𝑑𝑓2

𝑑𝑥
=

𝑢1𝑢3

(𝑢1+𝑥)2(1+𝑢4𝑧)
− 𝑢5,  

    
𝑑𝑓2

𝑑𝑦
=

𝑧

(𝑢6+𝑦)2
− 𝑢7,  

    
𝑑𝑓2

𝑑𝑧
=

−𝑢3𝑢4𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)2
−

1

𝑢6+𝑦
,  

   
𝑑𝑓3

𝑑𝑥
= 𝑧𝑒ro,  

   
𝑑𝑓3

𝑑𝑦
=

𝑢9𝑢10𝑧

(𝑢11+𝑦)2
,  

   
𝑑𝑓3

𝑑𝑧
=

−𝑢9𝑢10

(𝑢11+𝑦)
+

𝑢12

(𝑢13+𝑧)2
− 𝑢14. 

Therefore, direct computation shows that the eigenvalues of 𝐽(𝐸0) are determined as:  

    𝜆01 = 1 > 0, 𝜆02 = −𝑢8 < 0, 𝜆03 = 𝑢9 > 0.                       (12) 
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Hence, DSSP is a saddle point. 

The eigenvalues of 𝐽(𝐸𝑥) can be written as 

   𝜆11 = −�̅�(1 + 2𝑢2�̅�) < 0, 𝜆12 =
𝑢3�̅�

𝑢1+�̅�
− 𝑢5�̅� − 𝑢8, 𝜆13 = 𝑢9 −

𝑢12

𝑢13
.             (13) 

Thus, PHSSP is locally asymptotically stable if and only if the following conditions are met: 

  
𝑢3�̅�

𝑢1+�̅�
< 𝑢5�̅� + 𝑢8,                                         (14a) 

  𝑢9 <
𝑢12

𝑢13
.                                           (14b) 

The eigenvalues of 𝐽(𝐸𝑧) can be determined as 

  𝜆21 = 1 > 0, 𝜆22 =
−�̅�

𝑢6
− 𝑢8, 𝜆23 = −

𝑢9𝑢10�̅�

𝑢11
+

𝑢12�̅�

(𝑢13+�̅�)2
− 𝑢14𝑧̅.                (15) 

As a result, FSSP is an unstable point.  

The JM at 𝐸xy = (�̂�, �̂�, 0) can be written as 

 J(𝐸𝑥𝑦) =

[
 
 
 
 �̂� (−1 +

�̂�

(𝑢1+�̂�)2
− 2𝑢2�̂�)   −

�̂�

𝑢1+�̂�
0

𝑢1𝑢3�̂�

(𝑢1+�̂�)2
− 𝑢5�̂� −𝑢7�̂�   −

𝑢3𝑢4�̂��̂�

𝑢1+�̂�
−

�̂�

𝑢6+�̂�

0 0 𝑢9 −
𝑢12

𝑢13 ]
 
 
 
 

.              (16)      

Accordingly, the characteristic equation can be written as: 

  [𝜆2 − 𝑇𝑥𝑦𝜆 + 𝐷𝑥𝑦] (𝑢9 −
𝑢12

𝑢13
− 𝜆) = 0,                           (17) 

where 

 𝑇𝑥𝑦 = �̂� (−1 +
�̂�

(𝑢1+�̂�)2
− 2𝑢2�̂�) − 𝑢7�̂�, 

  𝐷𝑥𝑦 = �̂� (−1 +
�̂�

(𝑢1+�̂�)2
− 2𝑢2�̂�) (−𝑢7�̂�) − (−

�̂�

𝑢1+�̂�
) (

𝑢1𝑢3�̂�

(𝑢1+�̂�)2
− 𝑢5�̂�). 

Straightforward computation shows that the eigenvalues J(𝐸𝑥𝑦) can be represented as 

  𝜆31,32 =
𝑇𝑥𝑦±√𝑇𝑥𝑦

2−4𝐷𝑥𝑦

2
, and 𝜆33 = 𝑢9 −

𝑢12

𝑢13
.                      (18) 

Hence all the eigenvalues have negative real parts and then FFSSP is locally asymptotically stable 

if and only if the following conditions are satisfied. 

 
�̂�

(𝑢1+�̂�)2
< 1 + 2𝑢2�̂�,                                   (19a) 
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 𝑢5�̂� <
𝑢1𝑢3�̂�

(𝑢1+�̂�)2
,                                      (19b) 

  𝑢9 <
𝑢12

𝑢13
.                                         (19c) 

Similarly, the JM at 𝐸𝑥𝑧 = (�̅�, 0, 𝑧̅) can be represented as 

 J(𝐸𝑥𝑧) = [𝑏𝑖𝑗]3×3.                                       (20) 

where 

 𝑏11 = −�̅� − 2𝑢2�̅�
2, 𝑏12 = −

�̅�

𝑢1+�̅�
, 𝑏13 = 0, 

 𝑏21 = 0, 𝑏22 =
𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
− 𝑢5�̅� −

�̅�

𝑢6
− 𝑢8, 𝑏23 = 0, 

 𝑏31 = 0, 𝑏32 =
𝑢9𝑢10�̅�

2

𝑢11
2 , 𝑏33 = −

𝑢9𝑢10�̅�

𝑢11
+

𝑢12�̅�

(𝑢13+�̅�)2
− 𝑢14𝑧.̅ 

Therefore, the eigenvalues of J(𝐸𝑥𝑧) are determined as 

  

𝜆41 = −�̅� − 2𝑢2�̅�
2 < 0

𝜆42 =
𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
− 𝑢5�̅� −

�̅�

𝑢6
− 𝑢8

𝜆43 = −
𝑢9𝑢10�̅�

𝑢11
+

𝑢12�̅�

(𝑢13+�̅�)2
− 𝑢14𝑧̅

}
 
 

 
 

                           (21) 

Accordingly, ZFSSP is locally asymptotically stable if and only if the following conditions are 

met. 

 
𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
< 𝑢5�̅� +

�̅�

𝑢6
+ 𝑢8,                            (22a) 

 
𝑢12�̅�

(𝑢13+�̅�)2
<

𝑢9𝑢10�̅�

𝑢11
+ 𝑢14𝑧̅.                                 (22b) 

The JM at 𝐸𝑥𝑦𝑧 can be computed as 

 J(𝐸𝑥𝑦𝑧) = [𝑎𝑖𝑗]3×3,                                                (23) 

where 

     𝑎11 = −𝑥∗ +
𝑥∗𝑦∗

𝑢1+𝑥∗
− 2𝑢2𝑥

∗2, 𝑎12 = −
𝑥∗

𝑢1+𝑥∗
, 𝑎13 = 0, 

 𝑎21 =
𝑢1𝑢3𝑦

∗

(𝑢1+𝑥∗)2(1+𝑢4𝑧∗)
− 𝑢5𝑦

∗, 𝑎22 =
𝑦∗𝑧∗

(𝑢6+𝑦∗)2
− 𝑢7𝑦

∗, 

 𝑎23 = −
𝑢3𝑢4𝑥

∗𝑦∗

(𝑢1+𝑥∗)(1+𝑢4𝑧∗)2
−

1

𝑢6+𝑦∗
, 𝑎31 = 0, 

 𝑎32 =
𝑢1𝑢10𝑧

∗2

(𝑢1+𝑦∗)2
, 𝑎33 = −

𝑢9𝑢10𝑧
∗

𝑢11+𝑦∗
+

𝑢12𝑧
∗

(𝑢13+𝑧∗)2
− 𝑢14𝑧

∗. 
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As a result, the local stability criteria for SSSP are established by the following theorem. 

Theorem 2. The SSSP is locally asymptotically stable if and only if the following requirements 

are met. 

 
𝑦∗

𝑢1+𝑥∗
< 2𝑢2𝑥

∗ + 1,                              (24a) 

 𝑢5 <
𝑢1𝑢3

(𝑢1+𝑥∗)2(1+𝑢4𝑧∗)
,                                   (24b) 

 
𝑧∗

(𝑢6+𝑦∗)2
< 𝑢7,                                      (24c) 

 
𝑢12

(𝑢13+𝑧∗)2
< 𝑢14 +

𝑢9𝑢10

𝑢11+𝑦∗
.                                 (24d) 

Proof. If J(𝐸𝑥𝑦𝑧) has three eigenvalues with negative real parts, the proof is complete. Since the 

eigenvalues of J(𝐸𝑥𝑦𝑧) are the roots of the equation 

 𝜆3 + 𝛨1𝜆
2 + 𝛨2𝜆 + 𝛨3 = 0,                               (25) 

where 

 𝛨1 = −(𝑎11 + 𝑎22 + 𝑎33), 

 𝛨2 = 𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 + 𝑎22𝑎33 − 𝑎23𝑎32 

 𝛨3 = −(𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33) 

 

𝛨1𝛨2 − 𝛨3 = −(𝑎11 + 𝑎22)(𝑎11𝑎22 − 𝑎12𝑎21)                           

−(𝑎22 + 𝑎33)(𝑎22𝑎33 − 𝑎23𝑎32)

                  −𝑎11𝑎33(𝑎11 + 𝑎33) − 2𝑎11𝑎22𝑎33.

 

According to the Routh-Hurwitz criterion all the roots of Eq. (25) have negative real parts if and 

only if 𝛨1 > 0, 𝛨3 > 0, and 𝛨1𝛨2 − 𝛨3 > 0. Therefore, direct computation shows that, the 

supplied requirements are assured to satisfy the Routh-Hurwitz requirements. As a result, SSSP is 

asymptotically stable locally. 

 

4. PERSISTENCE 

This section deals with the permanence of all species when time goes on indefinitely. Persistence 

refers to a species' continued existence in the deterministic sense. When 𝑥𝑖(0) > 0, however, 

persistence shows that lim
𝑡→∞

inf 𝑥𝑖(𝑡) > 0 for each individual species of 𝑥𝑖(𝑡). This means that 

the trajectories of the system (2) are eventually confined away from the border planes. As a result, 
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system (2) is said to persist if each variable 𝑥, 𝑦, and 𝑧 is permanence. Hence, the initial step is 

to look at the potential of periodic dynamics in border planes. 

The system (2) has two subsystems that can be controlled by it. The first subsystem that fall in 

𝑥𝑦 −plane and denoted by I, while the second one denoted by II and fall into the 𝑥𝑧 −plane. 

Subsystem I is written as: 

    

d𝑥

d𝑡
= 𝑥 [(1 − 𝑥) −

𝑦

𝑢1+𝑥
− 𝑢2𝑥

2] = ℎ1(𝑥, 𝑦),    

d𝑦

𝑑𝑡
= 𝑦 [

𝑢3𝑥

(𝑢1+𝑥)
− 𝑢5𝑥 − 𝑢7y − 𝑢8] = ℎ2(𝑥, 𝑦).

                             (26)                 

Subsystem II is written as: 

    

d𝑥

d𝑡
= 𝑥[(1 − 𝑥) − 𝑢2𝑥

2] = 𝑔1(𝑥, 𝑧),                          

d𝑧

d𝑡
= 𝑧 [𝑢9 (1 −

𝑢10

𝑢11
𝑧) −

𝑢12

𝑢13+𝑧
− 𝑢14z] = 𝑔2(𝑥, 𝑧).

                          (27)                  

Consider 𝑀1(𝑥, 𝑦) =
1

𝑥𝑦
, and 𝑀2(𝑥, 𝑧) =

1

𝑥𝑧
, which satisfy 𝑀𝑖 > 0; 𝑖 = 1,2, and 𝐶1 functions 

in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑥𝑦 −  and 𝑥𝑧 − planes respectively. As a result, straightforward 

computation reveals that: 

     𝐷(𝑥, 𝑦) =
𝜕(𝑀1 ℎ1)

𝜕𝑥
+
𝜕(𝑀1 ℎ2)

𝜕𝑦
= −

1

𝑦
+

1

(𝑢1+ 𝑥)2
−
2𝑢2𝑥

𝑦
−
𝑢7

𝑥
 

Accordingly, 𝐷(𝑥, 𝑦)  does not equal zero in the 𝑖𝑛𝑡. ℝ+
2  of the 𝑥𝑦 −plane and does not change 

the sign provided the next condition is met: 

     

1

𝑦
+
2𝑢2𝑥

𝑦
+
𝑢7

𝑥
<

1

(𝑢1+ 𝑥)2

𝑂𝑅
1

𝑦
+
2𝑢2𝑥

𝑦
+
𝑢7

𝑥
>

1

(𝑢1+ 𝑥)2

}                               (28) 

Regarding 𝐷(𝑥, 𝑧) similar finding is got provided that the following condition is met: 

       

1

𝑧
+
2𝑢2𝑥

𝑧
+
𝑢9𝑢10

𝑢11𝑥
+
𝑢14

𝑥
<

𝑢12

𝑥(𝑢13+ 𝑧)2

𝑂𝑅
1

𝑧
+
2𝑢2𝑥

𝑧
+
𝑢9𝑢10

𝑢11𝑥
+
𝑢14

𝑥
>

𝑢12

𝑥(𝑢13+ 𝑧)2

}                              (29) 

According to the Dulac-Bendixson criterion [20], there is no closed curve in the 𝑖𝑛𝑡. ℝ+
2  of the 

𝑥𝑦 − and 𝑥𝑧 −planes under conditions (28) and (29). As a result, the Poincare-Bendixon theorem 

[20] asserts that whenever the border plane’s steady-states, as defined by 𝐸𝑥𝑦 and 𝐸𝑥𝑧, are locally 

asymptotically stable, the unique equilibrium point in 𝑖𝑛𝑡. ℝ+
2  is globally asymptotically stable. 
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Theorem 3. If the following requirements with the conditions (28)-(29) are met, system (2) is 

uniformly persistent. 

 
𝑢3�̅�

𝑢1+�̅�
> 𝑢5�̅� + 𝑢8.                                       (30a)  

  𝑢9 >
𝑢12

𝑢13
.                                        (30b) 

 
𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
> 𝑢5�̅� +

�̅�

𝑢6
+ 𝑢8.                               (30c) 

Proof: Define the following function using the average Lyapunov function method [21]. 

𝜌(𝑥, 𝑦, 𝑧) = 𝑥𝑛1  𝑦𝑛2 𝑧𝑛3 , where 𝑛𝑗 , ∀𝑗 = 1,2,3  represent the positive constants. Thus, 

𝜌(𝑥, 𝑦, 𝑧) > 0, for all (𝑥, 𝑦, 𝑧) ∈ 𝑖𝑛𝑡. ℝ+
3  and 𝜌(𝑥, 𝑦, 𝑧) → 0 when any of their variables gets 

close to zero. Therefore, it is gained that 

   

σ(𝑥, 𝑦, 𝑧) =
𝜌′(𝑥,𝑦,𝑧)

𝜌(𝑥,𝑦,𝑧)
= 𝑛1 [(1 − 𝑥) −

𝑦

𝑢1+𝑥
− 𝑢2𝑥

2]                                   

+𝑛2 [
𝑢3𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)
− 𝑢5𝑥 −

𝑧

𝑢6+𝑦
− 𝑢7y − 𝑢8]

+ 𝑛3 [𝑢9 (1 −
𝑢10𝑧

𝑢11+𝑦
) −

𝑢12

𝑢13+𝑧
− 𝑢14z] .

      

 

Now, if σ(𝐸) > 0 for every attractor point 𝐸 on the border planes, given a sufficient selection 

of constants 𝑛𝑖 > 0, 𝑖 = 1,2,3, the proof is done using the average Lyapunov function. 

Because: 

 σ(𝐸0) = 𝑛1 − 𝑢8𝑛2 + (𝑢9 −
𝑢12

𝑢13
) 𝑛3,    

 σ(𝐸𝑥) = 𝑛2 (
𝑢3�̅�

(𝑢1+�̅�)
− 𝑢5�̅� − 𝑢8) + 𝑛3 (𝑢9 −

𝑢12

𝑢13
), 

 σ(𝐸𝑧) = 𝑛1 − (
�̅�

𝑢6
+ 𝑢8) 𝑛2 

 σ(𝐸𝑥𝑦) = 𝑛3 (𝑢9 −
𝑢12

𝑢13
), 

 σ(𝐸𝑥𝑧) = 𝑛2 (
𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
− 𝑢5�̅� −

�̅�

𝑢6
− 𝑢8). 

Thus, choosing 𝑛1 to be a sufficiently large value leads to σ(𝐸0) > 0, and σ(𝐸𝑧) > 0. However, 

σ(𝐸𝑥) > 0 , σ(𝐸𝑥𝑦) > 0 , and σ(𝐸𝑥𝑧) > 0  under the conditions (30a), (30b), and (30c) 

respectively. Thus, the proof is done. 
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5. GLOBAL STABILITY ANALYSIS 

The study of the global stability analysis for the steady-state points of system (2), which previously 

examined their local stability, is investigated theoretically in this section with the use of a suitable 

Lyapunov method, as proven in the following theorems: 

Theorem 4. Assume that PHSSP is locally asymptotically stable, then it is a globally 

asymptotically stable provided that the following conditions hold   

 �̅� <
𝑢1𝑢8

𝑢3
.                                         (31a) 

 𝑢9 <
𝑢12

𝑢13+𝜁2
.                                     (31b) 

where 𝜁2 represents the upper bound of 𝑧 that is given in theorem (1).  

Proof. Consider the function 𝑄1 = 𝐶1 (𝑥 − �̅� − �̅� 𝑙𝑛 
𝑥

�̅�
) + 𝐶2𝑦 + 𝐶3𝑧 that is positive definite on 

ℬ1 = {(𝑥, 𝑦, 𝑧) ∈ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 ≥ 0}. Straightforward computation gives: 

 
d𝑄1

d𝑡
= 𝐶1 (

𝑥−�̅�

𝑥
)
𝑑𝑥

𝑑𝑡
+ 𝐶2

𝑑𝑦

𝑑𝑡
+ 𝐶3

𝑑𝑧

𝑑𝑡
 

That gives 

   

d𝑄1

d𝑡
≤ −𝐶1[1 + 𝑢2(𝑥 + 𝑥‾)](𝑥 − 𝑥‾)

2 −
𝑥𝑦

𝑢1+𝑥
[𝐶1 − 𝐶2𝑢3]

−𝑦 [𝐶2𝑢8 − 𝐶1
𝑥‾

𝑢1
] − 𝐶3𝑧 [

𝑢12

𝑢13+𝑧
− 𝑢9] .

 

Selecting the values of positive constants as 𝐶1 = 𝑢3, and 𝐶2 = 𝐶3 = 1 yields: 

 
d𝑄1

d𝑡
≤ −𝑢3[1 + 𝑢2(𝑥 + 𝑥‾)](𝑥 − 𝑥‾)

2 − 𝑦 [𝑢8 − 𝑢3
𝑥‾

𝑢1
] − 𝑧 [

𝑢12

𝑢13+𝑧
− 𝑢9]. 

Therefore, the function 
d𝑄1

d𝑡
 is negative definite under the conditions (31a)-(31b). Hence PHSSP 

is globally asymptotically stable. 

Theorem 5. Suppose that the FFSSP is locally asymptotically stable then it is globally 

asymptotically stable provided that in addition to condition (31b) the following conditions hold. 

 𝑃12
2 < 2𝑃11𝑃22.                                     (32a) 

 𝑃23
2 < 2𝑃22𝑃33.                                 (32b) 

Proof. Consider the function 𝑄2 = [𝑥 − �̂� − �̂�𝑙𝑛 
𝑥

�̂�
] + [𝑦 − �̂� − �̂�𝑙𝑛 

𝑦

�̂�
] + 𝑧  that is positive 
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definite on ℬ2 = {(𝑥, 𝑦, 𝑧) ∈ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 ≥ 0}. Straightforward computation gives: 

 
d𝑄2

d𝑡
= (

𝑥−�̂�

𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝑦−�̂�

𝑦
)
𝑑𝑦

𝑑𝑡
+
𝑑𝑧

𝑑𝑡
 

Hence, the following is obtained: 

 

d𝑄2

d𝑡
= −𝑃11(𝑥 − �̂�)

2 + 𝑃12(𝑥 − �̂�)(𝑦 − �̂�) − 𝑃22(𝑦 − �̂�)
2

−𝑃23(𝑦 − �̂�)𝑧 − 𝑃33𝑧
2 − [

𝑢12

𝑢13+𝑧
− 𝑢3] 𝑧

 

where 𝑃11 = [1 + �̂� + 𝑢2(𝑥 + �̂�)] , 𝑃12 = [(𝑢1 + �̂�) +
𝑢1

(𝑢1+𝑥)(1+𝑢4𝑧)(𝑢1+�̂�)
− 𝑢5] , 𝑃22 = 𝑢7 ,                                         

𝑃23 = [
𝑢4�̂�

(1+𝑢4𝑧)(𝑢1+�̂�)
+

1

(𝑢8+𝑦)
], and 𝑃33 = [

𝑢9𝑢10

𝑢11+𝑦
+ 𝑢14]. Therefore, using the conditions (32a)-

(32b) yields: 

      

d𝑄2

d𝑡
⩽ − [√𝑃11(𝑥 − �̂�) − √

𝑃22

2
(𝑦 − �̂�)]

2

                                          

− [√
𝑃22

2
(𝑦 − �̂�) + √𝑃33  𝑧]

2

− [
𝑢12

𝑢13+𝑧
− 𝑢9] 𝑧.

 

Therefore, using condition (31b) the function 
d𝑄2

d𝑡
 is negative definite. Therefore, FFSSP is 

globally asymptotically stable. 

Theorem 6. Suppose that the ZFSSP is locally asymptotically stable then it is globally 

asymptotically stable provided that the following conditions are met. 

 
𝑢12

𝑢13(𝑢13+�̅�)
<

𝑢9𝑢10

𝑢14+𝜁1
+ 𝑢14.                                    (33a) 

  
𝑢3

𝑢1
< 𝑢5,                                      (33b) 

 𝑞12
2 < 2𝑞11𝑞22,                                                   (33c) 

 𝑞23
2 < 2𝑞22𝑞33.                                    (33d) 

where 𝜁1 stands for the upper bound of the variable 𝑦, while the other symbols are given in the 

proof. 

Proof. Consider the function 𝑄3 = [𝑥 − �̅� − �̅�𝑙𝑛 
𝑥

�̅�
] + 𝑦 + [𝑧 − 𝑧̅ − 𝑧̅𝑙𝑛 

𝑧

�̅�
]  that is positive 

definite on ℬ3 = {(𝑥, 𝑦, 𝑧) ∈ℝ+
3 : 𝑥 > 0, 𝑦 ≥ 0, 𝑧 > 0}. Straightforward computation gives: 

 
d𝑄3

d𝑡
= (

𝑥−�̅�

𝑥
)
𝑑𝑥

𝑑𝑡
+
𝑑𝑦

𝑑𝑡
+ (

𝑧−�̅�

𝑧
)
𝑑𝑧

𝑑𝑡
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Hence, the following is obtained: 

 

d𝑄3

d𝑡
= −𝑞11(𝑥 − �̅�)

2 − 𝑞12(𝑥 − �̅�)𝑦 − 𝑞22𝑦
2 − [𝑢5 −

𝑢3

(𝑢1+𝑥)(1+𝑢4𝑧
] 𝑥𝑦

−
𝑦𝑧

𝑢6+𝑦
+ 𝑞23(𝑧 − 𝑧̅)𝑦 − 𝑞33𝑧

2 − 𝑢8𝑦
 

where  𝑞11 = 1 + 𝑢2(𝑥 + �̅�), 𝑞12 =
1

𝑢1+𝑥
, 𝑞22 = 𝑢7 , 𝑞23 =

𝑢9𝑢10�̅�

𝑢11(𝑢11+𝑦)
 , 𝑞33 =

𝑢9𝑢10

𝑢11+𝑦
+ 𝑢14 −

𝑢12

(𝑢13+𝑧)(𝑢13+�̅�)
. Therefore, using the conditions (33a)-(33d) yields: 

d𝑄3

d𝑡
≤ − [√𝑞11(𝑥 − �̅�) + √

𝑞22

2
𝑦]
2

− 𝑢8𝑦 − [√
𝑞22

2
𝑦 − √𝑞33(𝑧 − 𝑧̅)]

2

. 

Therefore, the function 
d𝑄3

d𝑡
 is negative definite. Therefore, ZFSSP is globally asymptotically 

stable. 

Theorem 7. Suppose that the SSSP is locally asymptotically stable then it is globally 

asymptotically stable provided that the following conditions are met. 

 
𝑧∗

𝑢6(𝑢6+𝑦∗)
< 𝑢7.                                     (34a) 

 
𝑢12

𝑢13(𝑢13+𝑧∗)
<

𝑢9𝑢10

(𝑢11+𝜁1)
+ 𝑢14.                              (34b) 

 𝑟12
2 < 2𝑟11𝑟22.                                   (34c) 

 𝑟23
3 < 2𝑟22𝑟33.                                     (34d) 

where 𝜁1 stands for the upper bound of the variable 𝑦, while the other symbols are given in the 

proof. 

Proof. Consider the function: 

  𝑄4 = [𝑥 − 𝑥∗ − 𝑥∗𝑙𝑛 
𝑥

𝑥∗
] + [𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛 

𝑦

𝑦∗
] + [𝑧 − 𝑧∗ − 𝑧∗𝑙𝑛 

𝑧

𝑧∗
],  

which is positive definite on ℬ4 = {(𝑥, 𝑦, 𝑧) ∈ℝ+
3 : 𝑥 > 0, 𝑦 > 0, 𝑧 > 0} . Straightforward 

computation gives: 

 
d𝑄4

d𝑡
= (

𝑥−𝑥∗

𝑥
)
𝑑𝑥

𝑑𝑡
+ (

𝑦−𝑦∗

𝑦
)
𝑑𝑦

𝑑𝑡
+ (

𝑧−𝑧∗

𝑧
)
𝑑𝑧

𝑑𝑡
 

Hence, the following is obtained: 

 

d𝑄4

d𝑡
= −𝑟11(𝑥 − 𝑥

∗)2 + 𝑟12(𝑥 − 𝑥
∗)(𝑦 − 𝑦∗) − 𝑟22𝑦

2     

−𝑟23(𝑦 − 𝑦
∗)(𝑧 − 𝑧∗) − 𝑟33(𝑧 − 𝑧

∗)2,
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where  

 𝑟11 = 1 +
𝑦∗

(𝑢1+𝑥∗)(𝑢1+𝑥)
+ 𝑢2(𝑥 + 𝑥

∗). 

 𝑟12 =
1

(𝑢1+𝑥)
+

𝑢1

(𝑢1+𝑥)(𝑢1+𝑥∗)(1+𝑢4𝑧)
− 𝑢5. 

 𝑟23 =
𝑢4𝑥

∗

(1+𝑢4𝑧)(𝑢1+𝑥∗)(1+𝑢4𝑧∗)
+

1

(𝑢6+𝑦)
−

𝑢9𝑢10𝑧
∗

(𝑢11+𝑦)(𝑢11+𝑦∗)
. 

 𝑟22 = 𝑢7 −
𝑧∗

(𝑢6+𝑦)(𝑢6+𝑦∗)
. 

 𝑟33 =
𝑢9𝑢10

𝑢11+𝑦
+ 𝑢14 −

𝑢12

(𝑢13+𝑧)(𝑢13+𝑧∗)
. 

Therefore, using the conditions (34a) -(34d) yields: 

 
d𝑄4

d𝑡
≤ − [√𝑟11(𝑥 − 𝑥

∗) − √
𝑟22

2
(𝑦 − 𝑦∗)]

2

− [√
𝑟22

2
(𝑦 − 𝑦∗) + √𝑟33(𝑧 − 𝑧

∗)]
2

   

Therefore, the function 
d𝑄4

d𝑡
 is negative definite. Therefore, SSSP is globally asymptotically stable. 

 

6. BIFURCATION ANALYSIS 

This section investigates the local bifurcation at the likely SSPs of the system (2) using 

Sotomayor's theorem [20]. It is commonly known that a non-hyperbolic SSP is a necessary but 

insufficient condition for bifurcation to occur. As a result, the candidate bifurcation parameter is 

chosen in order to attain the SSP. It will be non-hyperbolic at a particular value of that parameter. 

Rewrite system (2) in the following format: 

  
𝒅𝒙

𝒅𝒕
= 𝑭(𝑿, 𝛼) 

where 𝑿 = (
𝑥
𝑦
𝑧
), 𝑭(𝑿, 𝛼) = (

𝑥𝑓1(𝑥, 𝑦, 𝑧, 𝛼)
𝑦𝑓2(𝑥, 𝑦, 𝑧, 𝛼)
𝑧𝑓3(𝑥, 𝑦, 𝑧, 𝛼)

), and 𝛼 ∈ ℝ be any parameter. 

As a result, the second directional derivative of 𝑭(𝑿, 𝛼) in the system (2) can be expressed as: 

 𝐷2𝑭(𝑿, 𝛼)(℧,℧) = (𝑐𝑖1
[2])

3×1
,                               (35) 

where:     

 𝑐11
[2] = 2 [−1 +

𝑢1𝑦

(𝑢1+𝑥)3
− 3𝑢2𝑥] 𝑣1

2 −
2𝑢1

(𝑢1+𝑥)2
𝑣1𝑣2. 
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𝑐21
[2] = −

2𝑢1𝑢3𝑦

(𝑢1+𝑥)3(1+𝑢4𝑧)
𝑣1
2 + 2 [

𝑢1𝑢3

(𝑢1+𝑥)2(1+𝑢4𝑧)
− 𝑢5] 𝑣1𝑣2 − [

2𝑢1𝑢3𝑢4y

(𝑢1+𝑥)2(1+𝑢4𝑧)2
] 𝑣1𝑣3

+2 [
𝑢6𝑧

(𝑢6+𝑦)3
− 𝑢7] 𝑣2

2 − 2 [
𝑢3𝑢4𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)2
+

𝑢6

(𝑢6+𝑦)2
] 𝑣2𝑣3 +

2𝑢3𝑢4
2𝑥𝑦

(𝑢1+𝑥)(1+𝑢4𝑧)3
𝑣3
2

. 

 𝑐31
[2] = −

2𝑢9𝑢10𝑧
2

(𝑢11+𝑦)3
𝑣2
2 +

4𝑢9𝑢10

(𝑢11+𝑦)2
𝑣2𝑣3 + 2 [

𝑢12𝑢13

(𝑢13+𝑧)3
−

𝑢9𝑢10

(𝑢11+𝑦)
− 𝑢14] 𝑣3

2. 

with ℧ = (

𝑣1
𝑣2
𝑣3
) be a non-zero real vector. While the third directional derivative of 𝑭(𝑿, 𝛼) in 

the system (2) can be expressed as: 

 𝐷3𝑭(𝑿, 𝛼)(℧,℧, ℧) = (𝑐𝑖1
[3])

3×1
,                              (36) 

where:     

 𝑐11
[3] = −6 [

𝑢1𝑦

(𝑢1+𝑥)4
+ 𝑢2] 𝑣1

3 +
6𝑢1

(𝑢1+𝑥)3
𝑣1
2𝑣2. 

 

𝑐21
[3] =

6𝑢1𝑢3𝑦

(𝑢1+𝑥)4(1+𝑢4𝑧)
𝑣1
3 −

6𝑢1𝑢3

(𝑢1+𝑥)3(1+𝑢4𝑧)
𝑣1
2𝑣2 +

6𝑢1𝑢3𝑢4y

(𝑢1+𝑥)3(1+𝑢4𝑧)2
𝑣1
2𝑣3                  

−
6𝑢1𝑢3𝑢4

(𝑢1+𝑥)2(1+𝑢4𝑧)2
𝑣1𝑣2𝑣3 +

6𝑢1𝑢3𝑢4
2𝑦

(𝑢1+𝑥)2(1+𝑢4𝑧)3
𝑣1𝑣3

2 −
6𝑢6𝑧

(𝑢6+𝑦)4
𝑣2
3 +

6𝑢6

(𝑢6+𝑦)3
𝑣2
2𝑣3

+
6𝑢3𝑢4

2𝑥

(𝑢1+𝑥)(1+𝑢4𝑧)3
𝑣2𝑣3

2 −
6𝑢3𝑢4

3𝑥𝑦

(𝑢1+𝑥)(1+𝑢4𝑧)4
𝑣3
3

. 

 𝑐31
[3] =

6𝑢9𝑢10𝑧
2

(𝑢11+𝑦)4
𝑣2
3 −

12𝑢9𝑢10

(𝑢11+𝑦)3
𝑣2
2𝑣3 +

2𝑢9𝑢10

(𝑢11+𝑦)2
𝑣2𝑣3

2 −
6𝑢12𝑢13

(𝑢13+𝑧)4
𝑣3
3. 

Theorem 8. Assume that condition (14a) is satisfied. Then system (2) possesses a transcritical 

bifurcation (TB) at PHSSP when 𝑢9  passes through the value 𝑢9
∗ =

𝑢12

𝑢13
, provided that the 

following condition is met. 

 
𝑢12

𝑢132
−
𝑢9
∗𝑢10

𝑢11
− 𝑢14 ≠ 0.                                   (37) 

Otherwise, a pitchfork bifurcation (PB) takes place. 

Proof. It is easy to verify that the JM of the system (2) at PHSSP with 𝑢9 = 𝑢9
∗ can be written 

as: 

   𝐽(𝐸𝑥, 𝑢9
∗) = 𝐽𝑥 =

[
 
 
 −�̅�(1 + 2𝑢2�̅�)

−�̅�

𝑢1+�̅�
0

0
𝑢3�̅�

𝑢1+�̅�
− 𝑢5�̅� − 𝑢8 0

0 0 0]
 
 
 
 . 

Obviously, the following is obtained 



21 

THE IMPACT OF FEAR AND HARVESTING ON PLANKTON 

The eigenvalues of 𝐽𝑥  are 𝜆11(𝑢9
∗) = −�̅�(1 + 2𝑢2�̅�) < 0 , 𝜆12(𝑢9

∗) =
𝑢3�̅�

𝑢1+�̅�
− 𝑢5�̅� − 𝑢8 < 0 , 

and 𝜆13(𝑢9
∗) = 0.  

The eigenvector 𝑉1 = (

𝑣11
𝑣12
𝑣13

) that corresponding 𝜆13(𝑢9
∗) is determined by 𝑉1 = (

0
0
1
). 

The eigenvector 𝜓1 = (
𝜓11
𝜓12
𝜓13

) that corresponding 𝜆13(𝑢9
∗) of 𝐽𝑥

𝑇 is determined by 𝜓1 = (
0
0
1
). 

Moreover, 

  
𝑑𝑭(𝑿,𝑢9)

𝑑𝑢9
= 𝑭𝑢9(𝑿, 𝑢9) = (0,0, 𝑧 −

𝑢10𝑧
2

𝑢11+𝑦
)
𝑇

  ⇒ 𝜓1
𝑇𝐹𝑢9(𝐸𝑥, 𝑢9

∗) = 0. 

 𝐷𝑭𝑢9(𝐸𝑥, 𝑢9
∗)𝑉1 = (

0
0
1
) ⟹  𝜓1

𝑇[𝐷𝑭𝑢9(𝐸𝑥, 𝑢9
∗)𝑉1] = 1 ≠ 0. 

 𝐷2𝑭(𝐸𝑥, 𝑢9
∗)(𝑉1, 𝑉1) = [

0
0

2 (
𝑢12

𝑢132
−
𝑢9
∗𝑢10

𝑢11
− 𝑢14)

]. 

Accordingly, it is produced that   

   𝜓1
𝑇[𝐷2𝑭(𝐸𝑥, 𝑢9

∗)(𝑉1, 𝑉1)] = 2 (
𝑢12

𝑢132
−
𝑢9
∗𝑢10

𝑢11
− 𝑢14).  

As a result, TB occurs in the sense of Sotomayor's theorem under condition (37), and the proof is 

complete. However, if condition (37) is broken, 𝜓1
𝑇[𝐷2𝑭(𝐸𝑥, 𝑢9

∗)(𝑉1, 𝑉1)] = 0  is returned. 

Moreover, since: 

 𝐷3𝑭(𝐸𝑥, 𝑢9
∗)(𝑉1, 𝑉1, 𝑉1) = [

0
0

−
6𝑢12

𝑢133

]. 

Accordingly, it is produced that   

     𝜓1
𝑇[𝐷3𝑭(𝐸𝑥, 𝑢9

∗)(𝑉1, 𝑉1, 𝑉1)] = −
6𝑢12

𝑢133
≠ 0.  

Hence, PB occurs and the proof is done. 

Theorem 9. Assume that conditions (19a) and (19b) are satisfied. Then system (2) possesses a TB 

at FFSSP when 𝑢9 passes through the value 𝑢9
∗ =

𝑢12

𝑢13
 provided that the following condition is 
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met. 

 4
𝑢9
∗𝑢10

(𝑢11+�̂�)2
𝛾2 + 2 [

𝑢12

𝑢132
−

𝑢9
∗𝑢10

(𝑢11+�̂�)
− 𝑢14] ≠ 0.                          (38)        

Otherwise, a pitchfork bifurcation (PB) takes place. 

Proof. It is easy to verify that the JM of the system (2) at FFSSP with 𝑢9 = 𝑢9
∗ can be written as: 

 𝐽(𝐸𝑥𝑦, 𝑢9
∗) = 𝐽𝑥𝑦 =

[
 
 
 �̂� (−1 +

�̂�

(𝑢1+�̂�)2
− 2𝑢2) −

�̂�

𝑢1+�̂�
0

�̂� (
𝑢1𝑢3

𝑢1+�̂�
− 𝑢5) −𝑢7�̂� −�̂� (

𝑢3𝑢4�̂�

𝑢1+�̂�
+

1

𝑢6+�̂�
)

0 0 0 ]
 
 
 

 . 

Obviously, the following is obtained 

The eigenvalues of 𝐽𝑥𝑦  are 𝜆31,32(𝑢9
∗) =

𝑇𝑥𝑦±√𝑇𝑥𝑦
2−4𝐷𝑥𝑦

2
 with 𝑇𝑥𝑦  and 𝐷𝑥𝑦  are given in Eq. 

(17), and 𝜆33(𝑢9
∗) = 0. Clearly, 𝜆31(𝑢9

∗) and 𝜆32(𝑢9
∗) have negative real parts under conditions 

(19a) and (19b).     

The eigenvector 𝑉2 = (

𝑣21
𝑣22
𝑣23

) that corresponding 𝜆33(𝑢9
∗) is determined by 𝑉2 = (

𝛾1
𝛾2
1
), where 

𝛾1 =
𝛽12𝛽23

𝛽11𝛽22−𝛽12𝛽21
> 0, and 𝛾2 = −

𝛽11𝛽23

𝛽11𝛽22−𝛽12𝛽21
< 0, where 𝛽ij are the 𝐽𝑥𝑦 elements. 

The eigenvector 𝜓2 = (
𝜓21
𝜓22
𝜓23

) that corresponding 𝜆33(𝑢9
∗) of 𝐽𝑥𝑦

𝑇 is determined by 𝜓2 = (
0
0
1
). 

Moreover, 

 
𝑑𝑭(𝑿,𝑢9)

𝑑𝑢9
= 𝑭𝑢9(𝑿, 𝑢9) = (0,0, 𝑧 −

𝑢10𝑧
2

𝑢11+𝑦
)
𝑇

  ⇒ 𝜓2
𝑇𝐹𝑢9(𝐸𝑥𝑦, 𝑢9

∗) = 0. 

 𝐷𝑭𝑢9(𝐸𝑥𝑦, 𝑢9
∗)𝑉2 = (

0
0
1
) ⟹  𝜓2

𝑇[𝐷𝑭𝑢9(𝐸𝑥𝑦, 𝑢9
∗)𝑉2] = 1 ≠ 0. 

 𝐷2𝑭(𝐸𝑥𝑦, 𝑢9
∗)(𝑉2, 𝑉2) = [

𝑐11
[2](𝐸𝑥𝑦, 𝑢9

∗)

𝑐21
[2](𝐸𝑥𝑦, 𝑢9

∗)

𝑐31
[2](𝐸𝑥𝑦, 𝑢9

∗)

], 

where  

 𝑐11
[2](𝐸𝑥𝑦, 𝑢9

∗) = 2 [−1 +
𝑢1�̂�

(𝑢1+�̂�)3
− 3𝑢2�̂�] 𝛾1

2 −
2𝑢1

(𝑢1+�̂�)2
𝛾1𝛾2. 
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𝑐21
[2](𝐸𝑥𝑦, 𝑢9

∗) = −2
𝑢1𝑢3�̂�

(𝑢1+�̂�)3
𝛾1
2 + 2 [

𝑢1𝑢3

(𝑢1+�̂�)2
− 𝑢5] 𝛾1𝛾2 − [

2𝑢1𝑢3𝑢4ŷ

(𝑢1+�̂�)2
] 𝛾1

−2𝑢7𝛾2
2 − 2 [

𝑢3𝑢4�̂�

(𝑢1+�̂�)
+

𝑢6

(𝑢6+�̂�)2
] 𝛾2 +

2𝑢3𝑢4
2�̂��̂�

(𝑢1+�̂�)
.

 

 𝑐31
[2](𝐸𝑥𝑦, 𝑢9

∗) = 4
𝑢9
∗𝑢10

(𝑢11+�̂�)2
𝛾2 + 2 [

𝑢12

𝑢132
−

𝑢9
∗𝑢10

(𝑢11+�̂�)
− 𝑢14]. 

Therefore, it is obtained that  

 𝜓2
𝑇[𝐷2𝑭(𝐸𝑥𝑦, 𝑢9

∗)(𝑉2, 𝑉2)] = 4
𝑢9
∗𝑢10

(𝑢11+�̂�)2
𝛾2 + 2 [

𝑢12

𝑢132
−

𝑢9
∗𝑢10

(𝑢11+�̂�)
− 𝑢14]. 

As a result, TB occurs under condition (38), and the proof is complete. However, if condition (38) 

is broken, 𝜓2
𝑇[𝐷2𝑭(𝐸𝑥𝑦, 𝑢9

∗)(𝑉2, 𝑉2)] = 0 is returned. Moreover, since: 

 𝐷3𝑭(𝐸𝑥𝑦, 𝑢9
∗)(𝑉2, 𝑉2, 𝑉2) = [

𝑐11
[3](𝐸𝑥𝑦, 𝑢9

∗)

𝑐21
[3](𝐸𝑥𝑦, 𝑢9

∗)

𝑐31
[3](𝐸𝑥𝑦, 𝑢9

∗)

], 

where: 

  𝑐11
[3](𝐸𝑥𝑦, 𝑢9

∗) = −6 [
𝑢1�̂�

(𝑢1+�̂�)4
+ 𝑢2] 𝛾1

3 +
6𝑢1

(𝑢1+�̂�)3
𝛾1
2𝛾2. 

  

𝑐21
[3](𝐸𝑥𝑦, 𝑢9

∗) =
6𝑢1𝑢3�̂�

(𝑢1+�̂�)4
𝛾1
3 −

6𝑢1𝑢3

(𝑢1+�̂�)3
𝛾1
2𝛾2 +

6𝑢1𝑢3𝑢4ŷ

(𝑢1+�̂�)3
𝛾1
2 −

6𝑢1𝑢3𝑢4

(𝑢1+�̂�)2
𝛾1𝛾2

+
6𝑢1𝑢3𝑢4

2�̂�

(𝑢1+�̂�)2
𝛾1 +

6𝑢6

(𝑢6+�̂�)3
𝛾2
2 +

6𝑢3𝑢4
2�̂�

(𝑢1+�̂�)
𝛾2 −

6𝑢3𝑢4
3�̂��̂�

(𝑢1+�̂�)

. 

 𝑐31
[3](𝐸𝑥𝑦, 𝑢9

∗) = −
12𝑢9

∗𝑢10

(𝑢11+�̂�)3
𝛾2
2 +

2𝑢9
∗𝑢10

(𝑢11+�̂�)2
𝛾2 −

6𝑢12

𝑢133
. 

Therefore, it is obtained that 

     𝜓2
𝑇𝐷3𝑭(𝐸𝑥𝑦, 𝑢9

∗)(𝑉2, 𝑉2, 𝑉2) = −
12𝑢9

∗𝑢10

(𝑢11+�̂�)3
𝛾2
2 +

2𝑢9
∗𝑢10

(𝑢11+�̂�)2
𝛾2 −

6𝑢12

𝑢133
< 0. 

Hence, PB occurs and the proof is done. 

Theorem 10. Assume that condition (22b) is satisfied. Then system (2) possesses a TB at ZFSSP 

when 𝑢8 passes through the value 𝑢8
∗ =

𝑢3�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)
− 𝑢5�̅� −

�̅�

𝑢6
 provided that the following 

condition is met. 

  2 [
𝑢1𝑢3

(𝑢1+�̅�)2(1+𝑢4�̅�)
− 𝑢5] 𝛾3 + 2 [

�̅�

𝑢62
− 𝑢7] − 2 [

𝑢3𝑢4�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)2
+

1

𝑢6
] 𝛾4 ≠ 0.       (39)             

Otherwise, a pitchfork bifurcation (PB) takes place if and only if the following condition holds: 

  𝑐21
[3](𝐸𝑥𝑧, 𝑢8

∗) ≠ 0.                                     (40) 
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Proof. It is easy to verify that the JM of the system (2) at ZFSSP with 𝑢8 = 𝑢8
∗  can be written as: 

𝐽(𝐸𝑥𝑧 , 𝑢8
∗) = 𝐽𝑥𝑧 =

[
 
 
 −�̅� − 2𝑢2�̅�

2 −
�̅�

𝑢1+�̅�
0

0 0 0

0
𝑢9𝑢10�̅�

2

𝑢11
2 −

𝑢9𝑢10�̅�

𝑢11
+

𝑢12�̅�

(𝑢13+�̅�)2
− 𝑢14𝑧̅]

 
 
 

 . 

Obviously, the following is obtained 

The eigenvalues of 𝐽𝑥𝑧 are  

𝜆41(𝑢8
∗) = −�̅� − 2𝑢2�̅�

2 < 0, 𝜆42(𝑢8
∗) = 0, 𝜆43(𝑢8

∗) = −
𝑢9𝑢10�̅�

𝑢11
+

𝑢12�̅�

(𝑢13+�̅�)2
− 𝑢14𝑧̅. 

Obviously, 𝜆43(𝑢8
∗) is negative under the condition (22b). 

The eigenvector 𝑉3 = (

𝑣31
𝑣32
𝑣33

) that corresponding 𝜆42(𝑢8
∗) is determined by 𝑉3 = (

𝛾3
1
𝛾4
), where 

𝛾3 = −
𝜌12

𝜌11
< 0, and 𝛾4 = −

𝜌32

𝜌33
> 0 under the condition (22b), where 𝜌ij are the 𝐽𝑥𝑧 elements. 

The eigenvector 𝜓3 = (
𝜓31
𝜓32
𝜓33

) that corresponding 𝜆42(𝑢8
∗) of 𝐽𝑥𝑧

𝑇 is determined by 𝜓3 = (
0
1
0
). 

Moreover, 

     
𝑑𝑭(𝑿,𝑢8)

𝑑𝑢8
= 𝑭𝑢8(𝑿, 𝑢8) = (0,−𝑦, 0)𝑇  ⇒ 𝜓3

𝑇𝐹𝑢8(𝐸𝑥𝑧 , 𝑢8
∗) = 0. 

    𝐷𝑭𝑢8(𝐸𝑥𝑧, 𝑢8
∗)𝑉3 = (

0
−1
0
) ⟹  𝜓3

𝑇[𝐷𝑭𝑢8(𝐸𝑥𝑧, 𝑢8
∗)𝑉3] = −1 ≠ 0. 

     𝐷2𝑭(𝐸𝑥𝑧 , 𝑢8
∗)(𝑉3, 𝑉3) = [

𝑐11
[2](𝐸𝑥𝑧, 𝑢8

∗)

𝑐21
[2](𝐸𝑥𝑧, 𝑢8

∗)

𝑐31
[2](𝐸𝑥𝑧, 𝑢8

∗)

], 

where: 

  𝑐11
[2](𝐸𝑥𝑧, 𝑢8

∗) = 2[−1 − 3𝑢2�̅�]𝛾3
2 −

2𝑢1

(𝑢1+�̅�)2
𝛾3. 

  
𝑐21

[2](𝐸𝑥𝑧, 𝑢8
∗) = 2 [

𝑢1𝑢3

(𝑢1+�̅�)2(1+𝑢4�̅�)
− 𝑢5] 𝛾3 + 2 [

�̅�

𝑢62
− 𝑢7]

−2 [
𝑢3𝑢4�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)2
+

1

𝑢6
] 𝛾4

. 

  𝑐31
[2](𝐸𝑥𝑧, 𝑢8

∗) = −
2𝑢9𝑢10�̅�

2

𝑢113
+
4𝑢9𝑢10

𝑢112
𝛾4 + 2 [

𝑢12𝑢13

(𝑢13+�̅�)3
−
𝑢9𝑢10

𝑢11
− 𝑢14] 𝛾4

2. 

Therefore, it is obtained that  



25 

THE IMPACT OF FEAR AND HARVESTING ON PLANKTON 

      
𝜓3

𝑇[𝐷2𝑭(𝐸𝑥𝑧, 𝑢8
∗)(𝑉3, 𝑉3)] = 2 [

𝑢1𝑢3

(𝑢1+�̅�)2(1+𝑢4�̅�)
− 𝑢5] 𝛾3 + 2 [

�̅�

𝑢62
− 𝑢7]

−2 [
𝑢3𝑢4�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)2
+

1

𝑢6
] 𝛾4

. 

Hence, TB occurs under condition (39), and the proof is complete. However, if condition (39) is 

broken, 𝜓3
𝑇[𝐷2𝑭(𝐸𝑥𝑧 , 𝑢8

∗)(𝑉3, 𝑉3)] = 0 is returned. Moreover, since 

       𝐷3𝑭(𝐸𝑥𝑧 , 𝑢8
∗)(𝑉3, 𝑉3, 𝑉3) = [

𝑐11
[3](𝐸𝑥𝑧, 𝑢8

∗)

𝑐21
[3](𝐸𝑥𝑧 , 𝑢8

∗)

𝑐31
[3](𝐸𝑥𝑧 , 𝑢8

∗)

], 

where: 

  𝑐11
[3](𝐸𝑥𝑧, 𝑢8

∗) = −6𝑢2𝛾3
3 +

6𝑢1

(𝑢1+�̅�)3
𝛾3
2. 

  

𝑐21
[3](𝐸𝑥𝑧, 𝑢8

∗) = −
6𝑢1𝑢3

(𝑢1+�̅�)3(1+𝑢4�̅�)
𝛾3
2 −

6𝑢1𝑢3𝑢4

(𝑢1+�̅�)2(1+𝑢4�̅�)2
𝛾3𝛾4

−
6�̅�

𝑢63
+

6

𝑢62
𝛾4 +

6𝑢3𝑢4
2�̅�

(𝑢1+�̅�)(1+𝑢4�̅�)3
𝛾4
2

. 

  𝑐31
[3](𝐸𝑥𝑧, 𝑢8

∗) =
6𝑢9𝑢10�̅�

2

𝑢114
−
12𝑢9𝑢10

𝑢113
𝛾4 +

2𝑢9𝑢10

𝑢112
𝛾4
2 −

6𝑢12𝑢13

(𝑢13+�̅�)4
𝛾4
3. 

Therefore, it is obtained that 

      𝜓3
𝑇𝐷3𝑭(𝐸𝑥𝑧, 𝑢8

∗)(𝑉3, 𝑉3, 𝑉3) = 𝑐21
[3](𝐸𝑥𝑧, 𝑢8

∗). 

Hence, PB occurs if and only if condition (40) is met and the proof is done. 

Theorem 11. Assume that the conditions (24a)-(24c) are met. Then system (2) undergoes a saddle-

node bifurcation (SNB) near the SSSP as the parameter 𝑢12 passes through the value 𝑢12
∗ , where: 

  𝑢12
∗ =

(𝑢13+𝑧
∗)2

𝑧∗
[

𝑎11𝑎23𝑎32

𝑎11𝑎22−𝑎12𝑎21
+ (

𝑢9𝑢10+𝑢11𝑢14

𝑢11
) 𝑧∗] 

If and only if the following requirements are satisfied. 

  
𝑢12

(𝑢13+𝑧∗)2
> 𝑢14 +

𝑢9𝑢10

𝑢11+𝑦∗
.                               (41) 

  𝛾7𝑐11
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) + 𝛾8𝑐21
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) + 𝑐31
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) ≠ 0.              (42) 

Proof. Direct competition shows that when 𝑢12 = 𝑢12
∗ , then the determinant of JM of the system 

(2) at the SSSP, which is given in equation (25), is determined as 𝛨3 = 0 due to condition (41). 

Hence the JM at (𝐸𝑥𝑦𝑧, 𝑢12
∗  ) becomes: 

 𝐽(𝐸𝑥𝑦𝑧 , 𝑢12
∗ ) = 𝐽𝑥𝑦𝑧 = (𝑎𝑖𝑗)3×3

, 
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where 𝑎𝑖𝑗 for 𝑖, 𝑗 = 1,2,3 are given in equation (20) with 𝑎33 = 𝑎33(𝑢12
∗  ), and it has a zero 

eigenvalue, say 𝜆∗ = 0. That is means SSSP is a nonhyperbolic point. Consequently, the following 

is produced. 

The eigenvector 𝑉4 = (

𝑣41
𝑣42
𝑣43
) that is the corresponding 𝜆∗ = 0 is determined by 𝑉4 = (

𝛾5
𝛾6
1
), 

where 𝛾5 =
𝑎12𝑎23

𝑎11𝑎22−𝑎12𝑎21
, and 𝛾6 = −

𝑎11𝑎23

𝑎11𝑎22−𝑎12𝑎21
, here 𝛾5 > 0 , and 𝛾6 < 0  under the 

conditions (24a)-(24c). 

The eigenvector 𝜓4 = (
𝜓31
𝜓32
𝜓33

)  that is the corresponding 𝜆∗ = 0  of 𝐽𝑥𝑦𝑧
𝑇  is determined by 

𝜓4 = (
𝛾7
𝛾8
1
) , where 𝛾7 =

𝑎21𝑎32

𝑎11𝑎22−𝑎12𝑎21
, and 𝛾8 = −

𝑎11𝑎32

𝑎11𝑎22−𝑎12𝑎21
, with 𝛾7 < 0 , and 𝛾8 < 0 

under the conditions (24a)-(24c). 

Moreover, 

   
𝑑𝑭(𝑿,𝑢12)

𝑑𝑢12
= 𝑭𝑢12(𝑿, 𝑢12) = (0,0, −

z

𝑢13+𝑧
)
𝑇

  ⇒ 𝜓4
𝑇𝐹𝑢12(𝐸𝑥𝑦𝑧 , 𝑢12

∗ ) = −
z∗

𝑢13+𝑧∗
≠ 0. 

     𝐷2𝑭(𝐸𝑥𝑦𝑧 , 𝑢12
∗ )(𝑉4, 𝑉4) = [

𝑐11
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ )

𝑐21
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ )

𝑐31
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ )

], 

where: 

  𝑐11
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) = 2 [−1 +
𝑢1𝑦

∗

(𝑢1+𝑥∗)3
− 3𝑢2𝑥

∗] 𝛾5
2 −

2𝑢1

(𝑢1+𝑥∗)2
𝛾5𝛾6. 

  

𝑐21
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) = −
2𝑢1𝑢3𝑦

∗

(𝑢1+𝑥∗)3(1+𝑢4𝑧∗)
𝛾5
2 + 2 [

𝑢1𝑢3

(𝑢1+𝑥∗)2(1+𝑢4𝑧∗)
− 𝑢5] 𝛾5𝛾6

− [
2𝑢1𝑢3𝑢4y

∗

(𝑢1+𝑥∗)2(1+𝑢4𝑧∗)2
] 𝛾5 + 2 [

𝑢6𝑧
∗

(𝑢6+𝑦∗)3
− 𝑢7] 𝛾6

2

−2 [
𝑢3𝑢4𝑥

∗

(𝑢1+𝑥∗)(1+𝑢4𝑧∗)2
+

𝑢6

(𝑢6+𝑦∗)2
] 𝛾6 +

2𝑢3𝑢4
2𝑥∗𝑦∗

(𝑢1+𝑥∗)(1+𝑢4𝑧∗)3

. 

  𝑐31
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ ) = −
2𝑢9𝑢10𝑧

∗2

(𝑢11+𝑦∗)3
𝛾6
2 +

4𝑢9𝑢10

(𝑢11+𝑦∗)2
𝛾6 + 2 [

𝑢12
∗ 𝑢13

(𝑢13+𝑧∗)3
−

𝑢9𝑢10

(𝑢11+𝑦∗)
− 𝑢14]. 

Therefore, it is obtained that  

     
𝜓4

𝑇[𝐷2𝑭(𝐸𝑥𝑦𝑧, 𝑢12
∗ )(𝑉4, 𝑉4)] = 𝛾7𝑐11

[2](𝐸𝑥𝑦𝑧, 𝑢12
∗ ) + 𝛾8𝑐21

[2](𝐸𝑥𝑦𝑧, 𝑢12
∗ )

+𝑐31
[2](𝐸𝑥𝑦𝑧, 𝑢12

∗ )
. 

Hence, SNB occurs under condition (42), and the proof is complete.  
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7. NUMERICAL SIMULATION 

In order to clarify the control parameters that have been specified that affect the system's dynamic 

in the previous parts, a numerical example for system (2) was provided in this section. The system 

(2) will be numerically solved using MATLAB version R2013a. To get the numerical results, the 

following hypothetical values for the parameters were used. 

 
𝑢1 = 0.2, 𝑢2 = 0.4, 𝑢3 = 2, 𝑢4 = 0.01, 𝑢5 = 0.01, 𝑢6 = 1, 𝑢7 = 0.4

𝑢8 = 0.02, 𝑢9 = 1, 𝑢10 = 0.4, 𝑢11 = 2, 𝑢12 = 0.2, 𝑢13 = 0.2, 𝑢14 = 0.4
.           (43)  

Now, solving the system (2) using the set of data (43) gives asymptotically stable SSSP as shown 

in Fig. (1). 

 

Figure 1: The system's (2) trajectories utilizing data set (43) and various starting positions. (a) The SSSP is approached 

by a 3D phase portrait. (b) Time-dependent population trajectories.  

 

Now, the influence of varying the parameter 𝑢1 on the system’s dynamic is investigated in Fig. 

(2). 

According to Fig. (2), the parameter 𝑢1 plays a vital role in the qualitative behavior of the system 

(2) due to the existence of a number of bifurcation points in their range. The role of altering 𝑢2 

on the behavior of the system (2) is clarified in Fig. (3).   
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Figure 2: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢1. 

(a) The 3D limit cycle is approached by a 3D phase portrait when 𝑢1 = 0.15. (b) Time-dependent population 

trajectories when 𝑢1 = 0.15. (c) Bi-stable case between ZFSSP and SSSP when 𝑢1 = 0.25. (d) Time-dependent 

population trajectories when 𝑢1 = 0.25. (e) The ZFSSP is approached by a 3D phase portrait when 𝑢1 = 0.3. (f) 

Time-dependent population trajectories when 𝑢1 = 0.3. 
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Figure 3: Time-dependent population trajectories of the system (2) utilizing data set (43) with various starting 

positions and various values of 𝑢2, shows that: (a) Stable 3D limit cycle when 𝑢2 = 0.25. (b) Asymptotic stable 

SSSP when 𝑢2 = 0.75. (c) Bi-stable case between ZFSSP and SSSP when 𝑢2 = 1. (d) Asymptotic stable ZFSSP 

𝑢2 = 1.3. 

 

According to Fig. (3), the parameters 𝑢1 and 𝑢2 have a similar influence on the dynamic of the 

system (2). Now, the altering of 𝑢3 values is investigated in Fig. (4). 
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Figure 4: Time-dependent population trajectories of the system (2) utilizing data set (43) with various starting 

positions and various values of 𝑢3, shows that: (a) Asymptotic stable ZFSSP 𝑢3 = 1.8. (b) Bi-stable case between 

ZFSSP and SSSP when 𝑢3 = 1.9. (c) Asymptotic stable SSSP when 𝑢3 = 1.95. (d) Stable 3D limit cycle when 𝑢3 =

2.05.  

 

Clearly, as shown in Fig. (3) the system (2) displays different types of attractors when the 

parameter 𝑢3  varies. Although the system (2) dynamic is settled at SSSP for the range 𝑢4 ∈

(0,1.85], the impact of 𝑢4 > 1.85 on the system’s (2) dynamics is presented in Fig. (5). 
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Figure 5: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢4. 

(a) Bi-stable case between ZFSSP and SSSP when 𝑢4 = 0.05. (b) The ZFSSP is approached by a 3D phase portrait 

when 𝑢4 = 0.1.  

 

Again Fig. (5) clarifies the vital influence of altering the parameter 𝑢4 on the behavior of the 

system (2). However, the influence of altering the parameter 𝑢5 on the dynamic of the system (2) 

is shown in Fig. (6). 
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Figure 6: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢5. 

(a) The SSSP is approached by a 3D phase portrait when 𝑢5 = 0.05. (b) Bi-stable case between ZFSSP and SSSP 

when 𝑢5 = 0.15. (c) The ZFSSP is approached by a 3D phase portrait when 𝑢5 = 0.25.  

Due to the Figs. (5) and (6), it is concluded that the parameters 𝑢4  and 𝑢5  have a similar 

influence on the dynamic of the system (2). Although the system (2) dynamic is settled at ZFSSP 

for the range 𝑢6 ∈ (0,0.91], the influence of altering the value of 𝑢6 > 0.95 on the dynamic of 

the system (2) is examined in Fig. (7). 

 

Figure 7: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢6. 

(a) The SSSP is approached by a 3D phase portrait when 𝑢6 = 0.95 (b) The 3D limit cycle is approached by a 3D 

phase portrait when 𝑢6 = 1.1. 
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Hence, as shown in Fig. (7), the parameter 𝑢6 range includes a number of bifurcation points that 

affect the system’s (2) dynamic. Moreover, it was observed that the system (2) approached a stable 

limit cycle for the range 𝑢7 ∈ (0,0.35], while it had asymptotic stable SSSP otherwise. On the 

other hand, system (2) behaves similarly when the parameters 𝑢4 , 𝑢5 , and 𝑢8  change their 

values in ascending order. 

Now, Figs. (8) and (9) show the influence of altering the value of 𝑢9 only, and together with 𝑢3 

respectively, on the dynamic of the system (2).  

Not that, according the Fig. (8), the system (2) transfers from the FFSSP in the 𝑥𝑦 −plane to the 

ZFSSP in the 𝑥𝑧 −plane passing through periodic dynamics in range 𝑢9 ∈ [0.54,0.98], SSSP in 

the range 𝑢9 ∈ [0.99,1.05], and then bi-stable case in the range 𝑢9 ∈ [1.06,1.09]. 
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Figure 8: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢9. 

(a) The FFSSP is approached by a 3D phase portrait when 𝑢9 = 0.45. (b) Time-dependent population trajectories 

when 𝑢9 = 0.45. (c) The 3D limit cycle is approached by a 3D phase portrait when 𝑢9 = 0.65. (d) Time-dependent 

population trajectories when 𝑢9 = 0.65. (e) The ZFSSP is approached by a 3D phase portrait when 𝑢9 = 1.2. (f) 

Time-dependent population trajectories when 𝑢9 = 1.2. 
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Figure 9: The system's (2) trajectories utilizing data set (43) with various starting positions and various values of 𝑢3, 

𝑢8, and 𝑢9. (a) The 2D limit cycle in the 𝑥𝑦 −plane is approached by the trajectories of the system (2) when 𝑢3 =

0.5 and 𝑢9 = 0.5. (b) Time-dependent population trajectories when 𝑢3 = 0.5 and 𝑢9 = 0.5. (c) The PHSSP is 

approached by the trajectories of the system (2) when 𝑢3 = 0.5, 𝑢8 = 0.75, and 𝑢9 = 0.5. (f) Time-dependent 

population trajectories when 𝑢3 = 0.5, 𝑢8 = 0.75, and 𝑢9 = 0.5. 

Clearly, Fig. (9) shows various types of attractors of the system (2) when the parameters is varying. 

It is observed also that, the parameters 𝑢10 has similar influence on the dynamic of the system (2) 

as that shown for the parameter 𝑢6. Now, the influence of altering the parameters 𝑢11, and 𝑢12 

on the behavior of the system (2) is explained in Figs. (10) and (11) respectively. 
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Figure 10: Time-dependent population trajectories of the system (2) utilizing data set (43) with various starting 

positions and various values of 𝑢11, shows that: (a) Stable 3D limit cycle when 𝑢11 = 1.75. (b) Asymptotic stable 

SSSP when 𝑢11 = 2.15. (c) Bi-stable case between ZFSSP and SSSP when 𝑢11 = 2.4. (d) Asymptotic stable ZFSSP 

when 𝑢11 = 2.75.  

In addition to the explained results given in Fig. (10), which indicates the huge influence of the 

varying in the parameter 𝑢11 on the system’s (2) dynamic, it is observed that the system has 

asymptotic stable SSSP for the range 𝑢11 ∈ (0,0.09], after that it becomes unstable and the system 

approaches asymptotically to a stable 3D limit cycle. 
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Figure 11: Time-dependent population trajectories of the system (2) utilizing data set (43) with various starting 

positions and various values of 𝑢12, shows that: (a) Asymptotic stable ZFSSP when 𝑢12 = 0.05. (b) Bi-stable case 

between ZFSSP and SSSP when 𝑢12 = 0.. (c) Asymptotic stable SSSP when 𝑢12 = 0.2. (d) Stable 3D limit cycle 

when 𝑢12 = 0.4. (e) Asymptotic stable FFSSP when 𝑢12 = 0.6. 

Different types of attractors are shown in Fig. (11) depending on varying in the parameter 𝑢12. 

Furthermore, it is obtained that, system (2) approaches asymptotically to the SSSP for the range 

𝑢13 ∈ (0,0.98], while it goes to the ZFSSP for the range 𝑢13 ≥ 0.99. On the other hand, the 

parameter 𝑢14 has a similar influence on the dynamic of the system (2) as that shown with 𝑢6 

and 𝑢10.   
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8.  CONCLUSION 

In this paper, the aquatic food chain model consisting of harmful phytoplankton, zooplankton, and 

fish living in the contaminated environment is formulated mathematically. In these food webs, 

humans are a key player as one of the top predators. Therefore, take care must be taken to protect 

the ocean from chemicals that bioaccumulate in food webs and maintain sustainable fisheries. 

Accordingly, the toxin produced by harmful phytoplankton as a defensive property and the 

existence of contamination in the environment is considered in the formulation of the model. On 

the other hand, the influence of fear and harvesting on the dynamic of the food web is also included. 

A set of nonlinear ordinary differential equations was used to simulate the dynamics of such an 

aquatic food web system.  

All the qualitative properties of the solution of the proposed model were studied. The biologically 

possible steady-state points were determined. The local, as well as global stability analysis of the 

model, was studied. The conditions that guarantee the survival of all populations as time becomes 

large were determined. The influence of altering the values of the parameters on the dynamics of 

the model was investigated using the Sotomayor theorem for local bifurcation. Finally, a numerical 

example for the proposed model was given and then solved numerically to confirm the obtained 

theoretical results and understand the influence of the parameters on the system’s dynamics.   

According to the numerical example of the food web model, the following results are obtained.  

Lowering the half-saturation constant of the zooplankton destabilizes the system and the solution 

approaches a stable 3D limit cycle instead, which indicates obtaining a Hopf bifurcation. However, 

rising its value causes destabilizing of the SSSP, and then the system transfers to ZSSP by passing 

through a bi-stable behavior between SSSP and ZFSSP. The external toxic substances coefficient 

that affects the phytoplankton population, the external toxic substances coefficient that affects the 

zooplankton population and the conversion rate of the food to zooplankton have a similar impact 

on the system’s dynamic as that obtained with the half-saturation constant of the zooplankton.  

Increasing the level of fear in zooplankton gradually leads to instability of the SSSP and the system 

loses its stability and goes to ZFSSP by passing through the bi-stable behavior between SSSP and 
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ZFSSP. The liberation rate of toxic substances by the harmful phytoplankton, the harvest effort 

and the zooplankton death rate have a similar impact on the system’s dynamic as that obtained 

with the level of fear in zooplankton. 

Lowering the half-saturation constant of the fish leads the SSSP to be unstable and the system to 

lose its persistence and approaches asymptotically to the ZFSSP by passing through bi-stable 

behavior between SSSP and ZFSSP. While increasing its value makes the SSSP be unstable too 

and a 3D stable limit cycle takes place. The external toxic substances coefficient that affects the 

fish population and the fish's preference rate of zooplankton have a similar impact on the system’s 

dynamic as that obtained with the half-saturation constant of the fish. 

Decreasing the intrinsic growth rate of fish makes the SSSP be unstable and a 3D stable limit cycle 

takes place first and then an extinction in the fish population occurs and the solution of the system 

(2) approaches asymptotically FFSSP. On the other hand, rising its value leads the SSSP to be 

unstable and the system to lose its persistence and approaches asymptotically to the ZFSSP by 

passing through bi-stable behavior between SSSP and ZFSSP.  

Decreasing the carrying capacity of the fish in the absence of zooplankton makes the SSSP unstable 

and a 3D stable limit cycle takes place. However, increasing its value makes the SSSP unstable 

and the system loses its persistence and approaches asymptotically to the ZFSSP by passing 

through bi-stable behavior between SSSP and ZFSSP.  

Lowering the catchability rate of the fish leads the SSSP to be unstable and the system to lose its 

persistence and approaches asymptotically to the ZFSSP by passing through bi-stable behavior 

between SSSP and ZFSSP. While increasing its value makes the SSSP unstable too and a 3D stable 

limit cycle takes place first then with further increase the system faces extinction in the fish 

population and the solution approaches asymptotically to FFSSP. 

Keeping the above in mind, system (2) is very sensitive to varying in its parameters set and 

undergoes different types of attraction including limit cycle and bi-stable behavior. 
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