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Abstract. Resource availability plays a pivotal role in the fight against emerging infections such as COVID-19.

In the event where there are limited resources the control of an epidemic disease tends to be slow and the disease

spread faster in the human population. In this paper, we are motivated to formulate and investigate a mathematical

model via the Caputo derivative which incorporates the impact of limited resources on COVID-19 transmission

dynamics in the population. We analyze the fractional model by computing the equilibrium points, and basic

reproduction number, (R0), and also used the Banach-fixed point theorem to prove the existence and uniqueness

of the solution of the model. The impact of each parameter on the dynamical spread of COVID-19 was examined

by the help of Sensitivity analysis. Results from mathematical analyses depict that the disease-free equilibrium

is stable if R0 < 1 and unstable otherwise. Numerical simulations were carried out at different fractional order

derivatives to understand the impact of several model parameters on the dynamics of the infection which can be

used to establish the influential parameter driving the epidemic transmission path. Our numerical results show that

an increase in the recovery rate of hospitalization increases the number of infected individuals. The results of this

work can help policymakers to devise strategies to reduce the COVID-19 infection.
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1. INTRODUCTION

Severe acute respiratory syndrome (SARS) first occurred in the year 2002-2003 in Guangdong

Province, China [1]. In 2015, South Korea experienced a similar outbreak known as the Middle

East respiratory syndrome (MERS) [2, 3]. On the other hand, in Wuhan, China, a disease called

SARS Coronavirus 2 (SARS-CoV-2) which is a new type of variant coronavirus emerged in

December 2019 [4]. The world health organization (WHO) later declared it a pandemic on 11

March 2020 [5]. This disease can transmit directly from human to human or through contact

with contaminated surfaces, coughing or sneezing [6, 7] while the asymptomatic stage of the

infection can last for up to 14 days before becoming infectious. The infected individuals at this

stage show passive symptoms ranging from respiratory infection like coughing and wheezing

which can later to an inability to smell and loss of taste [7]. While the elderly and those with

underlining illness such as diabetes, obesity, and hypertension easily succumb to the disease

[8, 9, 10, 11]. Currently, the world has recorded a total of 612,076,308 coronavirus cases with

about 6,509,597 deaths and 589,858,670 recovered individuals until date [12].

The alarming rate of COVID-19 cases and mortality has caused a global health concern.

Several control measures such as social distancing, wearing masks, regular hand washing,

the use of hand sanitizers, social distancing, isolation of infected people, bans on air travel,

and social gatherings in different areas were implemented at the early stage of the pandemic

to reduce the total number of infections. Additionally, various countries and regions of the

world enforced lockdowns in the most affected areas to help control the spread of the virus

and halt the chain of transmission caused by the infectious individuals in the whole susceptible

population [13].

Mathematical modeling has played a vital role in predicting several ways that enable most

world governments to mitigate the spread of the disease. Most of these models included using

a statistical approach, agent-based modeling, and ordinary differential equations consisting of

integer and non-integer order models to quantify the COVID-19 transmission and beneficial

ways to mitigate the infection. See the following published literature which has implemented

the integer order model [14, 15, 16, 17, 18, 19, 20, 21]. Fractional calculus has shown to have

a memory effect that gives more accurate results in forecasting physical systems including
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mathematical models [22]. This has led to new advancements in developing new fractional-

order operators namely Riemann-Liouville, Caputo, Caputo–Fabrizio, and Atangana–Baleanu

utilized in solving both integer and non-integer orders systems of differential equations arising

from real-world problems such as applications to integrodifferential equations [23, 24], mathe-

matical epidemiology [25, 26], economic and financial [27, 28] and many other fields. On the

other hand, fractional order, which consists of Caputo fractional and Atangana-Balenu (ABC)

derivatives, has also been applied in modeling the spread of COVID-19 as in [29, 30, 31].

We now focus on reviewing some of the above-mentioned literature. The work in [30] used a

Caputo model to study COVID-19 in Indonesia, considering environmental transmission and

vaccination. The results from numerical simulations of their model show that the spread of

SARS-CoV-2 greatly depends on the contact rate of the virus transmission. While in contrast,

the vaccination rate impacted negatively on the model basic reproduction number and similarly

the number of infected individuals in the population. Li et al. [22] implemented a fractional

piece-wise Caputo and Atangana–Baleanu–Caputo (ABC) model which examined the effect

of COVID-19 Omicron variant fitted to South Africa COVID-19 epidemiological data set and

found that adherence to non-pharmaceutical interventions such as social distances, wearing

face masks, avoiding social gatherings will have a negative effect on the number of infected

case in the third wave of the pandemic in the case of South Africa COVID epidemic course.

Furthermore, Ahmad et al. [32] used an ABC fractional derivative to study the impact of

quarantine and social distancing on the COVID-19 epidemic. It is found that the best method

to stop the spread of the virus is to social distance in the form of staying at home which can be

ahead through lockdown implementation, in contrast, the infected individuals should isolate to

avoid an increase in disease transmission. Also, Shah et al. [8] formulated a non-integer order

model for COVID-19 dynamics. The reproduction number was calculated and the asymptotic

stability of the proposed model was examined. It was found that the numerical simulation is in

good agreement with the theoretical results. The fractional order differential equations were

used by Atangana [24] to study the spread of COVID-19.
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Cakan [16] used an SEIR model to study the impact COVID-19 in the presence of lim-

ited resources considering the hospital setting. Their findings suggest that higher contact rates

between susceptible and infected individuals lead to higher hospitalized individuals, which

can grow beyond the carrying capacity of the present hospitals. Authors believe that the lack

of adequate resources to control such kind of virus contributed to a large number of cases of

the COVID-19 pandemic across the globe [12]. In this study, a new mathematical model for

the COVID-19 outbreak by incorporating limited resources is extended into a fractional-order

model in the sense of the Caputo fractional derivative. We modified the basic epidemic

model with limited public health resources as extended by [33, 34]. Using the idea of the

fractional ordinary differential equation, we are thinking that the fractional-order model will

accommodate the real phenomenon of the spread of COVID-19. Similarly, the results of this

model will help policymakers to devise strategies to reduce the COVID-19 infection. In the

next section, we present preliminaries for the fractional Caputo derivative.

2. BASICS OF FRACTIONAL CALCULUS

This section presents brief essential definitions regarding fractional calculus in Caputo sense.

Definition 1 (see [35]). Consider y∈C n be function, then Caputo derivative having fractional

order α in (n−1,n) where n ∈ N is defined as:

(1) CDα
t ( f (t)) =

1
Γ(n−α)

∫ t

0
(t− s)(n−α−1) f (n)(s)ds,

with Γ(.) is the gamma function and CDα
t ( f (t)) tends to f

′
(t) as α −→ 1.

Definition 2 (see [35]). The Corresponding integral with fractional order α > 0 of the func-

tion f:R+ −→ R is expressed as follows:

(2) Iα
t ( f (t)) =

1
Γ(α)

∫ t

0
(t− s)(α−1) f (s)ds, 0 < α < 1, t > 0.

Definition 3. Let y∗ denote the equilibrium of the Caputo fractional model then:

(3) CDα
t ( f (t)) = h(t, f (t)), α ∈ (0,1), i f f h(t, f ∗) = 0.



ON THE FRACTIONAL-ORDER MODELING OF COVID-19 DYNAMICS 5

3. MODEL FORMULATION

This section evaluates the formulation of an epidemic model of COVID-19 disease in a com-

munity with insufficient aids. Thus, the community denoted as N(t), is distributed into six mu-

tually exclusive components, i.e., susceptible class, S(t) (individuals who are likely to contract

COVID-19), exposed class, E(t) (those who are infected but not infectious yet), quarantined

class, Q(t) (those who are in isolation center or self-isolation), infectious class, I(t) (those who

display the symptoms and are capable of the disease spread), H(t) (those who are infectious

and admitted to a health care facility) and recovered class, R(t) (those who have recovered from

COVID-19 infection). Thus,

(4) N(t) = S(t)+E(t)+Q(t)+ I(t)+H(t)+R(t).

In order to understand the effect of the capacity and inadequate comprehend the effect of the

capability and inefficient health structures, the recovery rate for people in class H integrating

the effect of capacity and inefficient health facilities is developed as a nonlinear function as

(5) σ = σ(b,H) = σ0 +(σ1−σ0)
b

H +b
,

where b > 0 represents the hospital bed-population ratio, σ0 is the minimum per capita recovery

rate owing to the function of the basic healthcare system, and σ1 accounts for the maximum

per capita recovery rate corresponding to the sufficient clinical resources and few hospitalized

humans. A similar function to the ones given in (5) was previously suggested in [33, 34].

Consequently, the model governing the COVID-19 dynamics in the population according to the

flowchart illustrated in Figure 1 is derived as

(6)

dS
dt

= Λ+ρQ− βS(I + εH)

N
−µS−d0S,

dE
dt

=
βS(I + εH)

N
− (δ +ψ +d0)E,

dQ
dt

= µS+δE− (h2 +ρ +d0)Q,

dI
dt

= ψE− (h1 +d0 +d1)I,

dH
dt

= h1I +h2Q− (σ(b,H)+d0 +d1)H,

dR
dt

= σ(b,H)H−d0R.
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The explanation of the parameters used in model (6) is provided in Table 1, while the scheme

of the model is as shown in Figure 1.
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                                                                                                                                                                        d0 

 d0                                                                                  

S(t) E(t) 

R(t) 

Q(t) 

I(t) 

H(t) 

FIGURE 1. Flowchart of model (6) with λ = βS(I+εH)
N

TABLE 1. Definition of each parameter of model (6).

Parameter Description

Λ Recruitment rate

d0 Natural death rate

β Effective transmission rate

d1 COVID-19-induced death rate

ψ Disease progression rate of the exposed class

σ Per capita recovery rate for hospitalized individuals

µ Progression rate of individuals in class S to class Q

ε Modification parameter relative infectious individuals in class H

δ Detection rate at which exposed individuals become quarantined

h1(h2) Hospitalization rates for infectious (quarantined) individuals respectively

ρ Rate at which quarantined individuals become susceptible
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3.1. Positivity of Solutions. We prove that all the variables remain non-negative and the solu-

tions of model (6) with positive initial values will remain positive for all t > 0. We thus provide

the following theorem.

Theorem 1 Given that the initial values of the model (6) are S(0) > 0, E(0) > 0, Q(0) > 0,

I(0) > 0, H(0) > 0 and R(0) > 0. There exists (S(t),E(t),Q(t), I(t),H(t),R(t)) : (0,∞) −→

(0,∞) which solves model.(6)

Proof. Assume that t̂=sup{t > 0 : S(0) > 0, E(0) > 0, Q(0) > 0, I(0) > 0, H(0) > 0}∈ [0, t].

Thus t̂ > 0, and it follows from the first equation of model (6) that

dS
dt
≥−(λ +µ +d0)S

where λ = β (I+εH)
N , we thus have

d
dt

[
S(t)exp

(
(µ +d0)t +

∫ t

0
λ (τ)dτ

)]
≥ 0,

resulting to,

S(t)≥ S(0)exp
(
−
(
(µ +d0)t +

∫ t

0
λ (τ)dτ

))
> 0,∀ t > 0.

In a similar fashion it can also be exhibited that E(0) > 0, Q(0) > 0, I(0) > 0, H(0) > 0 and

R(0)> 0 for all t > 0, and this completes the proof. �

3.2. Invariant region. This Section present the point at which the model (6) will be positively

invariant.

Theorem 2 Let (S(t), E(t), Q(t), I(t), H(t) and R(t)) be the solution of system (6) with initial

values S(0), E(0), Q(0), I(0), H(0) and R(0). The compact set,

Φ =

{
(S,E,Q, I,H,R) ∈ R9

+ : N ≤ Λ

d0

}
is positively invariant and attracts all solutions in R6

+

Proof. We attend the proof presented in [36, 37]. Based on the equation (6), the time derivative

of N(t) is assigned by
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(7)

dN
dt

=
dS
dt

+
dE
dt

+
dQ
dt

+
dI
dt

+
dH
dt

+
dR
dt

,

= Λ−d0N−d1(I +H)≤ Λ−d0N

N ≤ Λ

d0
.

From (7) we have dN
dt ≤ 0 which implies that Φ is a positively invariant set. We also note that

by solving (7) we have

0≤ N(t)≤
(

Λ

d0
+N(0)e−µt

)
,

where N(0) is the initial condition of N(t). Thus, 0 ≤ N(t) ≤ Λ

d0
as t −→ ∞ and hence Φ is an

attractive set. �

4. FRACTIONAL-ORDER MODEL

This section evaluates a fractional-order COVID-19 model (6). The fractional model appropri-

ating to the system (6) is illustrated below:

(8)

CDα
0,tS(t) = Λ+ρQ− βS(I + εH)

N
−µS−d0S,

CDα
0,tE(t) =

βS(I + εH)

N
− (δ +ψ +d0)E,

CDα
0,tQ(t) = µS+δE− (h2 +ρ +d0)Q,

CDα
0,tI(t) = ψE− (h1 +d0 +d1)I,

CDα
0,tH(t) = h1I +h2Q− (σ(b,H)+d0 +d1)H,

CDα
0,tR(t) = σ(b,H)H−d0R.

where α in 0 < α ≤ 1 represents the order of the fractional derivative. The fractional derivative

of the model (8) is in the significance of Caputo. The Caputo method is mainly utilized in

actual applications. The major benefits of the Caputo approach are the introductory values for

the fractional differential equations putting up with the same establishment as for integer order

differential equations [35]. The Caputo fractional derivative is interpreted below.

Corollary 1. Suppose, g(x) ∈ C[a1,B1] and CDα
t y(x) ∈ a1 < α ≤ b1, where α ∈ 0 < α ≤ 1.

Then if



ON THE FRACTIONAL-ORDER MODELING OF COVID-19 DYNAMICS 9

(i). CDα
t y(x)≥ 0, ∀ x ∈ (a1,b1), then y(x) is increasing.

(ii). CDα
t y(x)≤ 0, ∀ x ∈ (a1,b1), then y(x) is decreasing.

4.1. Fractional model analysis. In this subsection, some fundamental and essential mathe-

matical elements of the proposed model (8) are presented.

4.1.1. Existence and uniqueness of the model solution. This section examines the pres-

ence and essence of the solution for the Caputo operator with the aid of fixed point theory.

For this, let B(X ) indicate a Banach space comprises real-valued continual functions over

the interval X = [0,a] with norm interpreted by ‖S‖ = supt∈G |S(t)|, ‖E‖ = supt∈G |E(t)|,

‖Q‖ = supt∈G |Q(t)|, ‖I‖ = supt∈G |I(t)|, ‖H‖ = supt∈G |H(t)|, ‖R‖ = supt∈G |R(t)|, and the

norm ‖(S,E,Q, I,H,R)‖= ‖S‖+‖E‖+‖Q‖+‖I‖+‖H‖+‖R‖.

Proof. The followings were obtained after using Caputo integral on system (8)

(9)

S(t) = S(0) + CIα
0,tS(t)

{
Λ+ρQ− βS(I + εH)

N
−µS−d0S

}
,

E(t) = E(0) + CIα
0,tE(t)

{
βS(I + εH)

N
− (δ +ψ +d0)E

}
,

Q(t) = Q(0) + CIα
0,tQ(t){µS+δE− (h2 +ρ +d0)Q} ,

I(t) = I(0) + CIα
0,tI(t){ψE− (h1 +d0 +d1)I} ,

H(t) = H(0) + CIα
0,tH(t){h1I +h2Q− (σ(b,H)+d0 +d1)H} ,

R(t) = R(0) + CIα
0,tR(t){σ(b,H)H−d0R} .

Arising from definition (2), the following were obtained,

(10)

S(t) = S(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K1(ρ,S(ρ))dρ,

E(t) = E(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K2(ρ,E(ρ))dρ,

Q(t) = Q(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K3(ρ,Q(ρ))dρ,

I(t) = I(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K4(ρ, I(ρ))dρ,

H(t) = H(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K5(ρ,H(ρ))dρ,
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R(t) = R(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K6(ρ,R(ρ))dρ.

The kernels are obtained as follows,

(11)

K1(t,S(t)) = Λ+ρQ− βS(I + εH)

N
−µS−d0S,

K2(t,E(t)) =
βS(I + εH)

N
− (δ +ψ +d0)E,

K3(t,Q(t)) = µS+δE− (h2 +ρ +d0)Q,

K4(t, I(t)) = ψE− (h1 +d0 +d1)I,

K5(t,H(t)) = h1I +h2Q− (σ(b,H)+d0 +d1)H,

K6(t,R(t)) = σ(b,H)H−d0R.

All the equations in (11) satisfy the Lipschitz conditions with all the compartments possess-

ing the upper limit. Suppose the functions S(t) and S∗(t) are considered, applying a similar

approach for other functions, which gives rise to

(12) ‖K1(t,S(t))−K1(t,S∗(t))‖=‖
1
N
(βS(I + εH)+µ +d0)(S(t)−S∗(t))‖,

Let g1 =‖ 1
N (βS(I + εH)+ µ + d0)‖. Using a similar approach, the remaining equations are

obtained as follows

(13)

‖K1(t,S(t))−K1(t,S∗(t))‖= g1‖(S(t)−S∗(t))‖,

‖K2(t,E(t))−K2(t,E∗(t))‖= g2‖(E(t)−E∗(t))‖,

‖K3(t,Q(t))−K3(t,Q∗(t))‖= g3‖(Q(t)−Q∗(t))‖,

‖K4(t, I(t))−K4(t, I∗(t))‖= g4‖(I(t)− I∗(t))‖,

‖K5(t,H(t))−K5(t,H∗(t))‖= g5‖(H(t)−H∗(t))‖,

‖K6(t,R(t))−K6(t,R∗(t))‖= g6‖(R(t)−R∗(t))‖.

where g1,g2,g3,g4,g5 and g6 denote the Lipschitz constants respectively which is correspond-

ing to all the six kernels and by this, the Lipschitz condition is concerned satisfied. The algo-

rithm of equations in (10) can be presented as follows:
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(14)

Sn(t) = S(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K1(ρ,Sn−1(ρ))dρ,

En(t) = E(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K2(ρ,En−1(ρ))dρ,

Qn(t) = Q(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K3(ρ,Qn−1(ρ))dρ,

In(t) = I(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K4(ρ, In−1(ρ))dρ,

Hn(t) = H(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K5(ρ,Hn−1(ρ))dρ,

Rn(t) = R(0) +
1

Γ(α)

∫ t

0
(t−ρ)α−1K6(ρ,Rn−1(ρ))dρ.

The form presented below is the successive terms along the initial conditions of the model with

their corresponding differences;

(15)

ΦS,n(t) = Sn(t)−Sn−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K1(ρ,Sn−1(ρ))−K1(ρ,Sn−2(ρ)))dρ,

ΦE,n(t) = En(t)−En−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K2(ρ,En−1(ρ))−K2(ρ,En−2(ρ)))dρ,

ΦQ,n(t) = Qn(t)−Qn−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K3(ρ,Qn−1(ρ))−K3(ρ,Qn−2(ρ)))dρ,

ΦI,n(t) = In(t)− In−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K4(ρ, In−1(ρ))−K4(ρ, In−1(ρ)))dρ,

ΦH,n(t) = Hn(t)−Hn−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K5(ρ,Hn−1(ρ))−K5(ρ,Hn−2(ρ)))dρ,

ΦR,n(t) = Rn(t)−Rn−1(t) =
1

Γ(α)

∫ t

0
(t−ρ)α−1(K6(ρ,Rn−1(ρ))−K6(ρ,Rn−2(ρ)))dρ.

It is noticed that, Sn(t) = ∑
n
j=0 ΦS, j(t), En(t) = ∑

n
j=0 ΦE, j(t),Qn(t) = ∑

n
j=0 ΦQ, j(t),In(t) =

∑
n
j=0 ΦQ, j(t),In(t) = ∑

n
j=0 ΦI, j(t),Hn(t) = ∑

n
j=0 ΦH, j(t),Rn(t) = ∑

n
j=0 ΦR, j(t). Now, we con-

sider that:

ΦS,n−1(t) = Sn−1(t)−Sn−2(t),ΦE,n−1(t) = En−1(t)−En−2(t),ΦQ,n−1(t) = Qn−1(t)−Qn−2(t),

ΦI,n−1(t) = In−1(t)− In−2(t),ΦH,n−1(t) = Hn−1(t)−Hn−2(t),ΦR,n−1(t) = Rn−1(t)−Rn−2(t).

We obtained form (15),

(16)
‖ΦS,n(t)‖ ≤

1
Γ(α)

g1

∫ t

0
(t−ρ)α−1‖ΦS,n−1(ρ)‖dρ,

‖ΦE,n(t)‖ ≤
1

Γ(α)
g2

∫ t

0
(t−ρ)α−1‖ΦE,n−1(ρ)‖dρ,
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‖ΦQ,n(t)‖ ≤
1

Γ(α)
g3

∫ t

0
(t−ρ)α−1‖ΦQ,n−1(ρ)‖dρ,

‖ΦI,n(t)‖ ≤
1

Γ(α)
g4

∫ t

0
(t−ρ)α−1‖ΦI,n(ρ)‖dρ,

‖ΦH,n(t)‖ ≤
1

Γ(α)
g5

∫ t

0
(t−ρ)α−1‖ΦH,n−1(ρ)‖dρ,

‖ΦR,n(t)‖ ≤
1

Γ(α)
g6

∫ t

0
(t−ρ)α−1‖ΦR,n−1(ρ)‖dρ.

Hence, all the model variables depict the bounded functions and the representation of the kernels

satisfies the Lipschitz condition. �

Theorem 3. The Caputo COVID-19 model stated by system (8) has a unique solution for all

value of t, such that t ∈ [0,a] if

(17)
1

Γ(α)
g jm < 1, j = 1, ...,6

Proof. From the above theorem, one will notice that all the model variables depict the bounded

functions and the expressions of the kernels satisfy the Lipschitz condition. Applying recursive

principle on equation (17) with respect to system (8), the system below is obtained:

‖ΦS,n(t)‖ ≤ ‖S0(t)‖
(

m
Γ(α)

g1

)n

,

‖ΦE,n(t)‖ ≤ ‖E0(t)‖
(

m
Γ(α)

g2

)n

,

‖ΦQ,n(t)‖ ≤ ‖Q0(t)‖
(

m
Γ(α)

g3

)n

,

‖ΦI,n(t)‖ ≤ ‖I0(t)‖
(

m
Γ(α)

g4

)n

,

‖ΦH,n(t)‖ ≤ ‖H0(t)‖
(

m
Γ(α)

g5

)n

,

‖ΦR,n(t)‖ ≤ ‖R0(t)‖
(

m
Γ(α)

g6

)n

.

Hence, the progression exist and satisfy the conditions describes ‖ΦS,n(t)‖ −→ 0, ‖ΦE,n(t)‖

−→ 0,‖ΦQ,n(t)‖ −→ 0,‖ΦI,n(t)‖ −→ 0,‖ΦH,n(t)‖ −→ 0, and ‖ΦR,n(t)‖ −→ 0, as n−→ ∞.

‖Sn+1(t)−Sn(t)‖ ≤
j=n+1

∑
n+1

Y j
1 =

Y n+1
1 −Y n+g+1

1
1−Y1

,
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‖En+1(t)−En(t)‖ ≤
j=n+1

∑
n+1

Y j
2 =

Y n+1
1 −Y n+g+1

2
1−Y2

,

‖Qn+1(t)−Qn(t)‖ ≤
j=n+1

∑
n+1

Y j
3 =

Y n+1
1 −Y n+g+1

3
1−Y3

,

‖In+1(t)− In(t)‖ ≤
j=n+1

∑
n+1

Y j
4 =

Y n+1
1 −Y n+g+1

4
1−Y4

,

‖Hn+1(t)−Hn(t)‖ ≤
j=n+1

∑
n+1

Y j
5 =

Y n+1
1 −Y n+g+1

5
1−Y5

,

‖Rn+1(t)−Rn(t)‖ ≤
j=n+1

∑
n+1

Y j
6 =

Y n+1
1 −Y n+g+1

6
1−Y6

.

So by hypothesis,
1

Γ(α)
g jm < 1, and Sn,En,Qn, In,Hn,Rn is the Cauchy progression. By this,

the complete desired result for the model (8) is obtained. �

4.2. Iterative solution and stability analysis. The subsequent hypothesis and solutions have

been furnished to stabilize the outcome of this proposed model (8)

Theorem 4 Let (B, ‖.‖) indicate a Banach space, and X∗ defined a self map on B. Further,

zn+1 = x(X∗,zn) exhibits the recursive expression while C (X∗) implies the fixed point set upon

X∗ indicating the fixed point set upon X∗. Also, by defining such that ‖y∗n+1− x(X∗,y∗n)‖ such

that {y∗n ⊆B}. Then, in the iterative approach, yn+1 = x(X∗,yn),X∗ is stable if limn−→∞ Cn = 0,

that is limn−→∞ C∗n = p∗ for zn+1 = X∗ where n is put up with as the Picard’s iteration then X∗

iteration is stable. The hypothesis can be condensed as below. Let (B, ‖.‖) define a Banach

space and X∗ be a self-map upon B, then for all x,y ∈B, we have that

(18)

Sn+1(t) = Sn(t) + L −1
{

1
Sa L

{
Λ+ρQ− βS(I + εH)

N
−µS−d0S

}}
,

En+1(t) = En(t) + L −1
{

1
Sa L

{
βS(I + εH)

N
− (δ +ψ +d0)E

}}
,

Qn+1(t) = Qn(t) +L −1
{

1
Sa L {µS+δE− (h2 +ρ +d0)Q}

}
,

In+1(t) = In(t) + L −1
{

1
Sa L {ψE− (h1 +d0 +d1)I}

}
,

Hn+1(t) = Hn(t) + L −1
{

1
Sa L {h1I +h2Q− (σ(b,H)+d0 +d1)H}

}
,

Rn+1(t) = Rn(t) + L −1
{

1
Sa L {σ(b,H)H−d0R}

}
.



14 J. O. AKANNI, FATMAWATI, C. W. CHUKWU

Suppose Z is defined as a self map, and the following results are obtained:

(19)

Z [Sn(t)] = Sn+1(t) = Sn(t) + L −1
{

1
Sa L

{
Λ+ρQ− βS(I+εH)

N −µS−d0S
}}

,

Z [En(t)] = En+1(t) = En(t) + L −1
{

1
Sa L

{
βS(I+εH)

N − (δ +ψ +d0)E
}}

,

Z [Qn(t)] = Qn+1(t) = Qn(t) +L −1
{

1
Sa L {µS+δE− (h2 +ρ +d0)Q}

}
,

Z [In(t)] = In+1(t) = In(t) + L −1
{

1
Sa L {ψE− (h1 +d0 +d1)I}

}
,

Z [Hn(t)] = Hn+1(t) = Hn(t) + L −1
{

1
Sa L {h1I +h2Q− (σ(b,H)+d0 +d1)H}

}
,

Z [Rn(t)] = Rn+1(t) = Rn(t) + L −1
{

1
Sa L {σ(b,H)H−d0R}

}
.

Z is stable if the following conditions are satisfied

{1−Λ−β (Q1 +Q2) f1−β (Q1 +Q2) f2−T0k1}< 1, {1−β (Q1 +Q2) f1 +β (Q1 +Q2) f2−T1k2}< 1,

{1− (µ +δ − (h2 +ρ +d0))k3}< 1, {1− (ψ− (h1 +d0 +d1))k4}< 1,

{1− (h1 +h2− (σ +d0 +d1))k5}< 1, {1− (σ −d0)k6}< 1.

Proof. Let T0 = µ +d0−ρ and T1 = δ +ψ +d0

The following equations were obtained when evaluated around the map Z which is a fixed

point,

(20)

Z [Sn(t)] −Z [Sm(t)] = Sn(t)− Sm(t),

Z [En(t)] −Z [Em(t)] = En(t)− Em(t),

Z [Qn(t)] −Z [Qm(t)] = Qn(t)− Qm(t),

Z [In(t)] −Z [Im(t)] = In(t)− Im(t),

Z [Hn(t)] −Z [Hm(t)] = Hn(t)− Hm(t),

Z [Rn(t)] −Z [Rm(t)] = Rn(t)− Rm(t).

Taking the norm of both sides of the above equation

(21)

‖Z [Sn(t)] −Z [Sm(t)] ‖ =‖L −1
{

1
Sa L

{
Λ+ρQn− βSn(In+εHn)

N −µSn−d0Sn

}}

−L −1
{

1
Sa L

{
Λ+ρQm− βSm(Im+εHm)

N −µSm−d0Sm

}}

Sn(t)−Sm(t) ‖ .
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Further simplification of (21), leads;

(22)

‖Z [Sn(t)]−Z [Sm(t)] ‖ ≤‖ Sn(t)−Sm(t) ‖+L −1{ 1
Sa L {‖ ρ(Qn−Qm) ‖

+ ‖ βSn(In− Im) ‖+ ‖ βSnε(Hn−Hm) ‖
1
N

− ‖ µ(Sn−Sm) ‖ − ‖ d0(Sn−Sm) ‖}}.

Using these assumptions,

(23)

‖ En(t)−Em(t) ‖ ∼= ‖ Sn(t)−Sm(t) ‖,

‖ Qn(t)−Qm(t) ‖ ∼= ‖ Sn(t)−Sm(t) ‖,

‖ In(t)− Im(t) ‖ ∼= ‖ Sn(t)−Sm(t) ‖,

‖ Hn(t)−Hm(t) ‖ ∼= ‖ Sn(t)−Sm(t) ‖,

‖ Rn(t)−Rm(t) ‖ ∼= ‖ Sn(t)−Sm(t) ‖,

after putting the above relation, leads

(24)

‖Z [Sn(t)]−Z [Sm(t)] ‖ ≤‖ Sn(t)−Sm(t) ‖+L −1{ 1
Sa L {‖ ρ(Qn−Qm) ‖

+ ‖ βSn(In− Im) ‖+ ‖ βSnε(Hn−Hm) ‖
1
N

− ‖ µ(Sn−Sm) ‖ − ‖ d0(Sn−Sm) ‖}}.

Since the progressions Sn(t), Em(t), Qm(t), Im(t), Hm(t), Rm(t) are convergent and bounded,

their exist six different constant S1 > 0, S2 > 0, S3 > 0, S4 > 0, S5 > 0 and S6 > 0 for all t.

Then ‖ Sn(t) ‖<‖ S1 ‖, ‖ Em(t) ‖<‖ S2 ‖, ‖ Qm(t) ‖<‖ S3 ‖, ‖ Im(t) ‖<‖ S4 ‖, ‖ Hm(t) ‖<‖

S5 ‖, ‖ Rn(t) ‖<‖ S6 ‖, (m,n) ∈ N×N. Through the relation, we can attain

(25)

‖Z [Sn(t)]−Z [Sm(t)] ‖ ≤ {1−Λ−β (Q1 +Q2) f1−β (Q1 +Q2) f2− (µ +d0−ρ)k1}

‖ Sn(t)−Sm(t) ‖,

‖Z [En(t)]−Z [Em(t)] ‖ ≤ {1−β (Q1 +Q2) f1 +β (Q1 +Q2) f2− (δ +ψ +d0)k2}

‖ En(t)−Em(t) ‖,

‖Z [Qn(t)]−Z [Qm(t)] ‖ ≤ {1− (µ +δ − (h2 +ρ +d0))k3} ‖ Qn(t)−Qm(t) ‖,

‖Z [In(t)]−Z [Im(t)] ‖ ≤ {1− (ψ− (h1 +d0 +d1))k4} ‖ In(t)− Im(t) ‖,

‖Z [Hn(t)]−Z [Hm(t)] ‖ ≤ {1− (h1 +h2− (σ +d0 +d1))k5} ‖ Hn(t)−Hm(t) ‖,

‖Z P[Rn(t)]−Z [Rm(t)] ‖ ≤ {1− (σ −d0)k6} ‖ Rn(t)−Rm(t) ‖ .

Hence, the proof is complete. �
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4.3. Disease-free equilibrium. The fractional model has a disease-free equilibrium presented

by

(26) D0 = (S0,E0,Q0, I0,H0,R0) =

(
Λ

d0
,0,0,0,0,0

)
,

an event portraying a society free of infection. The basic reproduction number, R0, inferred as

the anticipated number of secondary instances produced by a sole contagious person in a totally

susceptible community throughout its contagious time is a boundary variable that enables us

to foresee if the infection will stop or prevail [38]. Typically, R0 < 1 implies that the disease

(COVID-19) cannot overrun the community, R0 > 1 implies that each affected person develops

more than one secondary infected person, and R0 = 1 respects additional scrutiny. The reso-

lution of R0 is performed utilizing the next-generation matrix method [38, 39]. Utilizing this

procedure, we retain

(27) F =


0 0 β βε

0 0 0 0

0 0 0 0

0 0 0 0


and

(28) V =


k2 0 0 0

−δ k3 0 0

−ψ 0 k4 0

0 −h2 −h1 k5

 ,

where k2 = (δ +ψ +d0), k3 = (h2 +ρ +d0), k4 = (h1 +d0 +d1) and k5 = (σ1 +d0 +d1). At

the disease-free equilibrium, D0, σ(b,H) = σ1. Thus, the R0 of model (8) is given by

R0 =
β (ψk3k5 + ε(k3ψh1 + k4δh2))

k2k3k4k5
=

βψ

k2k4
+

βε(k3ψh1 + k4δh2)

k2k3k4k5
.(29)

The COVID-19 disease can be eradicated from the population (R0 < 1) if the initial sizes of the

population of the model are in the basin of attraction of the disease-free equilibrium. This will

be established by the following theorem.

Theorem 5 For any two positive integers n∗1,n
∗
2 with gcd(n∗1,n

∗
2) = 1 where α =

n∗1
n∗2

and M = n∗2.
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Thus, the system (8) is locally asymptotically stable if | arg(λ ) |> π

2M
for every root of λ that

is represented by the following equation,

(30) det(diag[λ Ma
λ

Ma
λ

Ma
λ

Ma
λ

Ma
λ

Ma]− J(D0)) = 0

Proof. The Jacobian of system (8) at D0 is

(31) J(D0) =



−d0 0 ρ −β −βε 0

0 −k2 0 β βε 0

0 δ −k3 0 0 0

0 ψ 0 −k4 0 0

0 0 h2 h1 −k5 0

0 0 0 0 σ1 −d0


,

The characteristics equation (31)

(32) (λ m +d0)
2(λ 4m +a1λ

3m +a2λ
2m +a3λ

m +a4) = 0.

The replicated two eigenvalues are −d0,−d0, have a negative real part. We employ the polyno-

mial in (32) and estimated the residing eigenvalues by finding the coefficients provided below:

a1 = k2 + k3 + k4 + k5,

a2 = k2(k3 + k4 + k5)+ k3(k4 + k5)+ k4k5−ψβ ,

a3 = (k2k4−ψβ )(k3 + k5)+ k3k5(k2 + k3)−βε(h1ψ +h2δ ),

a4 = k2k3k4k5(1−R0).

Obviously, ai are all positive for i = 1, ...,4 if R0 < 1. The Routh-Hurtwiz criteria can be

utilized to fulfill the conditions to prove the locally asymptotically stable of the system (8).

This calculation can be performed easily through software computation. The argument of the

roots of equation (λ m +d0)
2 = 0 are

arg(λk) =
π

m
+ k

2π

m
>

π

M
+

π

2M
,where k = 0,1,2, ...,(m−1).

Similar calculation can be applied to show that the argument of the roots of Eq. (32) are all

greater than
π

2M
if R0 < 1. Moreover, we can determine an argument less than

π

2M
for R0 > 1.

Thus disease-free equilibrium is locally asymptotically stable for R0 < 1. �
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Lemma 1 The disease-free equilibrium D0 is locally asymptotically stable whenever R0 < 1

and is unstable if R0 > 1.

The epidemiological significance of Lemma (4.3) is that it is possible to curb COVID-19 (or alu-

mina it) from a community (when R0 < 1) if the preliminary quantities of the sub-populations

of the fractional model are in the bay of interest of the disease-free equilibrium (D0).

4.4. Global stability of disease-free equilibrium. To guarantee active management (or elim-

ination) of COVID-19 in a community when it is autonomous of the preliminary quantity of the

sub-populations of the fractional model (8), it is crucial to exhibit that theD0 is globally asymp-

totically stable (GAS). This will be performed by assigning the Lyapunov function procedure.

Theorem 6 The disease-free equilibrium (D0) of the fractional model (8), given by (26), in the

shortage of the progression rate of people in class S to class Q (µ = 0) is GAS if R0 ≤ 1.

Proof. Assess the fractional model (8) with µ = 0 and the subsequent Lyapunov functional

defined by

(33) V = E +A1Q+A2I +A3H

Relating the Caputo-fractional derivative on V , concurrently with the practice of the model (8),

we obtain,

(34) CDα
t V = CDα

t E + A1
CDα

t Q + A2
CDα

t I + A3
CDα

t H

where A1 =
d0

δ
− d0k3h1ψ

(k4δh2−ψk3h1)δ
, A2 =

d0k3h1

k4δh2−ψk3h1
and A3 =

d0k3

δh2
−

d0k2
3h1ψ

(k4δh2−ψk3h1)δh2
.

The time derivative of the Lyapunov function (34), which is represented by CDα
t V

′
, along the

solution path of system (8) with µ = 0, is given by

(35)
CDα

t V
′
=

βS(I + εH)

N
−d0E +

[
d0

δ
− d0k3h1ψ

(k4δh2−ψk3h1)δ

]
(δE− k3Q)

+

[
d0k3h1

k4δh2−ψk3h1

]
(ψE− k4I)+

[
d0k3

δh2
−

d0k2
3h1ψ

(k4δh2−ψk3h1)δh2

]
(h1I +h2Q− k5H)

Using the limiting value N =
Λ

d0
and since S≤ Λ

d0
in the positively-invariant region Φ, it follows,

by serious rigorous simplification of (35), results into
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(36) CDα
t V

′
≤ β

[
ψk3k5 + ε(h1ψk3 +h2δk4)

ψk3k5

]
I +

d0k3h1

δh2
− d0(h1ψk3 +h2δk4)

ψδh2
I,

which finally yields this

(37) CDα
t V

′
≤ β

[
ψk3k5 + ε(h1ψk3 +h2δk4)

ψk3k5
− d0k4

ψ

]
I

then,

(38) CDα
t V

′
≤ d0k4

ψ
(R0−1) I.

Hence CDα
t V ≤ 0, if R0 < 1. CDα

t V = 0 if and only if E = Q = I = H = 0. Thus

(E,Q, I,H) −→ (0,0,0,0) as t −→ ∞ and model (8) implies that S −→ Λ

d0
and R −→ 0 as

t −→ ∞. It can be followed from the results given in [36], the solution of system (8) with

non-negative initial conditions tends to D0 whenever t −→ ∞ in Φ. So, the system (8) at D0 is

globally asymptotically stable (GAS). �

4.5. Endemic equilibrium. The rate of change of the total population of the system (8) is

given as

(39)
dN(t)

dt
= Λ−µN(t),

so that, N(t) −→ Λ

µ
as t −→ ∞. On the other hands, if N∗∗ is the value of the total population

at equilibrium, then solving (39) at equilibrium point gives N∗∗ =
Λ

µ
. For convenience, let an

endemic equilibrium of the fractional model (8) be denoted as

(40) E ∗∗ = (S∗∗, E∗∗, Q∗∗, I∗∗, H∗∗, R∗∗)

Similarly, using N∗∗ =
Λ

µ
at equilibrium, let the force of infection by

(41) λ
∗∗ =

β (I∗∗+ εH∗∗)µ
Λ

.

Therefore, solving the system (8) at equilibrium is given by
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(42)

S∗∗ =
Λ

λ ∗∗+d0
, E∗∗ =

λ ∗∗Λ

(λ ∗∗+d0)k2
, Q∗∗ =

δλ ∗∗Λ

(λ ∗∗+d0)k2k3

I∗∗ =
ψλ ∗∗Λ

(λ ∗∗+d0)k2k4
, H∗∗ =

(h1k3ψ +h2k4δ )λ ∗∗Λ

(λ ∗∗+d0)k2k3k4k5
, R∗∗ =

σ1λ ∗∗Λ(h1k3ψ +h2k4δ )

d0((λ ∗∗+d0)k2k3k4k5)
.

Substituting (42) into (41), and after simplification, we get

(43) A4λ
∗∗+A5 = 0,

where

(44)
A4 = k2k3k4k5

A5 = k2k3k4k5d0(1−R0).

If R0 > 1, then a unique endemic equilibrium exist.

Lemma 2 The system (8) has a unique endemic equilibrium (E ∗∗), whenever R0 > 1.

The qualitative behavior of solutions with respect to Theorem (4.4) has shown in Fig (2(a))

where solutions at different initial conditions tends to the disease-free equilibrium point asymp-

totically. This result implies that the disease elimination is possible regardless of the number of

infectious individuals present in the population as long as the basic reproduction number of the

disease is less than unity. Similarly, Fig (2(b)) shows the population of infected individuals at

different initial conditions converge to endemic equilibrium point when the basic reproduction

number is greater than unity. The implication is that the disease will persist in the population

regardless of the number of infected individuals in the populations as long as the basic repro-

duction number of the disease is greater than unity.

4.6. Sensitivity analysis. In this section, the sensitivity analysis of the formulated model (6) is

studied. In other to achieve this, the method used in the following literature [11, 19, 21, 36] were

adopt. The purpose of this is to know the parameters of the model that contribute majorly to the

spread of COVID-19 in the population. Thus, to do this the COVID-19 threshold quantity, the

basic reproduction number R0 given in (29), as the response function with respect to the model

parameters (6), the normalized forward-sensitivity index of R0 that depends on a parameter p

is defined as
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(A) Global asymptotic convergence of the model solution at different initial conditions to disease-free

equilibrium when R0 = 0.5417 < 1. The parameter values used are presented in Table (3), except β =

0.1321 and h2 = 0.1002
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(B) Global asymptotic convergence of the model solution at different initial conditions to endemic equi-

librium when R0 = 1.4592 > 1. The parameter values used are presented in Table (3)

FIGURE 2. Simulation of the global asymptotic convergence of the system (6)

solution at different initial conditions

(45) ϒ
R0
p =

∂R0

∂ p
× p

R0
.

Given the explicit formula (29) for the basic reproduction number R0, the analytical expressions

for the sensitivity of R0 in respect of the parameters defining it are computed. In particular, the

analytical expression for the sensitivity of R0 with respect to β in view of (45) is a constant

value, while that of ε is a complex expression, and are both obtained as

ϒ
R0
β

=
∂R0

∂β
× β

R0
=+1.
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In a similar manner, the analytical sensitivity indices of R0 for the other parameters are

computed. But the results are omitted due to their complexity. However, the sensitivity index

(SI) of R0 for all the parameters comprising it are evaluated at the baseline parameter values

given in Table 3. The signs and values of SI are presented in Table 2.

TABLE 2. Sensitivity index of R0 to each of the parameters of model (6) evalu-

ated at the baseline parameter values given in Table 3

Parameter Sign of SI

ψ Positive

ε Positive

δ Negative

h1 Negative

h2 Positive

d0 Negative

ρ Negative

σ1 Negative

d1 Negative

β Positive

From Table 2, it is observed that the sign of SI is positive for some parameters (ψ,ε,h2,β ),

while it is negative for the others (δ ,h1,d0,ρ,σ1,d1). From the set of parameters with positive

SI sign, β , ε and ψ are most positive. Whereas, σ1, δ and h1 are most negative from the set

of parameters with negative SI signs. The epidemiological insight from the positive sign of

SI of the COVID-19 threshold quantity, R0, is that increasing or decreasing the value of any

of the parameters in this category will generate an increase or decrease in the threshold R0 of

COVID-19. The negative sign of SI on the contrary suggests that increasing the value of each

of the parameter set in this category will lead to a decrease in the R0 value, and vice-versa.

For example, SR0
β

= +1 indicates that increasing the effective transmission rate of COVID-19

by 10% will increase the basic reproduction number, R0, of the disease by 10%, and the other

way round. Similarly, SR0
σ1 ≈ −0.44 means that increasing (or decreasing) σ1 by 100% always
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decreases (or increases) R0 by 44%. Consequently, in view of the results of sensitivity analysis

in Table 2, considerations of any control strategies that reduce the effective transmission rate

of COVID-19 (β ), modification parameter relative to the infectiousness of hospitalized (ε),

progression rate from exposed to become symptomatic (ψ), and increase the maxima per capital

recovery rate associated with the sufficient healthcare resources and few hospitalized humans

(σ1), detection rate for exposed self-quarantine (δ ) and hospitalization rate for symptomatic

infectious (h1) are needed to ensure an effective control of COVID-19 transmission and spread

in the population. The Fig 3 below is the sensitivity value of COVID-19 model parameters.

FIGURE 3. Sensitivity of COVID-19 model parameters

5. NUMERICAL SIMULATIONS AND DISCUSSION

The simulation for the Caputo COVID-19 model (8) is presented in this segment. The nat-

ural variable’s significance for the numerical simulation is provided in Table 3. The proposed

fractional model is unraveled numerically employing the notion explained in detail in [40, 41].
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FIGURE 4. Simulation of the system (8) for various values of α.

To review the position of numerous variables and memory inventories in the feature of the

disease incidence, there have been many uses of the main variables of the model. The changing

features of the proposed COVID-19 model (8) are exemplified graphically putting into account

of time unit has days. The model’s initial limitations are seized as

(S(0),E(0),Q(0), I(0),H(0),R(0)) = (2269,820,1200,50,27,9) ,

while the model variable values and their references are interpreted in Table 3.
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TABLE 3. Variable values used in simulating model (8)

Parameter Value Source Parameter Value Source
Λ 0.2266 Assumed ρ 0.1945 [11]
ε 0.24278 [19] µ 0.3938 [11]
d0

1
60.45×365 Assumed β 0.38974 [19]

δ 0.335 Assumed d1 0.015 [19]
ψ 1/5.2 [19] α0 0.2 [42]
h2 0.2351 Assumed σ1 0.021 Assumed

Below we give the graphs obtained from the numerical simulation of our Caputo model.

In Fig.(4), several values of α have been examined on the model compartments graphically.

The findings demonstrate that as the order of Caputo operator α rises, the burden of the syn-

drome rises in the community while the value α declines, and the different compartments are

declines with time. The consequence of Effective transmission rate β on the dynamics of the

model is exemplified in Figure (5). This behavior is interpreted for two values of the order of

Caputo operator i.e., α = 0.50,0.90. It was observed in Figure (5(a)) that as the effective trans-

mission rate increases the exposed individual also increases as the day goes by when α = 0.5,

while in Figure (5(b)) as the effective transmission rate increases the exposed individual also

increases for the first 27 days but convergence at the end of the day when α = 0.5. On the

other hand, in Figure 5(c) the effective transmission rate increases the quarantined individual

decreases and convergence to endemic at the end when α = 0.5 and in Figure 5(d) has the

effective transmission rate increases the quarantined individual decreases and convergence to

disease-free at the end (50 days) when α = 0.5. In Figure 5(e) the effective transmission rate

increases the infected individual also increases slowly as the day goes by when α = 0.5, but in

Figure 5(f) infected individuals increase greatly within this period when α = 0.5. In Figure 5(g)

the effective transmission rate decreases the hospitalized individual increase when α = 0.5 and

in Figure 5(h) as the effective transmission rate decreases the hospitalized individual increase

and convergence to endemic at the end (50 days) when α = 0.9.
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FIGURE 5. Simulation showing the effect of the transmission rate (β ) on the

population dynamics of COVID-19 for α = 0.5 (a,c,e,g), α = 0.9 (b,d,f,h).
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FIGURE 6. Simulation showing the effect of detection rate for exposed individ-

uals to become quarantined (δ ) on the population dynamics of COVID-19 for

α = 0.5 (a,c,e,h,i), α = 0.9 (b,d,f,h,j).
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FIGURE 7. Simulation showing the effect of hospitalization rates for infectious

(h1) on the population dynamics of COVID-19 for α = 0.5 (a,c), α = 0.9 (b,d).
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FIGURE 8. Simulation showing the effect of hospitalization rates for quaran-

tined, (h2) on the population dynamics of COVID-19 for α = 0.5 (a,c,e,), α = 0.9

(b,d,f).
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FIGURE 9. Simulation showing the effect of disease progression rate from ex-

posed class (ψ) on the population dynamics of COVID-19 for α = 0.5 (a),

α = 0.9 (b).
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FIGURE 10. Simulation showing the effect of progression rate of individuals in

class S to class Q (µ) on the population dynamics of COVID-19 for α = 0.5

(a,c,e,g), α = 0.9 (b,d,f,h).
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Also, Figure 6 shows the effect of the detection rate for exposed individuals to become quar-

antined δ . In Figure 6(a)–6(b) the susceptible individual increases as the detection rate for

exposed individuals to become quarantined increases, while in Figure 6(c)–6(d) the exposed in-

dividual increases as the detection rate for exposed individuals to become quarantined decrease.

In Figure 6(e) the quarantined individual increases as the detection rate for exposed individuals

to become quarantined decreases but in Figure 6(f) it convergence to endemic over time. In Fig-

ure 6(g)–6(h) the infected individual increases as the detection rate for exposed individuals to

become quarantined decreases, while in Figure 6(i)–6(j) the hospitalized individual decreases

as the detection rate for exposed individuals to become quarantined increase. The impact of

hospitalized rates for infectious h1 on the population dynamics of COVID-19 is depicted in

Figure 7. By increasing the value of the hospitalized rate, one can observe the decrease in the

hospitalized and recovered individuals when α = 0.5 as shown in Figure 7(a)–7(c) but when

α = 0.9 similar things occur for the first 36 days, as h1 approaches its optimal, the hospitalized

and recovered individuals increases sporadically as shown in Figure 7(b)–7(d). The impact of

hospitalized rates for quarantined, h2 on the dynamics of the model are illustrated in Figure

8. In Figure 8(a)–8(b) as the h2 increases the quarantined individual also decreases with time,

and in Figure 8(c)–8(d) as the h2 increases the infected individual also increases with time and

similarly to the hospitalized individual as shown in Figure 8(e)–8(f).

Similarly, Figure 9 shows the effect of disease progression rate from exposed class (ψ) on the

population dynamics of COVID-19. In Figure 9(a)–9(b) as ψ increases also infected community

increased. In Figure 10 as the effect of progression rate of individuals in class S to class Q

increases quarantined, infected, and hospitalized class increase for both α with time but α = 0.9

it convergence at a point for quarantined and infected class and reaches a peck at maximum for

hospitalized class at 30 days.
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6. CONCLUSION

In this paper, we formulate and analyze a Caputo fractional model of COVID-19 incorporating

the potential impact of limited resources on the human population. Mathematical analyses of

the model were done, which included determining the well-posedness of the system, equilib-

rium point, basic reproduction number R0 and the existence and uniqueness of solutions, as

well as the global stabilities of the model equilibria, were established based on the R0. Our

model basic reproduction number was calculated analytically and then evaluated numerically to

be R0 = 1.4592 which indicates the high transmissibility of the COVID-19 virus in the popula-

tion induced by the disease. Sensitivity analysis was also carried out to know the contributory

effect of each parameter on the dynamical spread of COVID-19 in the community. Importantly,

the qualitative analysis of the model shows that an increase in the fractional order parameter

leads to an increase in the number of humans infected with COVID-19. Furthermore, in the ab-

sence of resources such as masks, limited hospital beds, and various other non-pharmaceutical

interventions, our model predicts an increase in the number of infectious individuals as more

people get exposed to the virus. Similarly, the results of this model will help policymakers to

devise strategies to reduce the COVID-19 infection. We acknowledge that the modeling pre-

sented in this paper has a limitation; the model is not fitted to the COVID-19 epidemiological

dataset for any specific region. Rather we parameterize our model using the available param-

eter values from published literature which conforms with the actual attributes of COVID-19

dynamics. The work presented in this manuscript can be extended by incorporating fractional

optimal control parameters, which may investigate the types of interventions required to reduce

COVID-19 viral transmission in an event for a population with inadequate resources.
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