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Abstract: Mosaic is a severe disease of soybeans that has the potential to reduce the quality and quantity of soybean 

production. The Mosaic disease can infect soybean plants by the Aphis vector carrying Soybean Mosaic Virus (SMV). 

In this study, a mathematical model of the spread of Mosaic disease was built by considering two interventions, namely 

the application of entomopathogen and the regulation of photosynthesis intensity. This research focuses on knowing 

the effect of intervention in controlling Mosaic disease and increasing the population of susceptible generative plants. 

Using dynamical system theory, non-endemic and endemic equilibrium points and their stability are obtained. Then, 

the basic reproduction ratio (ℜ0) is obtained for this model. Sensitivity analysis was carried out to determine the 

most influential parameters in the model. Optimal control theory was used to determine the optimal conditions of the 

model by considering the cost of entomopathogen application and photoperiodicity. The results of numerical 

simulations show that the application of entomopathogen and photosynthetic intensity can suppress the population of 

plant and vector infections and increase the population of susceptible plants in the generative phase at the same time. 

Keywords: dynamical system; mosaic virus; optimal control; sensitivity analysis; soybean. 

2020 AMS Subject Classification: 37N25. 



2 

SANUBARI TANSAH TRESNA, NURSANTI ANGGRIANI, ASEP K. SUPRIATNA 

1. INTRODUCTION 

Soybean is an important food containing protein and oil and is commonly used in the program 

of diets for both humans and animals [1]. Soybean is often called a marvel plant because it has a 

high protein of about 39-44% and an oil content of 21% [2]. It is the best source of protein and oil 

that may be an alternative to meat. Soybean content is used in the manufacturing industry, such as 

oil, cakes, flour, herbal cheese, and some additional products in the food industry [3]. These facts 

show that soybean is a crop needed for daily consumption and industrial needs. However, the high 

demand for soybean is not followed by the ability of the soybean farms to produce the grains. The 

main factors include climate change, inappropriate growth time, planting space, weeds, and disease 

[4]. 

Soybean Mosaic Disease (SMD) is a significant issue in soybean agriculture. The dis-ease 

begins when the plants is eaten by Aphid [5], a vector transmission that brings the Soybean Mosaic 

Virus (SMV). SMV occurs in almost all the soybean agriculture areas of the world and potentially 

infects other economic crops [5]. SMD causes the yield of agriculture to reduce between 35-50% 

of what it should be [6]. As SMV is an aphid-transmitted and seed-transmitted virus, it has three 

ways to infect the plants: 1) mechanical transmission, 2) insect transmission, and 3) grafting 

transmission [5]. The primary method of SMV transmission is transmission by insects such as 

various Aphids [7]. 

The presence of Mosaic transmitting vectors, namely Aphid insects, which are possible to be 

present in agricultural ecosystems increases the possibility of spreading the virus. In the concept 

of Plant Pest Control (IPM), the control goal is not to completely eradicate the pest/disease 

population, but it is dominant to manage the population below the threshold [8]. The use of 

insecticide against vectors showed a slight decrease in Mosaic cases [5]. The concept of IPM 

considers this step, but in terms of the use of insecticides, it is necessary to pay more attention 

because it causes damage to plants. The author in [9] explains that Lecanicillium Lecanii (L. 

Lecanii) has the potential to be a natural bio-insecticide or entomopathogen for Aphid. 

The mathematical model can be used to study the phenomena such as infectious disease 

transmission both on human [10,11] and plant population [12,13]. The model for this study was 

usually formed as a compartmental-based model, which divided the population into 

subpopulations with a unique description. Many researchers have developed a model to study the 

long-term behavior of various health problem. Disease such as COVID-19 [11], dengue [14], and 
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hepatitis [15] were studied with some interventions as an effort to control the disease. The problem 

of plant disease transmission is studied by several researchers using the same analogy of the 

transmission of human disease. 

A mathematical model for plant disease transmission is included as a vector-borne disease 

model. The model indirectly represents the process of spreading disease from infected plants to 

susceptible plants by involving the Aphis as a vector transmission. This relationship is interpreted 

through one of the mathematical studies, namely differential equations system. By knowing the 

spreading patterns, the disease transmission can be studied through analysis and simulation with 

some scenarios to predict disease behavior and the impact of interventions involved in the model. 

Many researchers conduct to develop a vector-borne model for describing the plant disease 

and studying its behavior. Jeger [16] built a mathematical model for plant disease considering the 

latent period of infection in the plant population. The local stability [17] and global stability [18] 

of the plant disease model is investigated to learn the disease behavior for the long term. Luo et al. 

[19] and Al-Basir et al. [20] developed a plant disease model that considered the roguing and 

replanting of plants as an effort to eradicate the disease. However, the plant disease epidemic may 

be prevented through curative fungicide application [21] and protect the plants with applied some 

methods, such as roguing and insecticide spraying [20]. In order to control the disease by IPM 

concept, the insecticide or bio-insecticide can reduce the vector population, which interprets as a 

parameter con-trol in a mathematical model [22]. Suryaningrat et al. [23] built a vector-borne 

model for Tungro disease with considered the existence of biological agents as predators of vector 

transmission. 

Mathematical studies of optimal control theory also applied to some vector-borne models for 

plant disease. A parameter interprets numerous interventions in a mathematical model set to be a 

control parameter in an optimal control problem, see [24–26] for examples. Chowdhury et al. [24] 

considered a model for pest management in plant dis-ease models through pesticides. Dynamical 

analysis and optimal control theory are applied to study the behavior of diseases with pesticide 

effort. In [25], Anggriani et al. developed an optimal control model to study the plant disease model 

by determining the curative treatment as a parameter control in the optimal control problem. Bokil 

et al. [26] built a mathematical model to describe the plant disease transmission, especially African 

Cassava Mosaic Disease (ACMD), and study the disease’s behavior through mathematical analysis 

and optimal control theory. The roguing and insecticide effort was set to be the control parameter 
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in the optimal control problem. 

In this article, we construct a mathematical model considering both insecticides to reduce the 

vector population and photoperiodicity to optimize plant growth. Photoperiodicity is the ratio 

between day and night lengths that may impact the process of plant growth and development [27]. 

This research focuses on comparing the advantages of interventions, including 1) entomopathogen 

without photoperiodicity, 2) photoperiodicity without entomopathogen, and 3) combining 

entomopathogen and photoperiodicity to the model. We look for the equilibrium points of the 

model and study their stability. A sensitivity analysis through Latin Hypercube Sampling (LHS) 

and Partial Rank Correlation Coefficients (PRCC) was carried out to determine parameters that 

have the dominant influence on the model. Then, we set the insecticide and photoperiodicity as 

two control parameters in the optimal control problem. We formulate the optimal control model 

and solve it to determine the optimal condition of both controls and minimize the infected vector 

population and maximize the susceptible generative population. However, we first satisfy the 

necessary and sufficient condition of the Pontryagin Maximum Principle [28] before solving the 

optimal control problem. Numerical simulations were conducted to confirm the analytical result. 

Finally, we discussed the results comprehensively and presented some insights for future work. 

 

2. MODEL FORMULATION 

 We have considered two populations in a mathematical model, which are the plant population 

and vector population. The plant and vector populations were divided into the three subpopulations 

and two subpopulations, respectively, namely susceptible vegetative plants (𝑆𝑉) , susceptible 

generative plants (𝑆𝐺), infected population plants (𝐼𝐻), susceptible vectors (𝑆𝐴), and infected 

vectors (𝐼𝐴) . Photoperiodicity is a factor considered in the plant growth process from the 

vegetative to the generative phase. We use some assumptions to formulate the model, including 1) 

the soybean plants studied are the same cultivar, 2) the replanting rate is constant and continuous, 

3) the vector recruitment rate is constant, 4) infected plants and infected vectors cannot be 

recovered, 5) plants are only reduced due to natural death, and 6) the applied entomopathogen only 

affects the vector population. There are some factors considered to be involved represented by 

parameters in the mathematical model (see Table 1). Finally, we can figure out a schematic 

diagram to describe the insect transmission process of the Mosaic virus in both plant and vector 

populations (see Figure 1). 



5 

MATHEMATICAL MODEL FOR SOYBEAN MOSAIC DISEASE 

Table 1. Parameters definition 

Parameter Definition Value 

Λ Replanting rate 4 

𝜏 Plant natural growth rate 0.5 

𝜂 Maximum plant growth rate due to photoperiodicity 1 

𝛼1 Virus transmission rate from vector to plant 0.0032 

𝛼2 Virus transmission rate from plant to vector 0.0032 

𝜇𝐻 Plant natural death rate 0.005 

𝛾 Vector recruitment rate 6 

𝜇𝐴 Vector natural death rate 0.18 

𝛿 Vector death rate due to applied entomopathogen 0.25 

 

 

Figure 1. Schematic diagram of the spread of Mosaic disease in Soybean plants. The solid lines 

represent the transition of plants or vectors from one subpopulation to another, while the dashed 

line represents the subpopulations involved in the transition. 

Based on Figure 1, the differential equations system for the spread of the disease is written as 

equation (1). 

𝑑𝑆𝑉

𝑑𝑡
= Λ − 𝜏 (1 +

𝜂

1 + 𝜂
) 𝑆𝑉 − 𝛼1𝑆𝑉𝐼𝐴 − 𝜇𝐻𝑆𝑉 

(1) 
𝑑𝑆𝐺

𝑑𝑡
= 𝜏 (1 +

𝜂

1 + 𝜂
) 𝑆𝑉 − 𝛼1𝑆𝐺𝐼𝐴 − 𝜇𝐻𝑆𝐺  

𝑑𝐼𝐻
𝑑𝑡

= 𝛼1𝐼𝐴(𝑆𝑉 + 𝑆𝐺) − 𝜇𝐻𝐼𝐻 
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𝑑𝑆𝐴

𝑑𝑡
= 𝛾 − 𝛼2𝑆𝐴𝐼𝐻 − 𝜇𝐴𝑆𝐴 − 𝛿𝑆𝐴 

𝑑𝐼𝐴
𝑑𝑡

= 𝛼2𝑆𝐴𝐼𝐻 − 𝜇𝐴𝐼𝐴 − 𝛿𝐼𝐴 

With the initial condition of each compartment as equation (2). 

𝑆𝑉(0) ≥ 0,   𝑆𝐺(0) ≥ 0,   𝐼𝐻(0) ≥ 0,   𝑆𝐴(0) ≥ 0,   𝐼𝐴(0) ≥ 0  (2) 

 

3. MATHEMATICAL ANALYSIS 

 In this section, we carried out the equilibrium points, both non-endemic and endemic, and 

analyzed their stability. The basic reproduction ratio (ℜ0) is obtained through the next-generation 

matrices method. 

3.1. Non-Endemic Equilibrium Point 

The non-endemic equilibrium point is a state which represents that there is no disease infection 

in the system with ℜ0 < 1. Based on the model in equation (1), the non-endemic equilibrium 

point is obtained as follows: 

𝐸0 = {𝑆𝑉
0, 𝑆𝐺

0, 𝐼𝐻
0 , 𝑆𝐴

0, 𝐼𝐴
0} 

𝐸0 = {
Λ(1 + 𝜂)

(2𝜏 + 𝜇𝐻)𝜂 + 𝜏 + 𝜇𝐻
,

Λτ(1 + 2𝜂)

𝜇𝐻((2𝜏 + 𝜇𝐻)𝜂 + 𝜏 + 𝜇𝐻)
, 0,

𝛾

𝛿 + 𝜇𝐴
, 0} 

(3) 

3.2. Endemic Equilibrium Point 

 The endemic equilibrium point is a state which represents that there is disease infection in the 

system with ℜ0 > 1 . Based on the model in equation (1), the endemic equilibrium point is 

obtained as follows: 

𝐸∗ = {𝑆𝑉
∗ , 𝑆𝐺

∗ , 𝐼𝐻
∗ , 𝑆𝐴

∗, 𝐼𝐴
∗} 

where 

𝑆𝑉
∗ =

(𝜂 +
1
2) ((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)

2
(𝛿 + 𝜇𝐴)2𝜏

𝛼1((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼1𝛾)(𝑥 + 𝑦)
 

(4) 𝑆𝐺
∗ =

(1 + 𝜂)((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)(𝛿 + 𝜇𝐴)Λ

2(𝑥 + 𝑦)
 

𝐼𝐻
∗ =

−(𝛿 + 𝜇𝐴)2𝜇𝐻
2 + 𝛼1𝛼2𝛾Λ

((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼1𝛾)𝛼2𝜇𝐻
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𝑆𝐴
∗ =

((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼1𝛾)𝜇𝐻

𝛼1((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)
 

𝐼𝐴
∗ =

−(𝛿 + 𝜇𝐴)2𝜇𝐻
2

(𝛿 + 𝜇𝐴)((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)𝛼1

 

with 

𝑥 = (
𝛼2(1 + 𝜂)Λ

2
+ (𝜂 +

1

2
) (𝛿 + 𝜇𝐴)𝜏) (𝛿 + 𝜇𝐴)𝜇𝐻 

𝑦 = 𝛼2 ((𝜂 +
1

2
) 𝜏𝜇𝐴 + (𝜂 +

1

2
) 𝛿𝜏 +

𝛾𝛼1(1 + 𝜂)

2
)Λ 

3.3. Basic Reproduction Ratio 

 In epidemiology, the basic reproduction ratio is essential to know, which shows the potential 

emergence of the spread of disease. Biologically, this ratio indicates the number of subsequent 

infections from one infective host or vector to susceptible hosts or vectors. Mathematic looks at 

the ratio as a parameter in studying the disease transmission through a compartmental model. The 

next-generation matrices method in [30] was used to obtain this parameter. We set 𝑓 as the new 

infection matrix and 𝑣 as the matrix of changes in the infection compartment. Based on equation 

(1), the 𝑓 and 𝑣 matrices are obtained as follows: 

𝑓 = (
0 𝛼1(𝑆𝑉 + 𝑆𝐺)𝐼𝐴

𝛼2𝑆𝐴𝐼𝐻 0
) and 𝑣 = (

𝜇𝐻𝐼𝐻 0

0 (𝛿 + 𝜇𝐴)𝐼𝐴
) 

We carried out 𝐹  and 𝑉  as the Jacobian from f and v matrices, then the spectral radius 

(dominant eigenvalue) of the 𝐹𝑉−1 matrix is determined at the non-endemic equilibrium point 

(see equation 3). This process can be written in equation (5-8): 

𝐹 = (
0 𝛼1(𝑆𝑉 + 𝑆𝐺)

𝛼2𝑆𝐴 0
) (5) 

𝑉 = (
𝜇𝐻 0
0 𝛿 + 𝜇𝐴

) → 𝑉−1 =

(

 

1

𝜇𝐻
0

0
1

𝛿 + 𝜇𝐴)

  (6) 

𝐹𝑉−1 =

(

 
 

0
𝛼1(𝑆𝑉 + 𝑆𝐺)

𝛿 + 𝜇𝐴

𝛼2𝑆𝐴

𝜇𝐻
0

)

 
 

 (7) 
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ℜ0 = 𝜌(𝐹𝑉−1) =
√𝛼1𝛼2(𝛿 + 𝜇𝐴)𝜇𝐻𝑆𝐴

0(𝑆𝑉
0 + 𝑆𝐺

0)

(𝛿 + 𝜇𝐴)𝜇𝐻
 (8) 

Finally, the parameter of the basic reproduction ratio is obtained radius spectral of F𝑉−1  as 

follows: 

ℜ0 =
√𝛼1𝛼2𝛾Λ

(𝛿 + 𝜇𝐴)𝜇𝐻
 (9) 

3.4. Stability Analysis  

 Analysis at the equilibrium points is carried out to determine the behavior of the system in the 

long term. The investigation began with formulating the Jacobian matrix for the model in equation 

(1). We write this matrix in equation (10). 

𝐽 =

(

 
 
 
 
 

−𝜏 (1 +
𝜂

1 + 𝜂
) − 𝛼1𝐼𝐴 − 𝜇𝐻 0 0 0 −𝛼1𝑆𝑉

𝜏 (1 +
𝜂

1 + 𝜂
) −𝛼1𝐼𝐴 − 𝜇𝐻 0 0 −𝛼1𝑆𝐺

𝛼1𝐼𝐴 𝛼1𝐼𝐴 −𝜇𝐻 0 𝛼1(𝑆𝑉 + 𝑆𝐺)

0 0 −𝛼2𝑆𝐴 −𝛼2𝐼𝐻 − 𝛿 − 𝜇𝐴 0
0 0 𝛼2𝑆𝐴 𝛼2𝐼𝐻 −𝛿 − 𝜇𝐴 )

 
 
 
 
 

 (10) 

3.4.1. Non-endemic Point 

Theorem 3.4.1. The non-endemic equilibrium point of the model in equation (1) is locally 

asymptotically stable if ℜ0 < 1. 

Proof. Through the method in [31], the local stability of the non-endemic equilibrium point in (3) 

can be determined by substituting 𝐸0  into the Jacobian matrix in (10). Then we get the 

characteristic polynomial, as follows: 

𝐶𝑃1 =
1

(𝛿 + 𝜇𝐴)𝜇𝐻(1 + 𝜂)
((𝛿 + 𝜇𝐴 + 𝜆1)(𝜇𝐻 + 𝜆2) ((

𝜂

2
+

1

2
) 𝜇𝐻 + (

𝜂

2
+

1

2
) 𝜆3 + 𝜏 (𝜂 +

1

2
)) (𝑎1𝜆

2

+ 𝑎2𝜆 + 𝑎3)) 

(11) 

From the equation (11), we get the eigenvalues of the evaluated Jacobian matrix at the non-

endemic equilibrium point including {𝜆1, 𝜆2, 𝜆3} = {−(𝛿 + 𝜇𝐴),−𝜇𝐻, −((1 + 𝜂)𝜇𝐻 + (1 +

2𝜂)𝜏)/(1 + 𝜂)}  and determine the character of polynomial 𝑎1𝜆
2 + 𝑎2𝜆 + 𝑎3  through Routh-

Hurwitz criterion. All coefficients 𝑎1, 𝑎2, and 𝑎3 are known and can be written as: 

𝑎1 = (𝛿 + 𝜇𝐴)𝜇𝐻 > 0 

𝑎2 = (𝛿2 + 2𝛿𝜇𝐴 + 𝜇𝐻𝛿 + 𝜇𝐴
2 + 𝜇𝐻𝜇𝐴)𝜇𝐻 > 0 
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𝑎3 = (𝛿 + 𝜇𝐴)2𝜇𝐻
2 − 𝛼1𝛼2𝛾Λ = (𝛿 + 𝜇𝐴)2𝜇𝐻

2 − (𝛿 + 𝜇𝐴)2𝜇𝐻
2ℜ0

2 = (𝛿 + 𝜇𝐴)2𝜇𝐻
2 (1 − ℜ0

2) > 0 

𝑎3 = (1 − ℜ0
2) > 0 → 1 > ℜ0

2 → ℜ0 < 1. 

Since 𝜆𝑖  with 𝑖 = 1,2,3  are negative and 𝑎1, 𝑎2, 𝑎3 > 0  indicates that 𝜆4  and 𝜆5  have 

negative values – also ℜ0 < 1. This completes the proof. 

3.4.2. Endemic Point 

Theorem 3.4.2. The endemic equilibrium point of the model in equation (1) is locally 

asymptotically stable if ℜ0 > 1. 

Proof. Through the method in [31], the local stability of the endemic equilibrium point in (4) can 

be determined by substituting 𝐸∗ into the Jacobian matrix in (10). Then we get the characteristic 

polynomial, as follows: 

𝐶𝑃2 =
1

𝑥𝑦(𝛿 + 𝜇𝐴)𝜇𝐻

(𝜆 + 𝜇𝐻)(𝜆 + 𝛿 + 𝜇𝐴) ( (1 + 𝜂)((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)(𝛿 + 𝜇𝐴)𝜆

+ 2(𝑥 + 𝑦)) (𝑎4𝜆
2 + 𝑎5𝜆 + 𝑎6) 

(12) 

From the equation (12), we get the eigenvalues of the evaluated Jacobian matrix at the endemic 

equilibrium point including {𝜆6, 𝜆7, 𝜆8} = {−(𝛿 + 𝜇𝐴),−𝜇𝐻, −2(𝑥 + 𝑦)/(1 + 𝜂) ((𝛿 + 𝜇
𝐴
)𝜇

𝐻
+

𝛼2Λ) (𝛿 + 𝜇
𝐴
)}  and determine the character of polynomial 𝑎4𝜆

2 + 𝑎5𝜆 + 𝑎6  through Routh-

Hurwitz criterion. All coefficients 𝑎4, 𝑎5, and 𝑎6 are known and can be written as: 

𝑎4 = ((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼1𝛾)(𝛿 + 𝜇𝐴)((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ) > 0 

𝑎5 =  Λ𝛼2(𝛿 + 𝜇𝐴)2𝜇𝐻
3 + (2Λ𝛼2 + (𝛿 + 𝜇𝐴)2)(𝛿 + 𝜇𝐴)𝛾𝛼1𝜇𝐻

2

+ 2𝛼2 (
𝛾𝛼1

2
+ (𝛿 + 𝜇𝐴)2) 𝛾𝛼1Λ𝜇𝐻 + 𝛾Λ2𝛼1𝛼2

2(𝛿 + 𝜇𝐴) > 0 

𝑎6 = ((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛾𝛼1)((𝛿 + 𝜇𝐴)𝜇𝐻 + 𝛼2Λ)(Λ𝛼1𝛼2 − (𝛿 + 𝜇𝐴)2𝜇𝐻
2 )

= Λ𝛾𝛼1𝛼2 − (𝛿 + 𝜇𝐴)2𝜇𝐻
2 > 0 

𝑎6 = (𝛿 + 𝜇𝐴)2𝜇𝐻
2ℜ0

2 − (𝛿 + 𝜇𝐴)2𝜇𝐻
2 = (𝛿 + 𝜇𝐴)2𝜇𝐻

2 (ℜ0
2 − 1) > 0 → ℜ0

2 − 1 > 0 → ℜ0 > 1 

Since 𝜆𝑖  with 𝑖 = 6,7,8  are negative and 𝑎4, 𝑎5, 𝑎6 > 0  indicates that 𝜆9  and 𝜆10  have 

negative values – also ℜ0 > 1. This completes the proof. 

 

4. NUMERICAL SENSITIVITY ANALYSIS 

 The sensitivity analysis of the plant disease epidemic model is presented in this section. We 

combine the Latin Hypercube Sampling (LHS) with generate 5000 value samples and Partial Rank 
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Correlation Coefficients (PRCC) to determine the parameters which have a dominant influence on 

the model [32]. LHS is a method to perform stratified sampling without replacement. The 

parameters distribution is sampled and divided into probability intervals equations. Every 

parameter’s intervals are sampled once and the entire range of every parameter is explored. Then, 

a matrix is generated with 𝑁 rows and 𝑘 columns representing the number of samples and varied 

parameters, respectively. The solution of the model is generated through the combining of 

parameters. We conducted a sensitivity analysis using the PRCC method on the basic reproduction 

ratio to determine the most influential factors (parameters) in spreading the disease by ranking the 

entire parameter in the system. The result of the sensitivity analysis is shown in Figure 2. 

 

Figure 2. Sensitivity analysis of the basic reproduction ratio. 

Figure 2 shows that the plant natural death rate (𝜇𝐻) is the most influential parameter with a 

negative relation to the basic reproduction ratio (ℜ0) in the disease spread phenomenon. When 

the value of the plant's natural death rate increases, the value of the basic reproduction ratio 

decreases. It means that the number of infected plants and vectors increases and represents disease 

severity in the system. Therefore, the plant's natural death rate analysis is feasible to study further 

and serve an insight that it is essential to suppress the number of infected plants and vectors. The 

vector natural death rate (𝜇𝐴) and vector death rate due to applied entomopathogen (𝛿) also 

negatively affect this ratio. In contrast, the planting rate (Λ), the vector recruitment rate (𝛾), and 

the transmission rate, both plants to vector (𝛼1) and vector to plants (𝛼2), have a positive 

relation to (ℜ0). The positive relation represents that if the parameter's value increases, the (ℜ0) 

increases. Therefore, it means that decreasing the value of Λ, 𝛾, 𝛼1 and 𝛼2 can reduce the risk of 

losing crop yields. 
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5. OPTIMAL CONTROL PROBLEM 

 In order to control the spread of Mosaic disease with respect to the cost of interventions. 

Globally, our goal is to minimize the number of vector populations and maximize the number of 

susceptible generative subpopulations. But, keep in mind the cost of interventions, both 

entomopathogen (𝑢1)  and photoperiodicity (𝑢2) , remains low. We elaborated the optimal 

control problem to be three scenarios and explained it in the following subsection. 

5.1. Scenario 1 

 The goal of optimal control in this case is to minimize the number of vector populations, both 

susceptible and infected, with respect to the cost of intervention through applied entomopathogen. 

The objective function for this case is written in the equation (11). 

𝐽1(𝑢1) = min∫(𝑃1(𝐼𝐴(𝑡) + 𝑆𝐴(𝑡)) + 𝑄1𝑢1(𝑡)
2)

𝑡𝑓

0

𝑑𝑡 ,   0 ≤ 𝑡 ≤ 𝑡𝑓 , 0 ≤ 𝑢1 ≤ 1 (13) 

Parameters 𝑃1  and 𝑄1  represent the weight of the vector population and the cost of 

entomopathogen with the performance index satisfies 𝑃1, 𝑄1 ≥ 0. We solved the optimal control 

problem using the Pontryagin Maximum Principle with the variable 𝑦(𝑡) =

[
 
 
 
 
𝑆𝑉(𝑡)

𝑆𝐺(𝑡)

𝐼𝐻(𝑡)

𝑆𝐴(𝑡)

𝐼𝐴(𝑡) ]
 
 
 
 

 and the 

following constraints: 

𝑑𝑆𝑉(𝑡)

𝑑𝑡
= Λ − 𝜏 (1 +

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡) 

𝑑𝑆𝐺(𝑡)

𝑑𝑡
= 𝜏 (1 +

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡) 

𝑑𝐼𝐻(𝑡)

𝑑𝑡
= 𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡) 

𝑑𝑆𝐴(𝑡)

𝑑𝑡
= 𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝑢1(𝑡)𝛿𝑆𝐴(𝑡) 

𝑑𝐼𝐴(𝑡)

𝑑𝑡
= 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝑢1(𝑡)𝛿𝐼𝐴(𝑡) 

𝑆𝑉(𝑡), 𝑆𝐺(𝑡), 𝐼𝐻(𝑡), 𝑆𝐴(𝑡), 𝐼𝐴(𝑡) ≥ 0 

(14) 

Note that the control 𝑢1 represents the level of applied entomopathogen to the system, especially 

impacting the vector populations. The value of control shows the maximum effort that will be 
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given in administering the entomopathogen over time. The Hamiltonian function 𝐻1 =

𝑓(𝑦, 𝑢1, 𝑡) + 𝜆′𝑔(𝑦, 𝑢1, 𝑡) which is equal to: 

𝐻1 = 𝑃1(𝑆𝐴(𝑡) + 𝐼𝐴(𝑡)) + 𝑄1𝑢1(𝑡)
2

+ 𝜆𝑆𝑉
(Λ − 𝜏 (1 +

𝜂

1 + 𝜂
)𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡))

+ 𝜆𝑆𝐺
(𝜏 (1 +

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡))

+ 𝜆𝐼𝐻 (𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡))

+ 𝜆𝑆𝐴
(𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝑢1(𝑡)𝛿𝑆𝐴(𝑡))

+ 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝑢1(𝑡)𝛿𝐼𝐴(𝑡)) 

(15) 

Where 𝜆𝑆𝑉
, 𝜆𝑆𝐺

, 𝜆𝐼𝐻 , 𝜆𝑆𝐴
, and 𝜆𝐼𝐴 are the Lagrange multipliers on the optimal control theory. The 

necessary conditions for scenario 1 should satisfy the following Pontryagin Maximum Principle: 

• State equations for this problem can be rewritten as  

𝑆𝑉(0) ≥ 0, 𝑆𝐺(0) ≥ 0, 𝐼𝐻(0) ≥ 0, 𝑆𝐴(0) ≥ 0, 𝐼𝐴(0) ≥ 0 

• Co-state variables 

𝑑𝜆𝑆𝑉

𝑑𝑡
= −𝜆𝑆𝑉

(𝜏 (1 +
𝜂

1 + 𝜂
) − 𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝑆𝐺

(𝜏 (1 +
𝜂

1 + 𝜂
)) − 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝑆𝐺

𝑑𝑡
= −𝜆𝑆𝐺

(−𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝐼𝐻

𝑑𝑡
= −𝜆𝐼𝐻

(−𝜇𝐻) − 𝜆𝑆𝐴
(−𝛼2𝑆𝐴(𝑡)) − 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)) 

𝑑𝜆𝑆𝐴

𝑑𝑡
= −𝑃1 − 𝜆𝑆𝐴

(−𝛼2𝐼𝐻(𝑡) − 𝜇𝐴 − 𝑢1(𝑡)𝛿) − 𝜆𝐼𝐴(𝛼2𝐼𝐻(𝑡)) 

𝑑𝜆𝐼𝐴

𝑑𝑡
= −𝑃1 − 𝜆𝑆𝑉

(−𝛼1𝑆𝑉(𝑡)) − 𝜆𝑆𝐺
(−𝛼1𝑆𝐺(𝑡)) − 𝜆𝐼𝐻 (𝛼1(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)))

− 𝜆𝐼𝐴
(−𝜇𝐴 − 𝑢1(𝑡)𝛿) 

The stationary condition of the system for scenario 1 is 
𝜕𝐻1

𝜕𝑢1
= 0, then 𝑢1 =

𝜆𝑆𝐴
𝛿𝑆𝐴(𝑡)+𝜆𝐼𝐴

𝛿𝐼𝐴(𝑡)

2𝑄1
. 

Since 0 ≤ 𝑢1(𝑡) ≤ 1 then we get 
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𝑢1
∗ = min {max {0,

𝜆𝑆𝐴
𝛿𝑆𝐴(𝑡) + 𝜆𝐼𝐴𝛿𝐼𝐴(𝑡)

2𝑄1
} , 1} (16) 

Note that 
𝜕2𝐻1

𝜕𝑢1
2 = 2𝑄1 > 0 satisfies the minimum criterion of optimal control theory with 𝑢1

∗ 

being the optimal control of the system. 

5.2. Scenario 2 

 The goal of optimal control in this case is to maximize the number of susceptible generative 

subpopulations with respect to the cost of intervention through controlling the photoperiodicity. 

The objective function for this case is written in the equation (17). 

𝐽2(𝑢2) = max∫(𝑃2𝑆𝐺(𝑡) − 𝑄2𝑢2(𝑡)
2)

𝑡𝑓

0

𝑑𝑡 ,   0 ≤ 𝑡 ≤ 𝑡𝑓 , 0 ≤ 𝑢2 ≤ 1 (17) 

Parameters 𝑃2 and 𝑄2 represent the weight of the susceptible generative subpopulation and the 

cost of photoperiodicity with the performance index satisfies 𝑃2, 𝑄2 ≥ 0. We solved the optimal 

control problem using the Pontryagin Maximum Principle with the variable 𝑦(𝑡) =

[
 
 
 
 
𝑆𝑉(𝑡)

𝑆𝐺(𝑡)

𝐼𝐻(𝑡)

𝑆𝐴(𝑡)

𝐼𝐴(𝑡) ]
 
 
 
 

 and 

the following constraints: 

𝑑𝑆𝑉(𝑡)

𝑑𝑡
= Λ − 𝜏 (1 + 𝑢2(𝑡) 

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡) 

𝑑𝑆𝐺(𝑡)

𝑑𝑡
= 𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡) 

𝑑𝐼𝐻(𝑡)

𝑑𝑡
= 𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡) 

𝑑𝑆𝐴(𝑡)

𝑑𝑡
= 𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝛿𝑆𝐴(𝑡) 

𝑑𝐼𝐴(𝑡)

𝑑𝑡
= 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝛿𝐼𝐴(𝑡) 

𝑆𝑉(𝑡), 𝑆𝐺(𝑡), 𝐼𝐻(𝑡), 𝑆𝐴(𝑡), 𝐼𝐴(𝑡) ≥ 0 

(18) 

Note that the control 𝑢2 represents the level of controlling photoperiodicity in the system. The 

value of control shows the maximum effort that will be given in administering the photoperiodicity 

over time. The Hamiltonian function 𝐻2 = 𝑓(𝑦, 𝑢2, 𝑡) + 𝜆′𝑔(𝑦, 𝑢2, 𝑡) which is equal to: 
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𝐻2 = 𝑃2𝑆𝐺(𝑡) − 𝑄2𝑢2(𝑡)
2

+ 𝜆𝑆𝑉
(Λ − 𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡))

+ 𝜆𝑆𝐺
(𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡))

+ 𝜆𝐼𝐻 (𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡))

+ 𝜆𝑆𝐴
(𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝛿𝑆𝐴(𝑡))

+ 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝛿𝐼𝐴(𝑡)) 

(19) 

Where 𝜆𝑆𝑉
, 𝜆𝑆𝐺

, 𝜆𝐼𝐻 , 𝜆𝑆𝐴
, and 𝜆𝐼𝐴 are the Lagrange multipliers on the optimal control theory. The 

necessary conditions for scenario 2 should satisfy the following Pontryagin Maximum Principle: 

• State equations for this problem can be rewritten as  

𝑆𝑉(0) ≥ 0, 𝑆𝐺(0) ≥ 0, 𝐼𝐻(0) ≥ 0, 𝑆𝐴(0) ≥ 0, 𝐼𝐴(0) ≥ 0 

• Co-state variables 

𝑑𝜆𝑆𝑉

𝑑𝑡
= −𝜆𝑆𝑉

(𝜏 (1 + 𝑢2(𝑡)
𝜂

1 + 𝜂
) − 𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝑆𝐺

(𝜏 (1 + 𝑢2(𝑡)
𝜂

1 + 𝜂
))

− 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝑆𝐺

𝑑𝑡
= −𝑃2 − 𝜆𝑆𝐺

(−𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝐼𝐻

𝑑𝑡
= −𝜆𝐼𝐻

(−𝜇𝐻) − 𝜆𝑆𝐴
(−𝛼2𝑆𝐴(𝑡)) − 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)) 

𝑑𝜆𝑆𝐴

𝑑𝑡
= −𝜆𝑆𝐴

(−𝛼2𝐼𝐻(𝑡) − 𝜇𝐴 − 𝛿) − 𝜆𝐼𝐴(𝛼2𝐼𝐻(𝑡)) 

𝑑𝜆𝐼𝐴

𝑑𝑡
= −𝜆𝑆𝑉

(−𝛼1𝑆𝑉(𝑡)) − 𝜆𝑆𝐺
(−𝛼1𝑆𝐺(𝑡)) − 𝜆𝐼𝐻 (𝛼1(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡))) − 𝜆𝐼𝐴

(−𝜇𝐴 − 𝛿) 

The stationary condition of the system for scenario 2 is 
𝜕𝐻2

𝜕𝑢2
= 0 , then 𝑢2 =

−𝜆𝑆𝑉
𝜏(

𝜂

1+𝜂
)𝑆𝑉+𝜆𝑆𝐺

𝜏(
𝜂

1+𝜂
)𝑆𝑉

2𝑄2
. Since 0 ≤ 𝑢2(𝑡) ≤ 1 then we get 

𝑢2
∗ = min{max{0,

−𝜆𝑆𝑉
𝜏 (

𝜂
1 + 𝜂) 𝑆𝑉 + 𝜆𝑆𝐺

𝜏 (
𝜂

1 + 𝜂) 𝑆𝑉

2𝑄2
} , 1} (20) 
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Note that 
𝜕2𝐻2

𝜕𝑢2
2 = −2𝑄2 < 0 satisfies the maximum criterion of optimal control theory with 𝑢2

∗  

being the optimal control of the system. 

5.3. Scenario 3 

 The goal of optimal control, in this case, is to minimize the number of vector populations and 

maximize the number of susceptible generative subpopulations. We are concerned about the cost 

of interventions, both entomopathogen and photoperiodicity. The objective function for this case 

is written in the equation (21). 

𝐽3(𝑢1, 𝑢2) = min∫ (𝑃1(𝑆𝐴(𝑡) + 𝐼𝐴(𝑡)) + 𝑄1𝑢1(𝑡)
2 + 𝑄2𝑢2(𝑡)

2 − 𝑃2𝑆𝐺(𝑡))

𝑡𝑓

0

𝑑𝑡,   

0 ≤ 𝑡 ≤ 𝑡𝑓 , 0 ≤ 𝑢1, 𝑢2 ≤ 1 

(21) 

Parameters 𝑃1  and 𝑄1  represent the weight of the vector population and the cost of 

entomopathogen, while 𝑃2  and 𝑄2  represent the weight of the susceptible generative 

subpopulation and the cost of photo-periodicity. The performance index for each parameter is 

𝑃1, 𝑄1, 𝑃2, 𝑄2 ≥ 0 . We solved the optimal control problem using the Pontryagin Maximum 

Principle with the variable 𝑦(𝑡) =

[
 
 
 
 
𝑆𝑉(𝑡)

𝑆𝐺(𝑡)

𝐼𝐻(𝑡)

𝑆𝐴(𝑡)

𝐼𝐴(𝑡) ]
 
 
 
 

 and the following constraints: 

𝑑𝑆𝑉(𝑡)

𝑑𝑡
= Λ − 𝜏 (1 + 𝑢2(𝑡) 

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡) 

𝑑𝑆𝐺(𝑡)

𝑑𝑡
= 𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡) 

𝑑𝐼𝐻(𝑡)

𝑑𝑡
= 𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡) 

𝑑𝑆𝐴(𝑡)

𝑑𝑡
= 𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝑢1(𝑡)𝛿𝑆𝐴(𝑡) 

𝑑𝐼𝐴(𝑡)

𝑑𝑡
= 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝑢1(𝑡)𝛿𝐼𝐴(𝑡) 

𝑆𝑉(𝑡), 𝑆𝐺(𝑡), 𝐼𝐻(𝑡), 𝑆𝐴(𝑡), 𝐼𝐴(𝑡) ≥ 0 

(22) 

Note that the control 𝑢1  and 𝑢2  represent the level of controlling entomopathogen and 

photoperiodicity in the system. The value of control shows the maximum effort that will be given 

in administering the entomopathogen and photoperiodicity over time. The Hamiltonian function 

𝐻3 = 𝑓(𝑦, 𝑢1, 𝑢2, 𝑡) + 𝜆′𝑔(𝑦, 𝑢1, 𝑢2, 𝑡) which is equal to: 
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𝐻3 = 𝑃1(𝑆𝐴(𝑡) + 𝐼𝐴(𝑡)) + 𝑄1𝑢1(𝑡)
2 + 𝑄2𝑢2(𝑡)

2 − 𝑃2𝑆𝐺(𝑡)

+ 𝜆𝑆𝑉
(Λ − 𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝑉(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝑉(𝑡))

+ 𝜆𝑆𝐺
(𝜏 (1 + 𝑢2(𝑡)

𝜂

1 + 𝜂
) 𝑆𝑉(𝑡) − 𝛼1𝑆𝐺(𝑡)𝐼𝐴(𝑡) − 𝜇𝐻𝑆𝐺(𝑡))

+ 𝜆𝐼𝐻 (𝛼1𝐼𝐴(𝑡)(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)) − 𝜇𝐻𝐼𝐻(𝑡))

+ 𝜆𝑆𝐴
(𝛾 − 𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝑆𝐴(𝑡) − 𝑢1(𝑡)𝛿𝑆𝐴(𝑡))

+ 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)𝐼𝐻(𝑡) − 𝜇𝐴𝐼𝐴(𝑡) − 𝑢1(𝑡)𝛿𝐼𝐴(𝑡)) 

(23) 

Where 𝜆𝑆𝑉
, 𝜆𝑆𝐺

, 𝜆𝐼𝐻 , 𝜆𝑆𝐴
, and 𝜆𝐼𝐴 are the Lagrange multipliers on the optimal control theory. The 

necessary conditions for scenario 3 should satisfy the following Pontryagin Maximum Principle: 

• State equations for this problem can be rewritten as  

𝑆𝑉(0) ≥ 0, 𝑆𝐺(0) ≥ 0, 𝐼𝐻(0) ≥ 0, 𝑆𝐴(0) ≥ 0, 𝐼𝐴(0) ≥ 0 

• Co-state variables 

𝑑𝜆𝑆𝑉

𝑑𝑡
= −𝜆𝑆𝑉

(𝜏 (1 + 𝑢2(𝑡)
𝜂

1 + 𝜂
) − 𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝑆𝐺

(𝜏 (1 + 𝑢2(𝑡)
𝜂

1 + 𝜂
))

− 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝑆𝐺

𝑑𝑡
= −𝑃2 − 𝜆𝑆𝐺

(−𝛼1𝐼𝐴(𝑡) − 𝜇𝐻) − 𝜆𝐼𝐻(𝛼1𝐼𝐴(𝑡)) 

𝑑𝜆𝐼𝐻

𝑑𝑡
= −𝜆𝐼𝐻

(−𝜇𝐻) − 𝜆𝑆𝐴
(−𝛼2𝑆𝐴(𝑡)) − 𝜆𝐼𝐴(𝛼2𝑆𝐴(𝑡)) 

𝑑𝜆𝑆𝐴

𝑑𝑡
= −𝜆𝑆𝐴

(−𝛼2𝐼𝐻(𝑡) − 𝜇𝐴 − 𝑢1(𝑡)𝛿) − 𝜆𝐼𝐴(𝛼2𝐼𝐻(𝑡)) 

𝑑𝜆𝐼𝐴

𝑑𝑡
= −𝜆𝑆𝑉

(−𝛼1𝑆𝑉(𝑡)) − 𝜆𝑆𝐺
(−𝛼1𝑆𝐺(𝑡)) − 𝜆𝐼𝐻 (𝛼1(𝑆𝑉(𝑡) + 𝑆𝐺(𝑡)))

− 𝜆𝐼𝐴
(−𝜇𝐴 − 𝑢1(𝑡)𝛿) 

The stationary condition of the system for scenario 3 is 
𝜕𝐻3

𝜕𝑢1
= 0  and 

𝜕𝐻3

𝜕𝑢2
= 0 . Since 0 ≤

𝑢1(𝑡), 𝑢2(𝑡) ≤ 1 then we get 

𝑢1
∗ = min {max {0,

𝜆𝑆𝐴
𝛿𝑆𝐴 + 𝜆𝐼𝐴𝛿𝐼𝐴

2𝑄1
} , 1} (24) 
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𝑢2
∗ = min{max{0,

𝜆𝑆𝑉
𝜏 (

𝜂
1 + 𝜂) 𝑆𝑉 − 𝜆𝑆𝐺

𝜏 (
𝜂

1 + 𝜂) 𝑆𝑉

2𝑄2
} , 1} 

Note that 
𝜕2𝐻3

𝜕𝑢1
2 = 2𝑄1 > 0 

𝜕2𝐻3

𝜕𝑢2
2 = 2𝑄2 > 0 satisfies the minimum criterion of optimal control 

theory with 𝑢1
∗ and 𝑢2

∗  being the optimal control of the system. 

 

6. NUMERICAL SIMULATION 

 In this section, we evaluate the model to confirm the system behavior and all scenarios of 

optimal control problems through a numerical approach. The value parameters used are described 

in Table 1. Note that scenario 1 and 2 in the optimal control problem has a different use of 

parameter, including 1) scenario 1 (𝜂 = 0) and 2) scenario 2 (𝛿 = 0). It represents there are no 

use interventions in the scenario, respectively. We obtained some graphical simulation that 

represents the population dynamics in the phenomenon of soybean Mosaic disease spreads. 

6.1. Population Dynamics without Optimal Control Theory 

 In this subsection, the population dynamics without intervention and with interventions are 

presented to compare the spread of Mosaic disease in soybean plants. We also confirm the stability 

of each equilibrium point through the simulation for the long term. 

 

(a) Without intervention represented by 

(ℜ0 = 1.7 > 1) 

 

(b) With intervention represented by 

(ℜ0 = 0.7 < 1). 

Figure 3. Numerical solution of systems (1) 

Figure 3 shows population dynamics without considering the optimal control theory. Based on 

Figure 3(a), it can be interpreted that the number of vectors, both susceptible and infected, 

increases without any interventions. Then, the number of infected populations increases over time. 
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While Figure 3(b) shows that the number of infected populations will go to zero. It is caused by 

the number of vectors controlled; moreover the subpopulation of the infected plant will go to zero. 

The explanation can be concluded that the risk of Mosaic disease spreading can be reduced. 

6.2. Effect of Entomopathogen 

 In this subsection, the population dynamics of infected plant, susceptible vector, and infected 

vector are compared by several value of parameter 𝛿 which represents the vector death rate due 

to entomopathogen. Based on previous numerical simulation, it can be shown that entomopathogen 

can suppress both susceptible and infected vector population. Then, it shows that the infected plant 

decreases over time. 

 

(a) Infected plant population 

 

(b) Susceptible vector population 

 

(c) Infected vector population 

Figure 4. Numerical solution of systems (1) with various values of 𝛿 

Figure 4 show that the higher value of δ on the third case has a significant effect to the system. 

In this case, the population of infected plant, susceptible vector, and infected vector can be more 

suppressed if the level of applied entomopathogen is higher. 
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6.3. Population Dynamics with Optimal Control Scenario 1 

 In scenario 1, a simulation is carried out by considering the control optimal of entomopathogen, 

but without photoperiodicity intervention. Therefore, parameter value 𝑢1(𝑡) = 𝑢1
∗(𝑡) is applied 

to the simulation. The result is obtained in Figure 5. 

 

(a) Population dynamics 

 

(b) Control function of entomopathogen 

Figure 5. Numerical solution of optimal control in scenario 1 

Figure 5(b) shows that the level of applied entomopathogen was almost always on the top 

level (𝑢1
∗(𝑡) = 1)  over time. Therefore, the vector population can be controlled and 

simultaneously impacted to the system, represented by the number of infected plants going to zero 

(see Figure 5(a)). Then, scenario 1 can be said to successfully control the disease by reducing the 

number of vector populations. 

6.4. Population Dynamics with Optimal Control Scenario 2 

 In scenario 2, a simulation is carried out by considering the control optimal of photoperiodicity 

but without entomopathogen intervention. Therefore, parameter value 𝑢2(𝑡) = 𝑢2
∗(𝑡) is applied 

to the simulation. The result is obtained in Figure 6. 

 

(a) Population dynamics 

 

(b) Control function of photoperiodicity 

Figure 6. Numerical solution of optimal control in scenario 2 
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Based on Figure 6, it is presented that the disease is still spreading in the system. The control 

in this scenario is indirect to impact the vector populations, but optimize the growth and 

development of plants. So the number of vectors is uncontrolled and causes the infected plant to 

increase. We conclude that scenario 2 is not successful in reducing the risk of disease spreading. 

6.5. Population Dynamics with Optimal Control Scenario 3 

A simulation is carried out in scenario 3 by considering the control optimal of entomopathogen 

and photoperiodicity intervention. Therefore, parameter value 𝑢1(𝑡) = 𝑢1
∗(𝑡)  and 𝑢2(𝑡) =

𝑢2
∗(𝑡) is applied to the simulation. The result is obtained in Figure 7. 

 

(a) Population dynamics 

 

(b) Control function of entomopathogen 

and photoperiodicity 

Figure 7. Numerical solution of optimal control in scenario 3 

 The control function graph shows that the control values for each 𝑢1(𝑡) and 𝑢2(𝑡) are not 

different from those obtained in scenarios 1 and 2. Globally, we see that the number of infected 

plants and vectors can be reduced. It represents that the disease is not spreading in the system and 

scenario 3 can be said to control the disease successfully. But, we have to compare the population 

dynamics in each scenario, including no control, 1, 2, and 3, to see the difference specifically. 

6.6. Comparison of Population Dynamics 

 This subsection shows the population dynamics in the susceptible generative plants, 

susceptible vectors, and infected vectors as the main subpopulations of optimal control targets 

through four scenarios. The first scenario is to show population dynamics without intervention in 

the system. While the second, third, and fourth scenarios are scenarios 1, 2, and 3 in the optimal 

control problem. The results obtained are shown in Figure 8. 
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(a) Susceptible generative plant population 

 

(b) Susceptible vector population 

 

(c) Infected vector population 

Figure 8. Comparison of population dynamics in several compartments 

 Figure 8 shows that the intervention taking into the optimal control theory impacted the system. 

It represents the success of the applied intervention in controlling the spread of Mosaic disease by 

reducing the number of vectors population and optimizing the growth and development of plant 

processes. Based on Figure 8(a), it can be seen that the scenario of exercising control of 

entomopathogen and photoperiodicity in the system can produce a number of susceptible 

generative plants higher than the other three scenarios. This is caused by reduced vector 

populations, both susceptible and infected, in the system that plays a virus spreader role. 

 

7. CONCLUSIONS 

 In this paper, we formulated a mathematical model for studying the spread of Mosaic disease 

considering applying the entomopathogen and control photoperiodicity as interventions. The 

model is a compartmental-based model where the plant and vector population divided to be five 

compartments, including 1) susceptible vegetative plants (𝑆𝑉), 2) susceptible generative plants 
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(𝑆𝐺), 3) infected plants (𝐼𝐻), 4) susceptible vectors (𝑆𝐴), and 5) infected vectors (𝐼𝐴). The model 

is analyzed by mathematics theories, and the result shows that there are one non-endemic 

equilibrium point and one endemic equilibrium point. Then the basic reproduction ratio is obtained 

by using the next-generation matrix method. The equilibrium points are stable for each condition, 

respectively, it showed analytically in section 3. Sensitivity analysis is presented to show the most 

influential parameter in the system. The optimal condition is obtained by applying the Pontryagin 

Maximum Principles to the optimal control problem. Numerical simulations is presented to 

confirm the analytical result and figure out the population dynamics by graphic to describing the 

Mosaic disease phenomenon. The result shows that the intervention impacted the system of Mosaic 

disease spreading. Combined interventions such as entomopathogen and photoperiodicity is the 

best scenario to suppress the vector populations and infected plants that impacted to reduce the 

risk of crop loss. The result obtained may be used as a reference to preventing and controlling the 

spread of Mosaic disease. 
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