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Abstract. This study proposes and analyzes a nonstandard finite difference (NSFD) scheme to retain the funda-

mental qualitative aspects of a predator-prey interaction with a Holling type-II functional response and prey refuge.

The existence and stability of fixed points are examined. A few numerical examples are presented to back up the

theoretical findings. The results show that the numerical simulations match well with the theoretical outcomes.

Moreover, the model experiences transcritical, period-doubling, and Neimark-Sacker bifurcation. Furthermore,

numerical simulations show that standard numerical methods like the Euler method and the classical RK4 method

are not dynamically consistent with the continuous model. As a result, they do not accurately reflect the continuous

model’s behavior. The proposed NSFD scheme, on the other hand, is shown to be suitable and adequate for solving

the continuous model.
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1. INTRODUCTION

The predator and prey interaction is a complicated process in ecosystems owing to the nature

of the relationship between the two. Many intrinsic and extrinsic factors may influence the
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dynamics of a population. Lotka [1], and Volterra [2] did the primarily accurate work on the

predator-prey dynamical mathematical model. Since then, several predator-prey models have

been developed to comprehend population dynamics and interactions. Numerous modifications

of the Lotka-Volterra model have been presented and explored over the past half-century. An

important component of these models is the so-called functional response, which represents the

interaction between prey and predators. This functional reaction is significantly influenced by

the behavior of the prey and the predator. In 1965, Holling [3] proposed three types of functional

responses. Later, researchers such as Crowley-Martin [4] and Beddington-DeAngelis [5, 6]

provided various functional responses. After that, many researchers looked at models that were

developed on interactions between predators and prey, including various kinds of functional

responses [7–10].

The Holling type II functional response occurs in animals when the amount of prey devoured

grows fast along with the density of prey. This functional response is represented by mx
1+x , where

the parameter m is the maximum predation rate per capita. The pair of equations below is a

generic formulation of the predator-prey model with Holling type-II functional response:

(1.1)


dx
dt = rx(1− x

k)−
mxy
1+x ,

dy
dt =

cxy
1+x −by,

where x(t), y(t) is the number of prey and predator at the time t, respectively. Here k is carrying

capacity, r and c are growth rates of prey and predator, respectively, m is predation rate, and b

is the natural death rate of the predator.

In evolutionary biology, the concept of prey refuge refers to how an organism can protect

itself from being eaten by a predator by hiding in a location inaccessible to the predator. For

instance, in a model involving wolves and ungulates, the ungulates may seek refuge by relocat-

ing to places outside of the wolves’ core territory. Additionally, it plays several essential roles

in the dynamics of interactions between predators and prey. For example, the presence of prey

refuges might reduce the likelihood that animals would go extinct. Let ex represent the number

of prey free from predation, and so (1− e)x represents the number of prey that are vulnerable

to being eaten by the predator. Thus, in the presence of a prey refuge, a modified variant of the

Holling type-II functional response is given by
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f (x) =
m(1− e)x

1+ x
,

where e is the prey refuge parameter and e lies in the interval (0,1).

After incorporating the refuge effect, the model (1.1) becomes

(1.2)


dx
dt = rx(1− x

k)−
m(1−e)xy

1+x ,

dy
dt =

cxy
1+(1−e)x −by.

Harvesting is always one of the essential aspects in the dynamics of the predator-prey model,

according to the demands of humans and long-term development, the exploitation of natural

resources, and the storage of renewable energy [11]. We discover that the predator-prey model

with harvesting may result in more complicated features than the one without harvesting [12–

15], which motivates us to include harvesting. May [16] proposed two kinds of harvesting

regimes: constant-yield harvesting (representing harvested biomass independent of population

size) and constant-effort harvesting (representing harvested biomass proportional to the size of

the population). Based on the model (1.2), we construct a constant-effort harvesting predator-

prey model

(1.3)


dx
dt = rx(1− x

k)−
m(1−e)xy

1+x −a1E1x,

dy
dt =

cxy
1+(1−e)x −by−a2E2y,

where a1 and a2 are catch coefficients of prey and predator, E1 and E2 are harvest rates of prey

and predator.

For simplicity, we take r1 = r−a1E1 and r2 = b+a2E2. The model (1.3) reduces to

(1.4)


dx
dt = r1x− rx2

k −
m(1−e)xy

1+x ,

dy
dt =

cxy
1+(1−e)x − r2y.

For a variety of reasons, discrete-time models are superior to continuous-time models. Be-

cause the exact analytical solutions of continuous-time models are unknown, discretization is

required to produce discrete-time models that estimate the exact solutions. Model simulations

also entail using digital computers, which necessitate the use of discrete-time models. To obtain
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the discrete predator-prey model, we employ a non-standard finite difference scheme (NSFDS)

of Mickens-type [17] to discretize the model (1.4) as follows:

(1.5)


xn+1−xn

h = r1xn− rxnxn+1
k − (1−e)mxnyn

1+xn
,

yn+1−yn
h = (1−e)cxnyn

1+xn
− r2yn.

After simple computations, the discrete counterpart of (1.4) obtained by the non-standard

finite difference method is as follows:

(1.6)


xn+1 =

r1xnhk
k+hrxn

− hk(1−e)mxnyn
(k+hrxn)(1+xn)

+ kxn
k+hrxn

,

yn+1 =
h(1−e)cxnyn

1+xn
−hr2yn + yn.

All parameters r2,r,h,k,e,m,c are positive and 0 < e < 1. The parameter r1 can take positive

or negative real values.

Our main results include an investigation of stability and bifurcation in the model and chaos

control. We direct the readers’ attention to [18–21] for a more in-depth consideration of stabil-

ity, bifurcation, and chaos control.

The rest of the paper is organized as follows: Section (2) discusses the existence of equilibria

and their topological categorization. To illustrate the theoretical research, numerical examples

for model(1.6) are provided in section (3). The section (3) also contains a comparison of the

NSFD scheme to the SFD scheme. Finally, in section (4), a concise conclusion is given.

2. EXISTENCE AND TOPOLOGICAL CLASSIFICATION OF FIXED POINTS

To determine the fixed points (x̄, ȳ) of the model (1.6), we solve the following system of

equations:

(2.1)


x̄ = r1x̄hk

k+hrx̄ −
hk(1−e)mx̄ȳ
(k+hrx̄)(1+x̄) +

kx̄
k+hrx̄ ,

ȳ = h(1−e)cx̄ȳ
1+x̄ −hr2ȳ+ ȳ.

By simple computations, we obtain the following three fixed points of the model (1.6):

E0(0,0), E1(
r1k
r
,0), E2

(
r2

(1− e)c− r2
,−c(c(−1+ e)kr1 +(r+ kr1)r2)

km(c(−1+ e)+ r2)2

)
.

For the existence of E1 we require the condition r1 > 0.
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Clearly, r2
(1−e)c−r2

> 0 iff

r2 < c(1− e).

Next, we solve the inequality

−c(c(−1+ e)kr1 +(r+ kr1)r2)

km(c(−1+ e)+ r2)2 > 0.

It implies that

(2.2) c(−1+ e)kr1 +(r+ kr1)r2 < 0.

From (2.2), it is observed that

kr1((c(1− e)− r2)> rr2.

Since r2 < c(1− e), the above inequality has a solution only if r1 > 0.

From (2.2), we can write

(2.3) r2 <
ckr1(1− e)

r+ kr1
.

Since r2 > 0, therefore ckr1(1−e)
r+kr1

must be a positive number, otherwise the above inequality

(2.3) do not have any solution.

Now as
ckr1(1− e)

r+ kr1
= c(1− e)(1− r

r+ kr1
)< c(1− e),

therefore, r2 < ckr1(1−e)
r+kr1

implies that r2 < c(1− e). From these observations, we conclude

that

E2

(
r2

(1− e)c− r2
,−c(c(−1+ e)kr1 +(r+ kr1)r2)

km(c(−1+ e)+ r2)2

)
is the only positive fixed point of the model (1.6) iff r1 > 0 and

0 < r2 <
ckr1(1− e)

r+ kr1
.

The Jacobian matrix J of the model computed at (x̄, ȳ) is given by

J(x̄, ȳ) =

 j11 j12

j21 j22

 ,
where
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j11 =
k(−(−1+ e)h2mrx̄2ȳ+ k((1+ x̄)2 +hr1(1+ x̄)2 +(−1+ e)hmȳ))

(1+ x̄)2(k+hrx̄)2 ,

j12 =
(−1+ e)hkmx̄
(1+ x̄)(k+hrx̄)

, j21 =−
c(−1+ e)hȳ
(1+ x̄)2 , j22 = 1−hr2−

ch(−1+ e)x̄
1+ x̄

.

We use the following results to determine the local stability of fixed points in the model (1.6).

Lemma 2.1. [22] Let F(s) = s2+Ms+N be the characteristic equation of the Jacobian matrix

J((x̄, ȳ)) and s1,s2 are two roots of F(s) = 0, then (x̄, ȳ) is

(i) sink iff |s1|< 1 and |s2|< 1,

(ii) source iff |s1|> 1 and |s2|> 1,

(iii) saddle point iff |s1|< 1 and |s2|> 1 (or |s1|> 1 and |s2|< 1),

(iv) non-hyperbolic point iff either |s1|= 1 or |s2|= 1.

Lemma 2.2. [22] Let F(s) = s2 +Ms+N. Assume that F(1) > 0. If s1,s2 are two roots of

F(s) = 0, then

(i) |s1|< 1 and |s2|< 1 iff F(−1)> 0 and N < 1,

(ii) |s1|< 1 and |s2|> 1 (or |s1|> 1 and |s2|< 1) iff F(−1)< 0,

(iii) |s1|> 1 and |s2|> 1 iff F(−1)> 0 and N > 1,

(iv) s1 =−1 and |s2| 6= 1 iff F(−1) = 0 and M 6= 0,2,

(v) s1 and s2 are complex and |s1,2|= 1 iff M2−4N < 0 and N = 1.
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2.1. Topological Classification of E0(0,0).

We consider the following set:

Γ0 =

{
(r1,r2,r,h,k,e,m,c) ∈ R8 : all parameters are positive other than r1, and 0 < e < 1

}
.

By using the lemma (2.1), we obtain the following result:

Lemma 2.3. In the domain Γ0, the fixed point E0(0,0) of the model (1.6) is

(i) a sink iff 0 < r2 <
2
h and −2

h < r1 < 0,

(ii) saddle point iff one of the following conditions holds

(a) 0 < r2 <
2
h and r1 > 0,

or

(b) 0 < r2 <
2
h and r1 <−2

h ,

or

(c) r2 >
2
h and −2

h < r1 < 0,

(iii) source iff one of the following conditions holds

(a) r1 > 0 and r2 >
2
h ,

or

(b) r1 <−2
h and r2 >

2
h ,

(iv) non-hyperbolic point iff one of the following conditions holds

(a) r1 = 0,

or

(b) r1 < 0 and r1 =−2
h ,

or

(c) r2 =
2
h .
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Proof. The Jacobian matrix at E0(0,0) is given by

(2.4) J(E0) =

1+ r1h 0

0 1− r2h

 .
The eigenvalues of J(E0) are λ1 = 1+ r1h and λ2 = 1− r2h. �

2.2. Topological Classification of E1(
r1k
r ,0).

We consider the following set:

Γ1 =

{
(r1,r2,r,h,k,e,m,c) ∈ R8 : all parameters are positive and 0 < e < 1

}
.

By using the lemma (2.1), we obtain the following result:

Lemma 2.4. In the domain Γ1, the fixed point E1(
r1k
r ,0) of the model (1.6) is

(i) a sink iff
c(1− e)kr1

r+ kr1
< r2 <

2
h
+

c(1− e)kr1

r+ kr1
,

(ii) saddle point iff one of the following conditions holds

(a) r2 <
c(1−e)kr1

r+kr1
,

or

(b) r2 >
2
h +

c(1−e)kr1
r+kr1

,

(iv) non-hyperbolic point iff one of the following conditions holds

(a) r2 =
c(1−e)kr1

r+kr1
,

or

(b) r2 =
2
h +

c(1−e)kr1
r+kr1

.

Proof. The Jacobian matrix at E1(
r1k
r ,0) is given by

(2.5) J(E1) =

 1
1+r1h

(−1+e)hkmr1
(1+hr1)(r+kr1)

0 1− r2h− c(−1+e)hkr1
r+kr1

 .
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The eigenvalues of J(E1) are λ1 =
1

1+r1h and λ2 = 1− r2h− c(−1+e)hkr1
r+kr1

.

�

2.3. Topological Classification of E2

(
r2

(1−e)c−r2
,−c(c(−1+e)kr1+(r+kr1)r2)

km(c(−1+e)+r2)2

)
.

We consider the following set:

Γ2 =

{
(r1,r2,r,h,k,e,m,c) ∈ R8 : all parameters are positive and

0 < e < 1, 0 < r2 <
ckr1(1− e)

r+ kr1

}
.

By using the lemma (2.1) and lemma (2.2), we obtain the following result:

Lemma 2.5. In the domain Γ2, the fixed point E2

(
r2

(1−e)c−r2
,−c(c(−1+e)kr1+(r+kr1)r2)

km(c(−1+e)+r2)2

)
of the

model (1.6) is

(i) a sink iff

k <
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
,

(ii) source iff

k >
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
,

(iv) non-hyperbolic point iff

k =
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
.

Proof. The Jacobian matrix at the fixed point

E2

(
r2

(1− e)c− r2
,−c(c(−1+ e)kr1 +(r+ kr1)r2)

km(c(−1+ e)+ r2)2

)
is given by

(2.6) J(E2) =

J11 J12

J21 1

 ,
where
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J11 =
c2(−1+ e)2k− c(−1+ e)k(−1+hr1)r2−h(r+ kr1)r2

2
c(−1+ e)(c(−1+ e)k+(k−hr)r2)

,

J12 =−
hkmr2(c(−1+ e)+ r2)

c(c(−1+ e)k+(k−hr)r2)
, J21 =

h(cr1 +
(r+kr1)r2
k(−1+e) )

m
.

The characteristic polynomial of J(E2) is given by

(2.7) F(s) = s2 +Ms+N,

where

M =−(c(−1+ e)+ r2)(2c(−1+ e)k−h(r+ kr1)r2)

c(−1+ e)(c(−1+ e)k+(k−hr)r2)
,

and

N =

(
h(r+ kr1)r2

2(−1+hr2)+ c2(−1+ e)2k(1+h2r1r2)

+ c(−1+ e)r2(k−hkr1 +h2rr2 +2h2kr1r2)

)/(
c(−1+ e)(c(−1+ e)k+(k−hr)r2)

)
.

Through simple computations, we obtain

F(1) =
h2r2(c(−1+ e)+ r2)(c(−1+ e)kr1 +(r+ kr1)r2)

c(−1+ e)(c(−1+ e)k+(k−hr)r2)
,

F(−1) =
(c(−1+ e)+ r2)(h(r+ kr1)r2(−2+hr2)+ c(−1+ e)k(4+h2r1r2))

c(−1+ e)(c(−1+ e)k+(k−hr)r2)
,

and

F(0) =
(

h(r+ kr1)r2
2(−1+hr2)+ c2(−1+ e)2k(1+h2r1r2)

+ c(−1+ e)r2(k−hkr1 +h2rr2 +2h2kr1r2)

)/(
c(−1+ e)(c(−1+ e)k+(k−hr)r2)

)
.

We can write F(1) as follows:

F(1) =
h2r2(c(−1+ e)+ r2)(c(−1+ e)kr1 +(r+ kr1)r2)

c(1− e)(c(1− e)k+(hr− k)r2)
.
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In Γ2, since c(1−e)> r2, therefore we have c(−1+e)+ r2 < 0. Moreover, as ckr1(1−e)>

r2(r+ kr1) in Γ2, we have

− c(−1+ e)kr1 +(r+ kr1)r2

=−c(1− e)kr1 +(r+ kr1)r2

<−c(1− e)kr1 + ckr1(1− e)

=−2ckr1(1− e)< 0.

It means that in Γ2, we have

(2.8) h2r2(c(−1+ e)+ r2(c(−1+ e)kr1 +(r+ kr1)r2)> 0.

Since c(1− e)> r2 , therefore, we have

c(1− e)k+(hr− k)r2

> r2k+(hr− k)r2

= hrr2 > 0.

It means that in Γ2, we have

(2.9) c(1− e)(c(1− e)k+(hr− k)r2)> 0.

Combining (2.8) and (2.9), we conclude that F(1)> 0 in Γ2.

Since r2(r+ kr1)< ckr1(1− e) , we can write

h(r+ kr1)r2(−2+hr2 + c(−1+ e)k(4+h2r1r2)

=−2r2h(r+ kr1)+ r2
2h2(r+ kr1)− ck(1− e)(4+h2r1r2)

<−2r2h(r+ kr1)+ r2h2ckr1(1− e)− ck(1− e)(4+h2r1r2)

=−2r2h(r+ kr1)+ ck(1− e)(r1r2h2−4−h2r1r2)

=−2r2h(r+ kr1)−4ck(1− e)< 0.

Since we have c(−1+ e)+ r2 < 0, therefore we have F(−1)> 0 in Γ2.
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After simple computations, we obtain that F(0) = 1 implies that

k =
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
,

F(0)> 1 implies that

k >
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
,

and F(0)< 1 implies that

k <
r(r2−hr2

2− c(−1+ e)(1+hr2))

r1(c(−1+ e)+ r2)(−1+ c(−1+ e)h+ r2h)
.

�

3. NUMERICAL SIMULATIONS

This part provides numerical examples to validate our earlier theoretical results about the

model’s many qualitative features.

3.1. Stability analysis and Bifurcation of the model (1.6) at E3 by using k as bifurcation

parameter: For model (1.6), we set the parameters and initial conditions as follows:

r1 = 0.5, r2 = 0.1, r = 0.7, e = 0.3, c = 0.5, m = 0.7, h = 0.9, x0 = 0.5, y0 = 0.9.

The bifurcation diagrams (1a,1b) of figure (1) depict that the model experiences Neimark-

Sacker bifurcation for k ' 2.16. The phase portrait depicted in figure (1c) shows that fixed

point E2 ≈ (0.4,1.02857) is stable for k = 2.14. The phase portrait depicted in figure (1d)

shows that the fixed point is unstable due to Neimark-Sacker bifurcation for a = 2.17.

3.2. Stability analysis and Bifurcation of the model (1.6) at E3 by using e as bifurcation

parameter: For model (1.6), we set the parameters and initial conditions as follows:

r1 = 0.5, r2 = 0.1, r = 0.7, h = 0.9, c = 0.5, m = 0.7, k = 2.15, x0 = 0.5, y0 = 0.9.

The bifurcation diagrams (2a,2b) of figure (2) depict that model experiences transcritical

bifurcation for e ≈ 0.669767. One can check by using Jury test that for e = 0.65, the fixed

point E1 is unstable and fixed point E2 is stable. Moreover, for e = 0.65, the fixed point E1 is

stable and fixed point E2 is unstable. For e ≈ 0.669767, the fixed points E1 and E2 collide and

exchange their stability. It confirms the existence of transcritical bifurcation for e≈ 0.669767.
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(A) (B)

(C) (D)

FIGURE 1. Bifurcation diagrams of (1.6) for r1 = 0.5, r2 = 0.1, r = 0.7, e =

0.3, c = 0.5, m = 0.7, h = 0.9, x0 = 0.5, y0 = 0.9,k ∈ (2.05,2.85), and phase

portraits of model (1.6) for k = 2.14 and k = 2.17.

The bifurcation diagrams (2a,2b) of figure (2) depict that model experiences Neimark-Sacker

bifurcation for e/ 0.29616.
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(A) (B)

FIGURE 2. Bifurcation diagrams of (1.6) for r1 = 0.5, r2 = 0.1, r = 0.7, h =

0.9, c = 0.5, m = 0.7, k = 2.15, x0 = 0.5, y0 = 0.9,e ∈ (0.01,0.9).

We observe that the model (1.6) is stable for small values of carrying capacity k and unstable

for large values of carrying capacity k. But, small values of prey refuge e destabilize the model,

whereas large values of prey refuge e stabilize the model.

A similar investigation for other parameters r1,r2,r,h,c,m can be done by taking one as a

bifurcation parameter and fixing all other parameters. All parameters affect the stability of the

fixed point E2 of the model (1.6).

3.3. Comparison of NSFD Scheme with SFD Schemes.

By using the forward Euler method, the discrete counterpart of (1.4) is given by

(3.1)


xn+1 = xn +h(r1xn− rx2

n
k −

m(1−e)xnyn
1+xn

),

yn+1 = yn +h( cxnyn
1+(1−e)xn

− r2yn).

By applying the RK4 method to (1.4), we obtain the following discrete counterpart of (1.4):

xn+1 = xn +
1
6
(K1 +2K2 +2K3 +K4),

yn+1 = yn +
1
6
(L1 +2L2 +2L3 +L4),

K1 = h f (xn,yn), L1 = hg(xn,yn),

K2 = h f (xn +
K1

2
,yn +

L1

2
), L2 = hg(xn +

K1

2
,yn +

L1

2
),
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K3 = h f (xn +
K2

2
,yn +

L2

2
), L3 = hg(xn +

K2

2
,yn +

L2

2
),

K4 = h f (xn +K3,yn +L3), L4 = hg(xn +K3,yn +L3),

where

f (xn,yn) = r1xn−
rx2

n
k
− m(1− e)xnyn

1+ xn
,

and

g(xn,yn) =
cxnyn

1+(1− e)xn
− r2yn.

By using a nonstandard finite difference(NSFD) scheme, we obtain the following discrete

counterpart of (1.4):

(3.2)


xn+1 =

r1xnhk
k+hrxn

− hk(1−e)mxnyn
(k+hrxn)(1+xn)

+ kxn
k+hrxn

,

yn+1 =
h(1−e)cxnyn

1+xn
−hr2yn + yn.

We set the parameters and initial conditions as follows:

r1 = 0.5, r2 = 0.1, r = 0.7, e = 0.65, c = 0.5, m = 0.7, k = 2.15, x0 = 0.5, y0 = 0.9.

Figure (3) depicts the numerical solutions produced by these numerical schemes. The numer-

ical solutions produced by the Euler method are shown in figures (3a,3b) of figure (3), numerical

solutions produced by the RK4 method are shown in figures (3c,3d) of figure (3), and numerical

solutions produced by the NSFD method are shown in figures (3e,3f) of figure (3). The numeri-

cal solutions produced by the Euler technique and the RK4 approach reveal that the continuous

model’s boundedness and stability features are lost. The Euler and RK4 methods give numer-

ical solutions oscillating near the fixed point. Meanwhile, the numerical solutions obtained by

the NSFD scheme (1.6) converge to the fixed point. The fixed point is stable in the case of the

NSFD scheme.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 3. Time series graphs of xn and yn of system (1.4) by using the Euler

method, the RK4 method, and the NSFD method for r1 = 0.5, r2 = 0.1, r =

0.7, e = 0.65, c = 0.5, m = 0.7, k = 2.15, x0 = 0.5, y0 = 0.9.
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4. CONCLUSION

In this work, we studied a predator-prey model with Holling type-II functional response and

prey refuge effect. We discretize the continuous model by using a non-standard finite difference

scheme. The discrete model has three fixed points: two boundary points and one interior point.

We examine the model’s existence and stability conditions of fixed points by using the Jacobian

matrix’s eigenvalues and the Jury test. Moreover, it is shown that the model experiences three

different types of bifurcations: transcritical, period-doubling, and Neimark-Sacker bifurcation.

The numerical examples show the importance of prey refuge in the dynamics of the model. The

small values of prey refuge e destabilize the model, whereas the large values of prey refuge

e stabilize the model. A comparison of standard and non-standard finite difference methods is

presented. It has been noted that the numerical solutions provided by the Euler technique and the

RK4 approach reveal that the boundedness and stability features of the continuous model have

been lost. The numerical solutions oscillate near the fixed point when using the Euler technique

or the RK4 method. Meanwhile, the numerical solution obtained by the NSFD scheme (1.6)

converges to the fixed point. The fixed point is stable in the case of the NSFD scheme.
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