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Abstract: Currently, there is a new strategy for stopping the spread of dengue, namely infecting wild mosquitoes with 

Wolbachia bacteria. Wolbachia is a bacteria that can lower the rate of infection in a mosquito's body, which lowers 

the risk of the virus being transmitted when it bites susceptible people. Our aim in this paper is to find the equilibrium 

points and perform local stability analysis for each equilibrium point of a growth model of uninfected and Wolbachia-

infected Aedes aegypti mosquitoes. The growth model of the two types of mosquitoes was modeled using the Leslie 

multispecies matrix model. We assume that the first species is Wolbachia-uninfected mosquitoes and the second 

species is Wolbachia-infected mosquitoes. In this study, we obtained four equilibrium points. Then, we obtain 

asymptotically local stability conditions at the four equilibrium points. Based on these results, this study provides 

conditions that guarantee that efforts to use Wolbachia can suppress dengue disease. 
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1. INTRODUCTION 

 Dengue fever is a disease that is currently being highlighted in public health issues. The 

number of cases that occur due to dengue disease ranges from 390 million per year [1]. In general, 

the disease is transmitted through the Aedes aegypti mosquito infected with the dengue virus. 

Currently, dengue disease consists of DENV-1 to DENV-2 where a person is likely to be infected 

with these four serotypes. Generally, dengue fever is often found in tropical areas in Southeast 

Asia, including Indonesia, East Asia, namely Hong Kong, South Asia, namely India, and many 

more. 

 Due to the high number of dengue cases, several strategies are sought to suppress or eliminate 

the spread of dengue disease. Some of these strategies include the use of mosquito repellents, 

insecticides, vaccines, and so on. The use of mosquito repellents and insecticides has a very 

negative effect on humans, animals, and the environment. In particular, the use of insecticides is 

only able to last in the short term, and over time mosquitoes are already susceptible to these insects 

in the long term [2], [3]. Then, the use of vaccines also still needs further development. The first 

official vaccine is the Dengvaxia vaccine, which is reserved for ages 9-45 years. The use of 

vaccines is considered safe in patients who have been infected, while patients who have never been 

infected are at risk of infection [4]. Then, the efficacy of the vaccine was still in the 54% to 77% 

interval. The research results of Ndii et al.[5] with low vaccine efficacy shows that if seronegative 

individuals are vaccinated, there will be an increase in the number of secondary infections. 

Therefore, the use of vaccines is considered not to be effective and it is also possible to require a 

lot of costs for its development. 

 Currently, there is a new effort to overcome the spread of dengue disease, namely Wolbachia. 

Wolbachia is found in many species of anthropods which are intracellular parasites of these 

arthropods [6]. The use of Wolbachia is considered to be able to inhibit virus replication or 

competence in Aedes aegypti mosquitoes [7]. The use of Wolbachia in Yogyakarta obtained good 

results and there was a decrease in cases of dengue disease [8]. 

 Several researchers have researched models of controlling the spread of dengue disease with 

various strategies. Ndii et al.[5] examined the use of vaccines to see which serotypes should be 
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vaccinated. Ndii et al.[9] investigated the effect of vaccines on single and two serotype models 

validated with data in the city of Kupang. Mentuda [4] compared optimal control of the use of 

vaccines with general vector control and a combination of both where vector control requires a 

relatively short time to suppress mosquito populations. Zhang and Lui [10], Cardona-Salgado et 

al.[11], and Li and Liu [12] investigated the use of Wolbachia where releasing Wolbachia-infected 

mosquitoes could reduce the spread of dengue disease. 

 Some Wolbachia strains shorten the mosquito's life span, which limits the percentage of alive 

insects when the incubation phase is over [6]. Therefore, this raises the question of whether 

mosquitoes infected with Wolbachia will be able to survive in their ecosystem. Several researchers 

have researched to determine the population dynamics of mosquitoes with Wolbachia infection 

and without Wolbachia infection. Bliman et al.[6] studied a simple dynamic model based on 

Wolbachia and no Wolbachia mosquitoes, each of which was divided into two phases, namely the 

aquatic phase (eggs and larvae) and the posterior air phase (pupae, juvenile, and larval). mature). 

Then, Bliman et al.[13] studied further the model he worked on in his research [6]. Almeida et 

al.[14] conducted a study on the optimal control of infected mosquitoes in wild mosquito 

populations. Bliman [15] developed a study conducted on the research of Bliman et al.[13] with 

the same model. Li et al.[16] studied the growth model between Wolbachia mosquitoes and wild 

mosquitoes using the Leslie-Gower model.  

 In this paper, we formulate a growth model of the interaction of uninfected and Wolbachia-

infected wild mosquitoes in an ecosystem with a new approach using the Leslie matrix model for 

multispecies. Several studies related to the population growth model using the Leslie matrix model, 

including Travis et al.[17], and Kon [18], [19], [20]. Based on the multispecies case, we assumed 

that the infected and non-infected Wolbachia mosquitoes were two different species even though 

the mosquitoes were the same species. Our focus on the model is to find the equilibrium points 

and perform an asymptotically local stability analysis of the model. In particular, in this study, we 

found conditions in which Wolbachia could survive in the long term so that suppression of the 

spread of dengue was achieved. 
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2. MATERIALS AND METHODS 

2.1. Multispecies Leslie Matrix Model of Infected and Uninfected Wolbachia Mosquitoes 

 In this section, we present the Leslie matrix model of infected and uninfected mosquitoes by 

Wolbachia bacteria which is the mosquito that causes dengue disease. The Leslie matrix model 

was introduced by [21]. The Leslie matrix model is a female population growth model based on 

age class categories which assume each class or category has different characteristics such as birth 

rate, survival rate, and so on. 

 The problems that we examine in this study are presented in (1). The model in (1) is 

constructed based on the Leslie multispecies matrix model studied by [17] which was then 

modified to suit the environmental characteristics that occur in mosquitoes. We divided the 

population of mosquitoes both infected and uninfected with Wolbachia into two phases, namely 

the aquatic phase (𝐴) and the posterior air phase (𝑃) as performed by Bliman et al.[6]. We assumed 

the existence of intraspecific (competition between the same mosquito) and interspecific 

(competition between different mosquitoes) that occurred only in the aquatic phase. To describe 

the effect of competition, we use the Beverton-Holt equation which is widely used, especially in 

the research of Li et al.[16]. Then, we assume that the level of competition for the same mosquito 

is the same as the parameter 𝑎 > 0 and the level of competition between different mosquitoes is 

the same value as the parameter 𝑏 > 0. Furthermore, birth rates were assumed to occur only in 

the posterior air phase in both mosquito species. In addition, we considered Wolbachia for maternal 

vertical transmission and the mosquito population CI mechanism denoted by 𝑐 where 0 ≤ 𝑐 ≤

1 [22]. Therefore, if 𝑐 = 1 then there will be no birth in the mosquito population that is not 

infected with Wolbachia. Here we present this problem model in the following discrete equation 

system: 

𝑀𝐴(𝑡 + 1) = 𝑓𝑀𝑃
(1 − 𝑐)𝑀𝑃(𝑡) 

(1) 𝑀𝑃(𝑡 + 1) =
𝑠𝑀𝐴

1 + 𝑎𝑀𝐴(𝑡) + 𝑏𝑊𝐴(𝑡)
𝑀𝐴(𝑡) 

𝑊𝐴(𝑡 + 1) = 𝑓𝑊𝑃
𝑊𝑃(𝑡) 

𝑊𝑃(𝑡 + 1) =
𝑠𝑊𝐴

1 + 𝑎𝑊𝐴(𝑡) + 𝑏𝑀𝐴(𝑡)
𝑊𝐴(𝑡)  
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where 𝑀𝐴(𝑡) and 𝑀𝑃(𝑡) respectively represent the total population of mosquitoes not infected 

with Wolbachia in phases 𝐴  and 𝑃  at time 𝑡 . On the other hand, 𝑊𝐴(𝑡)  and 𝑊𝑃(𝑡) , 

respectively, represent the total population of mosquitoes infected with Wolbachia in phases 𝐴 

and 𝑃 at time 𝑡. Parameters 𝑓𝑀𝑃
> 0 and 𝑓𝑊𝑃

> 0 represents the birth rate which refers to 𝑀𝑃 

and 𝑊𝑃  respectively. Then, the parameters 0 < 𝑠𝑀𝐴
≤ 1  and 0 < 𝑠𝑊𝐴

≤ 1  represents the 

survival rates of 𝑀𝐴 to 𝑀𝑃 and 𝑊𝐴 to 𝑊𝑃, respectively.  

 The model in (1) in the first equation means that the total population of the aquatic phase at 

time 𝑡 + 1 is obtained from the number of populations born to the posterior air phase population 

which is influenced by the CI mechanism. Then, the second equation of the model in (1) means 

that the total population of the posterior air phase at time 𝑡 + 1 is obtained from the number of 

populations that survive from the aquatic phase with the influence of competition that occurs in 

the aquatic phase. Furthermore, the third and fourth equations have almost the same meaning as 

the first and second equations of the model in (1). The difference between the third and fourth 

equations with the first and second of the model in (1) is the focus on the Wolbachia-infected 

mosquito population. Then, the third equation of the model in (1) is not affected by the CI 

mechanism. 

2.2. Asymptotically Local Stability Criteria Using 𝑀-Matrix Theory 

 One of the things that are studied in a model of the study, especially discrete dynamic systems 

is to determine the stability of the model. Stability studies can be in the form of local and global 

stability. In this case, this research is focused on studying the local stability of a model, especially 

the study of asymptotically local stability. Solutions must approach an equilibrium point under 

initial circumstances near the equilibrium point for local asymptotic stability [23]. The 

asymptotically stable condition of the discrete model occurs if the dominant eigenvalue of the 

Jacobian matrix of the model is less than one. In the case of analysis, however, it is very difficult 

to determine local stability asymptotically. Therefore, in this study, we use another criterion in 

determining local stability asymptotically, namely the 𝑀-Matrix theory used in the study of Travis 

et al.[17]. 
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Definition 1 [17]: 

Suppose a square matrix 𝐴 has size 𝑛. 𝐴𝑛×𝑛 matrix is said to be 𝑀-Matrix if it satisfies two 

conditions, including i) element 𝑎𝑖𝑗 ≤ 0 𝑖 ≠ 𝑗. ii) one of these five conditions is met, namely: 

i) All minor principles of matrix 𝐴 have positive values. 

ii) All real parts of the eigenvalues of matrix 𝐴 have positive values. 

iii) Matrix 𝐴 is a nonsingular matrix and the inverse of matrix 𝐴 is a positive matrix 

iv) There is a vector 𝑣 > 0 so that 𝐴𝑣 > 0 is satisfied. 

v) There is a vector 𝑤 > 0 so that 𝐴𝑇𝑤 > 0 is satisfied. 

Theorem 1 [17]: 

Suppose the matrix 𝐽 is as follows: 

𝐽 = [
𝐴𝑘×𝑘 𝐵𝑘×𝑙

𝐶𝑙×𝑘 𝐷𝑙×𝑙
].  

If 𝐺 = 𝐼 − 𝑆𝐽𝑆−1 is an 𝑀-Matrix with 

𝑆 = 𝐼𝑘+𝑙 if 𝐵𝑘×𝑙 and 𝐶𝑙×𝑘 ≥ 0

𝑆 = [
𝐼𝑘×𝑘 𝑂𝑘×𝑙

𝑂𝑙×𝑘 𝐼𝑙×𝑙
] if 𝐵𝑘×𝑙 and 𝐶𝑙×𝑘 ≤ 0

,  

where 𝐼 is the symbol of the Identity matrix and 𝑂 is the symbol of the zero matrix, then 𝐽 is 

locally asymptotically stable.  

 In the results and discussion section, Definition 1 and Theorem 1 will be the two modalities 

for determining the asymptotically local stability of the model in (1). Then, the 𝐽  matrix in 

Theorem 1 will be applied to the Jacobian matrix of the model in (1). 

 

3. MAIN RESULTS 

3.1. Inherent Net Reproduction Number 

 One of the most important and widely used quantities in the Leslie matrix model is the inherent 

net reproduction number. The definition of the inherent net reproduction number is the expected 

number of offspring per individual per lifetime. To put it simply, the inherent net reproduction 

number is the dominant eigenvalue of the 𝐹(𝐼 − 𝑇)−1 matrix at the extinction equilibrium point, 

namely 𝑥∗ = 0  where 𝐹 , 𝐼 , and 𝑇  are the fertility matrix, identity matrix, and matrix 
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respectively. transition (see details in [24]). In the Leslie multispecies matrix model, there are two 

inherent net reproductions, namely for the first and second species (see Travis et al.[17], Kon [17], 

[18], [19]). In this case, the first species is assumed to be a Wolbachia-uninfected mosquito, and 

the second species is assumed to be a Wolbachia-infected mosquito. 

 First, the fertility matrix 𝐹 and the transition matrix 𝑇 from (1) for mosquitoes that are not 

infected with Wolbachia are 

𝐹𝑀 = [
0 𝑓𝑀𝑃

(1 − 𝑐)

0 0
] 

and 

𝑇𝑀 = [

𝑠𝑀𝐴

1 + 𝑎𝑀𝐴 + 𝑏𝑊𝐴
0

0 0

]. 

Next, we get the matrix (𝐼2 − 𝑇𝑀) and the inverse of the matrix (𝐼2 − 𝑇𝑀) are 

𝐼2 − 𝑇𝑀 = [
1 0

−
𝑠𝑀𝐴

1 + 𝑎𝑀𝐴 + 𝑏𝑊𝐴
1]   

and 

(𝐼2 − 𝑇𝑀)−1 = [
1 0

𝑠𝑀𝐴

1 + 𝑎𝑀𝐴 + 𝑏𝑊𝐴
1]. 

Then, we get the matrix 

𝐹𝑀(𝐼2 − 𝑇𝑀)−1(𝒙 = 𝟎) = [
𝑓𝑀𝑃

(1 − 𝑐)𝑠𝑀𝐴
𝑓𝑀𝑃

(1 − 𝑐)

0 0
] 

and the eigenvalues of 𝐹𝑀 (𝐼2 − 𝑇𝑀)−1  are 𝜆1 = 𝑓𝑀𝑃
 𝑠𝑀𝐴

(1 − 𝑐)  and 𝜆2 = 0 . Therefore, the 

dominant eigenvalue of 𝐹𝑀(𝐼2 − 𝑇𝑀)−1 is 𝜆1 = 𝑓𝑀𝐴
𝑠𝑀𝐴

(1 − 𝑐) then we symbolize it as 𝑅𝑀.  

 Second, the fertility matrix 𝐹 and the transition matrix 𝑇 from (1) for Wolbachia-infected 

mosquitoes are 

𝐹𝑊 = [
0 𝑓𝑊𝑃

0 0
]   

and 

𝑇𝑊 = [

𝑠𝑊𝐴

1 + 𝑏𝑀𝐴 + 𝑎𝑊𝐴
0

0 0

]. 
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By using the same method as for mosquitoes that were not infected with Wolbachia, we obtained 

𝐹𝑊(𝐼 − 𝑇𝑊)−1(𝒙 = 𝟎)  = [
𝑓𝑊𝐴

𝑠𝑊𝐴
0

0 0
] 

and the eigenvalues of the matrix 𝐹𝑊(𝐼 − 𝑇𝑊)−1(𝒙 = 𝟎) , namely 𝜆1 = 𝑓𝑊𝐴
𝑠𝑊𝐴

  and 𝜆2 = 0 

then we symbolize it as 𝑅𝑊. 

 

3.2. Equilibrium Points of the Model 

 In this section, we present the equilibrium points of the model in (1). The initial step taken to 

determine the equilibrium points is to form an equilibrium model from the model at (1) depending 

on time 𝑡. The following is the equilibrium model in (1). 

𝑀𝐴(𝑡) = 𝑓𝑀𝑃
(1 − 𝑐)𝑀𝑃(𝑡) 

 𝑀𝑃(𝑡) =
𝑠𝑀𝐴

1 + 𝑎𝑀𝐴(𝑡) + 𝑏𝑊𝐴(𝑡)
𝑀𝐴(𝑡) 

𝑊𝐴(𝑡) = 𝑓𝑊𝑃
𝑊𝑃(𝑡) 

𝑊𝑃(𝑡) =
𝑠𝑊𝐴

1 + 𝑎𝑊𝐴(𝑡) + 𝑏𝑀𝐴(𝑡)
𝑊𝐴(𝑡)  

 The next step is to determine the solution of (2) and we obtain four equilibrium points. Here 

are the four equilibrium points: 

i) The extinction equilibrium point for the two species is 𝐸0 = [0,0,0,0]𝑇 . 

ii) The equilibrium point with mosquitoes not infected with Wolbachia exists when 𝑅𝑀 > 1 

while mosquitoes infected with Wolbachia become extinct, i.e. 

𝐸𝑀 = [
𝑅𝑀 − 1

𝑎
,

𝑅𝑀 − 1

𝑎𝑓𝑀𝑃
(1 − 𝑐)

, 0,0]

𝑇

. 

iii) The equilibrium point with Wolbachia-infected mosquitoes exists when 𝑅𝑊 > 1 while 

non-Wolbachia-infected mosquitoes are extinct, i.e. 

𝐸𝑊 = [0,0,
𝑅𝑊 − 1

𝑎
,
𝑅𝑊 − 1

𝑎𝑓𝑊𝑃

]

𝑇

. 

iv) The equilibrium point for the two types of mosquitoes that exist is 
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𝐸𝑀𝑊 =

[
 
 
 
 
 
 
 
 
𝑎(𝑅𝑀 − 1) − 𝑏(𝑅𝑊 − 1)

𝑎2 − 𝑏2

𝑎(𝑅𝑀 − 1) − 𝑏(𝑅𝑊 − 1)

𝑓𝑀𝑃
(1 − 𝑐)(𝑎2 − 𝑏2)

𝑎(𝑅𝑊 − 1) − 𝑏(𝑅𝑀 − 1)

𝑎2 − 𝑏2

𝑎(𝑅𝑊 − 1) − 𝑏(𝑅𝑀 − 1)

𝑓𝑊𝑃
(𝑎2 − 𝑏2) ]

 
 
 
 
 
 
 
 

 

when 𝐴𝑀 > 0, 𝐴𝑊 > 0, and 𝐶 > 0 or 𝐴𝑀 < 0, 𝐴𝑊 < 0, and 𝐶 < 0 with  

𝐴𝑀 = 𝑎(𝑅𝑀 − 1) − 𝑏(𝑅𝑊 − 1), 

𝐴𝑊 = 𝑎(𝑅𝑊 − 1) − 𝑏(𝑅𝑀 − 1), 

and 

𝐶 = 𝑎2 − 𝑏2. 

 

3.3. Asymptotically Local Stability Analysis for Each Equilibrium Point 

 In the previous section, we presented the equilibrium point of the model in (1). In this section, 

we present a theorem regarding the asymptotically local stability for each of the equilibrium points 

of (1). The asymptotically local stability of the model in (1) is presented in Theorem 1 below.  

Endemic equilibrium represents that the epidemic occurs. Based on (1), an endemic equilibrium 

point is obtained as follows: 

Theorem 2 

For the model in (1) that 

i) If 𝑅𝑀 < 1 and 𝑅𝑊 < 1, then the equilibrium point 𝐸0 is locally stable asymptotically. 

ii) If 𝑅𝑀 > 1 and 𝑎(𝑅𝑊 − 1) < 𝑏(𝑅𝑀 − 1), then the equilibrium point 𝐸𝑀 is locally 

stable asymptotically. 

iii) If 𝑅𝑊 > 1 and 𝑎(𝑅𝑀 − 1) < 𝑏(𝑅𝑊 − 1), then the equilibrium point 𝐸𝑊 is locally 

stable asymptotically. 

iv) If 𝑎 > 𝑏, 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑊 − 1), and 𝑎(𝑅𝑊 − 1) > 𝑏(𝑅𝑀 − 1), then the local 

equilibrium point 𝐸𝑀𝑊 is asymptotically stable. 



10 

ARJUN HASIBUAN, ASEP KUSWANDI SUPRIATNA, EMA CARNIA, SITI MAWADDAH 

Proof. In this case, we use the 𝑀 -Matrix theory to prove the local stability condition 

asymptotically in Theorem 2. Simply put, the steps taken to determine the local stability 

asymptotically from the model in (1), include: 

i) Determine the Jacobian matrix from the model in (1) which then this matrix is the 𝐽 

matrix in Theorem 1. 

ii) Determine the matrix 𝑆 that corresponds to the conditions in Theorem 1. 

iii) Determine the Jacobian matrix for the equilibrium point of the model in (1) by 

substituting it in the Jacobian matrix obtained in step i). 

iv) Transform the Jacobian matrix in step iii into a matrix 𝐺 = 𝐼 − 𝑆𝐽(𝐸∗)𝑆−1. 

v) Determine the conditions that satisfy that 𝐺 is an 𝑀-Matrix in Definition 1. 

vi) Step iii) is repeated as many times as the equilibrium point of the model in (1). 

 Based on these steps, the Jacobian matrix of the model in (1) is 

𝐽(𝐸∗) = 𝐽 ([

𝑀𝐴
∗

𝑀𝑃
∗

𝑊𝐴
∗ 

𝑊𝑃
∗

]) =

[
 
 
 

0 𝑓𝑀𝑃
(1 − 𝑐) 0 0

𝑃𝑀(1 + 𝑏𝑊𝐴
∗) 0 −𝑃𝑀𝑏𝑀𝐴

∗ 0
0 0 0 𝑓𝑊𝑃

−𝑃𝑊𝑏𝑊𝐴
∗ 0 𝑃𝑊(1 + 𝑏𝑀𝐴

∗) 0 ]
 
 
 

 (3) 

where 

𝑃𝑀 =
𝑠𝑀𝐴

(𝑎𝑀𝐴
∗ +𝑏𝑊𝐴

∗+1)
2 and 𝑃𝑊 =

𝑠𝑊𝑃

(𝑎𝑀𝐴
∗ +𝑏𝑊𝐴

∗+1)
2. 

After the Jacobian matrix of the model in (1) is obtained, the next thing that must be obtained is to 

determine the 𝑆  matrix that corresponds to the 𝐽(𝐸∗)  matrix in (3) based on the 𝑀 -Matrix 

theory. Since the guaranteed equilibrium point is non-negative, so the matrix elements 𝐽(𝐸∗) in 

the 𝑖-the row for 𝑖 = 1,2 with the 𝑗-the column for 𝑗 = 3,4 and the 𝑖-the row for 𝑖 = 3,4 with 

the 𝑗-the column for 𝑗 = 1,2 is greater than or equal to zero. Based on Theorem 1, the selected 

matrix 𝑆 is 

𝑆 = [

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

]. 

 The next step is to determine the Jacobian matrix for each equilibrium point of the model in 

(1). Each equilibrium point obtained from the model substituted in (3). Asymptotically local 
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stability analysis for each equilibrium point is presented as follows: 

i) The first is to determine the local stability asymptotically from the equilibrium point 𝐸0. 

The Jacobian matrix for the equilibrium point 𝐸0, i.e. 

𝐽(𝐸0) =

[
 
 
 
 

0 𝑓𝑀𝑃
(1 − 𝑐) 0 0

𝑠𝑀𝐴
0 0 0

0 0 0 𝑓𝑊𝑃

0 0 𝑠𝑊𝐴
0 ]

 
 
 
 

. 

After obtaining the Jacobian matrix for 𝐸0, based on 𝑀-Matrix theory, the next step is to 

transform the Jacobian matrix for 𝐸0 or 𝐽(𝐸0) into a matrix 𝐺 = 𝐼 − 𝑆𝐽(𝐸0)𝑆
−1. The 

obtained matrix 𝐺, that is 

𝐺 =

[
 
 
 
 

1 −𝑓𝑀𝑃
(1 − 𝑐) 0 0

−𝑠𝑀𝐴
1 0 0

0 0 1 −𝑓𝑊𝑃

0 0 −𝑠𝑊𝐴
1 ]

 
 
 
 

. 

Note that all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 therefore the first condition is said to be 𝑀-

Matrix in Definition 1 is met. The next step is to show that all the minor principles of 𝐺 

are positive. Based on the calculations obtained, 

𝑃𝑀1 = |𝑔11| = 1, 𝑃𝑀2 = |
𝑔11 𝑔12

𝑔21 𝑔22
| = 1 − 𝑅𝑀 , 𝑃𝑀3 = |

𝑔11 𝑔12 𝑔13

𝑔21 𝑔22 𝑔23

𝑔31 𝑔32 𝑔33

| = 1 − 𝑅𝑀 , 

and 

𝑃𝑀4 = |𝐺| = (1 − 𝑅𝑀)(1 − 𝑅𝑊). 

In all minor principals of 𝐺, only 𝑃𝑀1 is positive while the others cannot be guaranteed 

to be positive. Note that 𝑃𝑀2  and 𝑃𝑀3  will be positive if 𝑅𝑀 < 1 . Since 𝑅𝑀 < 1 , 

consequently 𝑃𝑀4 will be positive if 𝑅𝑊 < 1. Therefore, all minor principles of 𝐺 will 

be positive if 𝑅𝑀 < 1  and 𝑅𝑊 < 1 . So, 𝐺  is said to be an 𝑀 -Matrix, and the local 

equilibrium point 𝐸0 is asymptotically stable if 𝑅𝑀 < 1 and 𝑅𝑊 < 1 are satisfied. 

ii) The second is to determine the local stability asymptotically from the equilibrium point 

𝐸𝑀. The Jacobian matrix for the equilibrium point 𝐸𝑀, i.e. 
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𝐽(𝐸𝑀) =

[
 
 
 
 
 
 

0 𝑓𝑀𝑃
(1 − 𝑐) 0 0

1

𝑓𝑀𝑃
(1 − 𝑐)𝑅𝑀

0 −
𝑏𝑠𝑀𝐴

(𝑅𝑀 − 1)

𝑎𝑓𝑀𝑃
(1 − 𝑐)𝑅𝑀

0

0 0 0 𝑓𝑊𝑃

0 0 −
𝑎𝑠𝑊𝐴

(𝑅𝑀 − 1)𝑏 + 𝑎
0

]
 
 
 
 
 
 

. 

After obtaining the Jacobian matrix for 𝐸𝑀, based on the 𝑀-Matrix theory, the next step 

is to transform the Jacobian matrix for 𝐸𝑀 or 𝐽(𝐸𝑀) into a 𝐺 = 𝐼 − 𝑆𝐽(𝐸𝑀)𝑆−1 matrix. 

The obtained matrix 𝐺, that is 

𝐺 =

[
 
 
 
 
 
 

1 −𝑓𝑀𝑃
(1 − 𝑐) 0 0

−
1

𝑓𝑀𝑃
(1 − 𝑐)𝑅𝑀

1 −
𝑏𝑠𝑀𝐴

(𝑅𝑀 − 1)

𝑎𝑅𝑀
2 0

0 0 1 −𝑓𝑊𝑃

0 0 −
𝑎𝑠𝑊𝐴

(𝑅𝑀 − 1)𝑏 + 𝑎
1

]
 
 
 
 
 
 

. 

Note that, since 𝑅𝑀 > 1 consequently all values 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, the first 

condition is said to be 𝑀-Matrix in Definition 1 is satisfied. The next step is to show that 

all the minor principles of 𝐺 are positive. Based on the calculations obtained, 

𝑃𝑀1 = 1, 𝑃𝑀2 =   𝑃𝑀3 =
𝑅𝑀 − 1

𝑅𝑀
,  

and 

𝑃𝑀4 = |𝐺| = −
(𝑅𝑀 − 1)(𝐴𝑊)

𝑅𝑀(𝑎 + 𝑏(𝑅𝑀 − 1))
. 

𝑃𝑀1, 𝑃𝑀2, and 𝑃𝑀3 are positive because 𝑅𝑀 > 1. Since 𝑅𝑀 > 1 consequently 𝑃𝑀4 

will be positive if 𝑎(𝑅𝑊 − 1) − 𝑏(𝑅𝑀 − 1) < 0 or 𝑎(𝑅𝑊 − 1) < 𝑏(𝑅𝑀 − 1). Therefore, 

all minor principles of 𝐺 will be positive if 𝑅𝑀 > 1 and 𝑎(𝑅𝑊 − 1) < 𝑏(𝑅𝑀 − 1). So, 

𝐺  is said to be an 𝑀 -Matrix, and the equilibrium point 𝐸𝑀  is locally stable 

asymptotically if it is satisfied that 𝑅𝑀 > 1 and 𝑎(𝑅𝑊 − 1) < 𝑏(𝑅𝑀 − 1). 

iii) The third is to determine the local stability asymptotically from the equilibrium point 

𝐸𝑊. The Jacobian matrix for the equilibrium point 𝐸𝑊, i.e. 
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𝐽(𝐸𝑊) =

[
 
 
 
 
 
 

0 𝑓𝑀𝑃
(1 − 𝑐) 0 0

𝑎𝑠𝑀𝐴

𝑎 + 𝑏(𝑅𝑊 − 1)
0 0 0

0 0 0 𝑓𝑊𝑃

−
𝑏(𝑅𝑊 − 1)

𝑎𝑓𝑊𝑃
𝑅𝑊

0
1

𝑓𝑊𝑃
𝑅𝑊

0
]
 
 
 
 
 
 

. 

After obtaining the Jacobian matrix for 𝐸𝑊, based on 𝑀-Matrix theory, the next step is 

to transform the Jacobian matrix for 𝐸𝑊 or 𝐽(𝐸𝑊) into a matrix 𝐺 = 𝐼 − 𝑆𝐽(𝐸𝑊)𝑆−1. 

The obtained matrix 𝐺, that is 

𝐺 =

[
 
 
 
 
 
 

1 −𝑓𝑀𝑃
(1 − 𝑐) 0 0

−
𝑎𝑠𝑀𝐴

𝑎 + 𝑏(𝑅𝑊 − 1)
1 0 0

0 0 1 −𝑓𝑊𝑃

−
𝑏(𝑅𝑊 − 1)

𝑎𝑓𝑊𝑃
𝑅𝑊

0 −
1

𝑓𝑊𝑃
𝑅𝑊

1
]
 
 
 
 
 
 

. 

Note that, since 𝑅𝑊 > 1 consequently all values of 𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 are satisfied, the 

first condition is said to be 𝑀-Matrix in Definition 1 is satisfied. The next step is to show 

that all the minor principles of 𝐺 are positive. Based on the calculations obtained, 

𝑃𝑀1 = 1, 𝑃𝑀2 =  𝑃𝑀3 = −
𝐴𝑀

𝑎 + 𝑏(𝑅𝑊 − 1)
, 

and 

𝑃𝑀4 = −
(𝑅𝑊 − 1)𝐴𝑀

𝑅𝑊(𝑎 + 𝑏(𝑅𝑊 − 1))
. 

It is clear that 𝑃𝑀1 > 0. Because 𝑅𝑊 > 1 consequently 𝑃𝑀2 and 𝑃𝑀3  are positive if 

𝑎(𝑅𝑀 − 1) − 𝑏(𝑅𝑊 − 1) < 0  or 𝑎(𝑅𝑀 − 1) < 𝑏(𝑅𝑊 − 1) . Because 𝑅𝑊 > 1  and 

𝑎(𝑅𝑀 − 1) < 𝑏(𝑅𝑊 − 1) consequently 𝑃𝑀4 is positive. Therefore, all minor principles 

of 𝐺 will be positive if 𝑅𝑊 > 1 and 𝑎(𝑅𝑀 − 1) < 𝑏(𝑅𝑊 − 1). So, 𝐺 is said to be an 

𝑀-Matrix, and the equilibrium point 𝐸𝑊 is locally stable asymptotically if it is satisfied 

that 𝑅𝑊 > 1 and 𝑎(𝑅𝑀 − 1) < 𝑏(𝑅𝑊 − 1). 

iv) The fourth or last is to determine the local stability asymptotically from the equilibrium 

point 𝐸𝑀𝑊. The Jacobian matrix for the equilibrium point 𝐸𝑀𝑊, i.e. 
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𝐽(𝐸𝑀𝑊) =

[
 
 
 
 
 
 

0 𝑓𝑀𝑃
(1 − 𝑐) 0 0

𝐴1

𝐶𝑅𝑀𝑓𝑀𝑃
(1 − 𝑐)

0 −
𝑏𝐴𝑀

𝐶𝑅𝑀𝑓𝑀𝑃
(1 − 𝑐)

0

0 0 0 𝑓𝑊𝑃

−
𝑏𝐴𝑊

𝐶𝑅𝑊𝑓𝑊𝑃

0
𝐴2

𝐶𝑅𝑊𝑓𝑊𝑃

0
]
 
 
 
 
 
 

, 

where 

𝐴1 = 𝑎2 + 𝑏(𝑎(𝑅𝑊 − 1) − 𝑏𝑅𝑀) and 𝐴2 = 𝑎2 + 𝑏(𝑎(𝑅𝑀 − 1) − 𝑏𝑅𝑊). 

After obtaining the Jacobian matrix for 𝐸𝑀𝑊, based on 𝑀-Matrix theory, the next step is 

to transform the Jacobian matrix for 𝐸𝑀𝑊  or 𝐽(𝐸𝑀𝑊)  into a matrix 𝐺 = 𝐼 −

𝑆𝐽(𝐸𝑀𝑊)𝑆−1. The obtained matrix 𝐺, that is 

𝐺 =

[
 
 
 
 
 
 

1 −𝑓𝑀𝑃
(1 − 𝑐) 0 0

−
𝐴1

𝐶𝑅𝑀𝑓𝑀𝑃
(1 − 𝑐)

1 −
𝑏𝐴𝑀

𝐶𝑅𝑀𝑓𝑀𝑃
(1 − 𝑐)

0

0 0 1 −𝑓𝑊𝑃

−
𝑏𝐴𝑊

𝐶𝑅𝑊𝑓𝑊𝑃

0 −
𝐴2

𝐶𝑅𝑊𝑓𝑊𝑃

1
]
 
 
 
 
 
 

. 

The next step is to ensure that all non-diagonal elements of the 𝐺 matrix are non-positive. 

The existence condition of the equilibrium point 𝐸𝑀𝑊, namely 𝐴𝑀, 𝐴𝑊, and 𝐶 has the 

same sign (positive/negative) so that 𝑔23 and 𝑔31 are negative. Then, so that 𝑔21 ≤ 0 

and 𝑔43 < 0  must be fulfilled, 𝐴1 , 𝐴2 , and 𝐶  must have the same sign (non-

positive/non-negative). Therefore, these conditions result in the fulfillment of all values of 

𝑔𝑖𝑗 ≤ 0 for 𝑖 ≠ 𝑗 so that the first condition is said to be 𝑀-Matrix in Definition 1 is 

fulfilled. The next step is to show that all the minor principles of 𝐺 are positive. Based on 

the calculations obtained, 

𝑃𝑀1 = 1, 𝑃𝑀2 =  𝑃𝑀3 =
𝑎𝐴𝑀

𝑅𝑀𝐶
, 

and 

𝑃𝑀4 =
𝐴𝑀𝐴𝑊

𝑅𝑀𝑅𝑊𝐶
. 
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Note that 𝑃𝑀1 is positive. Then, for 𝑃𝑀2, 𝑃𝑀3, and 𝑃𝑀4 to be positive, it must be 

fulfilled 𝐴𝑀 > 0 , 𝐴𝑊 > 0 , and 𝐶 > 0  or 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑀 − 1) , 𝑎(𝑅𝑊 − 1) >

𝑏( 𝑅𝑀 − 1), and 𝑎2 > 𝑏2 or 𝑎 > 𝑏. Therefore, all minor principals of 𝐺 will be positive 

if 𝑎 > 𝑏, 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑀 − 1), and 𝑎(𝑅𝑊 − 1) > 𝑏(𝑅𝑀 − 1).  

Recall that the first and second terms of the 𝑀-Matrix must be considered or related to 

each other. Because in the second condition (all minor principals of 𝐺) namely 𝑎 > 𝑏, 

consequently 𝐴1 and 𝐴2 in the first condition (all elements of 𝑔𝑖𝑗 ≤ 0) must be positive. 

Note that 

𝐴1 = 𝑎2 + 𝑏(𝑎(𝑅𝑊 − 1) − 𝑏𝑅𝑀) > 0 → 𝑎2 > −𝑏(𝑎(𝑅𝑊 − 1) − 𝑏𝑅𝑀) (4) 

Then, because 𝑎(𝑅𝑊 − 1) > 𝑏(𝑅𝑀 − 1) consequently 

𝑎(𝑅𝑊 − 1) − 𝑏𝑅𝑀 > −𝑏 (5) 

Therefore, if equation (5) is substituted into equation (4) and 𝑎 > 𝑏, it is clear that 𝐴1 >

0 . Besides that, because 𝑎 > 𝑏  and 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑊 − 1)  then with the same 

treatment as in 𝐴1, it is clear that 𝐴2 > 0. Therefore, 𝐺 is said to be an 𝑀-Matrix if 𝑎 >

𝑏, 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑊 − 1), and 𝑎(𝑅𝑊 − 1) > 𝑏(𝑅𝑀 − 1). Thus, the equilibrium point 

𝐸𝑀𝑊  will be locally stable asymptotically if 𝑎 > 𝑏 , 𝑎(𝑅𝑀 − 1) > 𝑏(𝑅𝑊 − 1) , and 

𝑎(𝑅𝑊 − 1) > 𝑏(𝑅𝑀 − 1) are satisfied. This completes the proof 

◻ 

 

4. NUMERICAL SOLUTIONS 

 In this section, we present a numerical simulation of the analysis carried out in Section 5 

regarding the local stability analysis for each of the equilibrium points obtained in Section 4. This 

section aims to provide proof of Theorem 2 which is then interpreted in the form of images. The 

figures will show the conditions under which the system is asymptotically stable for each 

equilibrium point of the model in (1) based on the given parameters. Since this simulation only 

aims to provide numerical proof of Theorem 2, the parameters presented in the simulation are only 

conjectural parameters. 
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 The numerical simulation of the model in (1) is divided into 4 cases according to the number 

of equilibrium points. In this case, we assumed that the level of intraspecific competition between 

mosquitoes without Wolbachia and with Wolbachia was 𝑎 = 0.05 and the level of interspecific 

competition between the two mosquitoes was 𝑏 = 0.01. Then, we assumed the level of maternal 

vertical transmission and the mosquito population CI mechanism was 𝑐 = 0.35. Furthermore, 

other parameters for this simulation are presented as follows. 

i) 𝑓𝑀𝑃
= 3, 𝑠𝑀𝐴

= 0.5, 𝑓𝑊𝑃
= 1, 𝑠𝑊𝐴

= 0.9, so that 𝑅𝑀 = 0.975 and 𝑅𝑊 = 0.9. 

ii) 𝑓𝑀𝑃
= 10, 𝑠𝑀𝐴

= 0.8, 𝑓𝑊𝑃
= 1, 𝑠𝑊𝐴

= 0.9, so that 𝑅𝑀 = 5.2 and 𝑅𝑊 = 0.9. 

iii) 𝑓𝑀𝑃
= 2, 𝑠𝑀𝐴

= 0.7, 𝑓𝑊𝑃
= 10, 𝑠𝑊𝐴

= 0.9, so that 𝑅𝑀 = 0.91 and 𝑅𝑊 = 9. 

iv) 𝑓𝑀𝑃
= 20, 𝑠𝑀𝐴

= 0.7, 𝑓𝑊𝑃
= 20, 𝑠𝑊𝐴

= 0.6, so that 𝑅𝑀 = 9.1 and 𝑅𝑊 = 12. 

 

FIGURE 1. Population growth of each age phase in case i. 
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FIGURE 2. Population growth of each age phase in case ii.

 

 

 The results of the simulation are presented graphically in Figure 1-Figure 4. Figure 1 shows 

that the local stable system is asymptotically towards the equilibrium point 𝐸0  if it satisfies 

condition i of Theorem 2. In that sense, the growth of both mosquito species without Wolbachia 

infection and with Wolbachia infection is the same. equal to extinction. Then, Figure 2 shows that 

the local stable system asymptotically goes to the equilibrium point 𝐸𝑀 = [84,12.92,0]𝑇  if it 

satisfies condition ii of Theorem 2. In a sense, in an ecosystem, mosquitoes infected with 

Wolbachia are extinct while mosquitoes without infected with surviving Wolbachia. As a result, 

prevention of dengue disease cannot be achieved. Furthermore, Figure 3 shows that the local stable 

system is asymptotically toward the equilibrium point 𝐸𝑊 = [0,0,160,16]𝑇 . In a sense, 

mosquitoes without Wolbachia infection are extinct while mosquitoes infected with Wolbachia 

survive in a particular ecosystem. The good side is that dengue disease can be reduced while the 

bad side is that we can no longer find wild (pure) mosquitoes that are not infected with Wolbachia. 

Last but not least, Figure 4 shows that the local stable system is asymptotically toward the 

equilibrium point 𝐸𝑀𝑊 = [122.92.9.45,195.42.9.77]𝑇. In a sense, both mosquitoes can coexist 

which makes it possible that dengue disease can be controlled and wild mosquitoes are not extinct. 
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FIGURE 3. Population growth of each age phase in case iii. 

 

 

FIGURE 4. Population growth of each age phase in case iv. 
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5. CONCLUSION 

 In this paper, we have formulated a population growth model for the Aedes aegypti mosquito 

using the Leslie multispecies matrix model. In the model, the first species is assumed to be a 

population of Aedes aegypti mosquitoes not infected with Wolbachia and the second species is 

assumed to be a population of Aedes aegypti mosquitoes infected with Wolbachia. The model was 

formulated to be studied to obtain equilibrium points of equilibrium points and to analyze local 

stability asymptotically for equilibrium points using 𝑀-Matrix theory. The results show that there 

are four equilibrium points, including an equilibrium point where both mosquitoes experience 

extinction, an equilibrium point where only wild mosquitoes that are not infected with Wolbachia 

survive, an equilibrium point where only wild mosquitoes infected with Wolbachia survive, and 

an equilibrium point where both types of mosquitoes survive. The determination of the existing 

conditions of the equilibrium points and the asymptotically local stability of the equilibrium points 

of the model are influenced by each inherent net reproduction and the level of competition for both 

types of mosquitoes. 

 

ACKNOWLEDGMENTS 

 The first author conducted the research as a part of Padjadjaran University's master's program 

in mathematics, which is where the work was done. The first author would like to thank you for 

covering the cost of the tuition during the applicant period with an ALG-Unpad Research Grant 

under contract 1959/UN6.3.1/PT.00/2021. The first author would also want to thank you for the 

preparation and APC (Article Processing Charge), which is supported by "Penelitian Tesis 

Magister (PTM)" from the Indonesian Ministry of Education, Culture, Research and Technology 

in 2022 with a contract number of 1318/UN6.3.1/PT.00/2022. 

 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests. 

 

 



20 

ARJUN HASIBUAN, ASEP KUSWANDI SUPRIATNA, EMA CARNIA, SITI MAWADDAH 

REFERENCES 

[1] S. Bhatt, P.W. Gething, O.J. Brady, et al. The global distribution and burden of dengue, Nature. 496 (2013), 504–

507. https://doi.org/10.1038/nature12060. 

[2] I.R. Montella, A.J. Martins, P.F. Viana-Medeiros, et al. Insecticide resistance mechanisms of Brazilian Aedes 

aegypti populations from 2001 to 2004, Amer. J. Trop. Med. Hyg. 77 (2007), 467–477. 

[3] R. Maciel-de-Freitas, D. Valle, Challenges encountered using standard vector control measures for dengue in 

Boa Vista, Brazil, Bull. World Health Organ. 92 (2014), 685–689. https://doi.org/10.2471/blt.13.119081. 

[4] C.Q. Mentuda, Optimal control of a dengue-dengvaxia model: Comparison between vaccination and vector 

control, Comput. Math. Biophys. 9 (2021), 198–213. https://doi.org/10.1515/cmb-2020-0124. 

[5] M.Z. Ndii, J.J. Messakh, B.S. Djahi, Effects of vaccination on dengue transmission dynamics, J. Phys.: Conf. 

Ser. 1490 (2020), 012048. https://doi.org/10.1088/1742-6596/1490/1/012048. 

[6] P.-A. Bliman, M.S. Aronna, F.C. Coelho, et al. Global stabilizing feedback law for a problem of biological 

control of mosquito-borne diseases, in: 2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 

Osaka, 2015: pp. 3206–3211. https://doi.org/10.1109/CDC.2015.7402700. 

[7] A.A. Hoffmann, B.L. Montgomery, J. Popovici, et al. Successful establishment of Wolbachia in Aedes 

populations to suppress dengue transmission, Nature. 476 (2011), 454–457. https://doi.org/10.1038/nature10356. 

[8] E. Callaway, The mosquito strategy that could eliminate dengue, Nature. (2020). https://doi.org/10.1038/d41586-

020-02492-1. 

[9] M.Z. Ndii, A.R. Mage, J.J. Messakh, et al. Optimal vaccination strategy for dengue transmission in Kupang city, 

Indonesia, Heliyon. 6 (2020), e05345. https://doi.org/10.1016/j.heliyon.2020.e05345. 

[10] H. Zhang, R. Lui, Releasing Wolbachia-infected Aedes aegypti to prevent the spread of dengue virus: A 

mathematical study, Infect. Dis. Model. 5 (2020), 142–160. https://doi.org/10.1016/j.idm.2019.12.004. 

[11] D. Cardona-Salgado, D.E. Campo-Duarte, L.S. Sepulveda-Salcedo, et al. Wolbachia-based biocontrol for dengue 

reduction using dynamic optimization approach, Appl. Math. Model. 82 (2020), 125–149. 

https://doi.org/10.1016/j.apm.2020.01.032. 

[12] Y. Li, L. Liu, The impact of Wolbachia on dengue transmission dynamics in an SEI–SIS model, Nonlinear Anal.: 

Real World Appl. 62 (2021), 103363. https://doi.org/10.1016/j.nonrwa.2021.103363. 



21 

WOLBACHIA INFECTED AND UNINFECTED MOSQUITO GROWTH MODEL 

[13] P.A. Bliman, M.S. Aronna, F.C. Coelho, M.A.H.B. da Silva, Ensuring successful introduction of Wolbachia in 

natural populations of Aedes aegypti by means of feedback control, J. Math. Biol. 76 (2017), 1269–1300. 

https://doi.org/10.1007/s00285-017-1174-x. 

[14] L. Almeida, M. Duprez, Y. Privat, et al. Mosquito population control strategies for fighting against arboviruses, 

Math. Biosci. Eng. 16 (2019), 6274–6297. https://doi.org/10.3934/mbe.2019313. 

[15] P.A. Bliman, A feedback control perspective on biological control of dengue vectors by Wolbachia infection, 

Eur. J. Control. 59 (2021), 188–206. https://doi.org/10.1016/j.ejcon.2020.09.006. 

[16] Y. Li, Z. Guo, Y. Xing, Modeling Wolbachia diffusion in mosquito populations by discrete competition model, 

Discr. Dyn. Nat. Soc. 2020 (2020), 8987490. https://doi.org/10.1155/2020/8987490. 

[17] C.C. Travis, W.M. Post, D.L. DeAngelis, et al. Analysis of compensatory Leslie matrix models for competing 

species, Theor. Popul. Biol. 18 (1980), 16–30. https://doi.org/10.1016/0040-5809(80)90037-4. 

[18] R. Kon, Age-Structured Lotka–Volterra Equations for Multiple Semelparous Populations, SIAM J. Appl. Math. 

71 (2011), 694–713. https://doi.org/10.1137/100794262. 

[19] R. Kon, Permanence induced by life-cycle resonances: the periodical cicada problem, J. Biol. Dyn. 6 (2012), 

855–890. https://doi.org/10.1080/17513758.2011.594098. 

[20] R. Kon, Stable bifurcations in multi-species semelparous population models, in: S. Elaydi, Y. Hamaya, H. 

Matsunaga, C. Pötzsche (Eds.), Advances in Difference Equations and Discrete Dynamical Systems, Springer 

Singapore, Singapore, 2017: pp. 3–25. https://doi.org/10.1007/978-981-10-6409-8_1. 

[21] P.H. Leslie, On the use of matrices in certain population mathematics, Biometrika. 33 (1945), 183–212. 

https://doi.org/10.1093/biomet/33.3.183. 

[22] J.H. Werren, L. Baldo, M.E. Clark, Wolbachia: Master manipulators of invertebrate biology, Nature Reviews 

Microbiology, 6 (10) (2008). 

[23] Ö. Ak Gümüş, Global and local stability analysis in a nonlinear discrete-time population model, Adv Differ 

Equ. 2014 (2014), 299. https://doi.org/10.1186/1687-1847-2014-299. 

[24] J.M. Cushing, An introduction to structured population dynamics, SIAM, Philadelphia, 1998. 


