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Abstract. In this paper, sufficient conditions are obtained for the existence of positive periodic solution of the

following discrete Lotka-Volterra commensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+ c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

where {bi(k)}, i = 1,2,{c1(k)} are all positive ω-periodic sequences, ω is a fixed positive integer, {ai(k)} are

ω-periodic sequences, which satisfies ai =
1
ω

ω−1
∑

k=0
ai(k)> 0, i = 1,2. .
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There are several relationship among the two species: competition, predator-prey, mutualism,

etc. To this day, the dynamic behaviors of the mutualism model has been extensively investi-

gated [1-12] and many excellent works concerned with the persistence, existence of positive

periodic solution, and stability of the system were obtained. However, there are still few study

on the commensal symbiosis model. The intraspecific commensal relationship means that a

relationship which is only favorable to the one side and have no influence to the other side.

Epiphyte and plants with epiphyte is one of the typical commensal relationship.

To describe the intraspecific commensal relationship, Sun and Wei [13] proposed the follow-

ing model:
dx
dt

= r1x
(k1− x+ay

k1

)
,

dy
dt

= r2y
(k2− y

k2

)
.

(1.1)

The authors investigated the local stability of all equilibrium points. They showed that there

is only one local stable equilibrium point in the system. However, they did not investigate the

global stability property of the system.

As was pointed out by Fan and Wang [14], the discrete time models governed by differ-

ence equations are more appropriate than the continuous ones when the populations have non-

overlapping generations. Diserete time models can also provide efficient computational models

of continuous models for numeric simulations. This motivated us to propose the following

discrete commensal symbiosis model

x1(k+1) = x1(k)exp
{

a1(k)−b1(k)x1(k)+ c1(k)x2(k)
}
,

x2(k+1) = x2(k)exp
{

a2(k)−b2(k)x2(k)
}
,

(1.2)

where {bi(k)}, i = 1,2,{c1(k)} are all positive ω-periodic sequences, ω is a fixed positive in-

teger, {ai(k)} are ω-periodic sequences, which satisfies ai =
1
ω

ω−1
∑

k=0
ai(k) > 0, i = 1,2. Here

we assume that the coefficients of the system (1.2) are all periodic sequences which having a

common integer period. Such an assumption seems reasonable in view of seasonal factors, e.g.,

mating habits, availability of food, weather conditions, harvesting, and hunting, etc. We only

assume ai =
1
ω

ω−1
∑

k=0
ai(k) > 0, i = 1,2, the reason is that in bad conditions, the intrinsic growth

rate ai(k) may be negative, hence, it is natural to use ai to describe the weight growth rate of
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the species. As far as system (1.2) is concerned, one of the most important topic is to study the

existence of positive periodic solution of the system, which plays a similar role played by the

equilibrium of the autonomous models.

The aim of this paper is to obtain sufficient conditions to guarantee the existence of positive

periodic solution of system (1.2).

2. Main results

In order to obtain the existence of positive periodic solutions of (1.2), for the reader’s conve-

nience, we shall summarize in the following a few concepts and results from [15] that will be

basic for this paper.

Let X ,Z be normed vector spaces, L : DomL ⊂ X → Z be a linear mapping, N : X → Z be

a continuous mapping. The mapping L will be called a Fredholm mapping of index zero if

dimKerL = CodimImL < +∞ and ImL is closed in Z. If L is a Fredholm mapping of index

zero there exist continuous projectors P : X → X and Q : Z→ Z such that ImP = KerL, ImL =

KerQ = Im(I−Q). It follows that L|DomL∩KerP : (I−P)X → ImL is invertible. We denote

the inverse of that map by KP. If Ω be an open bounded subset of X , the mapping N will be

called L-compact on Ω̄ if QN(Ω̄) is bounded and KP(I−Q)N : Ω̄→ X is compact. Since ImQ

is isomorphic to KerL, there exists an isomorphisms J : ImQ→ KerL.

In the proof of our existence theorem below, we will use the continuation theorem of Gaines

and Mawhin([15, p40]).

Lemma 2.1. (Continuation Theorem) Let L be a Fredholm mapping of index zero and let N be

L-compact on Ω̄. Suppose

(a) For each λ ∈ (0,1), every solution x of Lx = λNx is such that x 6∈ ∂Ω;

(b) QNx 6= 0 for each x ∈ ∂Ω∩KerL and

deg{JQN,Ω∩KerL,0} 6= 0.

Then the equation Lx = Nx has at least one solution lying in DomL∩ Ω̄.
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Let Z,Z+,R and R+ denote the sets of all integers, nonnegative integers, real unumbers, and

nonnegative real numbers, respectively. For convenience, in the following discussion, we will

use the notation below throughout this paper:

Iω = {0,1, ...,ω−1}, g =
1
ω

ω−1

∑
k=0

g(k), gu = max
k∈Iω

g(k), gl = min
k∈Iω

g(k),

where {g(k)} is an ω-periodic sequence of real numbers defined for k ∈ Z.

Lemma 2.2. [2] Let g : Z → R be ω-periodic, i. e., g(k + ω) = g(k). Then for any fixed

k1,k2 ∈ Iω , and any k ∈ Z, one has

g(k)≤ g(k1)+
ω−1

∑
s=0
|g(s+1)−g(s)|,

g(k)≥ g(k2)−
ω−1

∑
s=0
|g(s+1)−g(s)|.

We now reach the position to establish our main result.

Theorem 2.1. System (1.2) admits at least one positive ω-periodic solution.

Proof. Let

xi(k) = exp{ui(k)}, i = 1,2,

so that system (1.2) becomes

u1(k+1)−u1(k) = a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)},

u2(k+1)−u2(k) = a2(k)−b2(k)exp{u2(k)}.
(2.1)

Define

l2 =
{

y =
{

y(k)
}
,y(k) = (y1(k),y2(k))T ∈ R2

}
.

For a = (a1,a2)
T ∈ R2, define |a| = max{|a1|, |a2|}. Let lω ⊂ l2 denote the subspace of all ω

sequences equipped with the usual normal form ‖y‖= max
k∈Iω

|y(k)|. It is not difficult to show that

lω is a finite-dimensional Banach space. Let

lω
0 = {y = {y(k)} ∈ lω :

ω−1

∑
k=0

y(k) = 0}, lω
c = {y = {y(k)} ∈ lω : y(k) = h ∈ R2,k ∈ Z},

then lω
0 and lω

c are both closed linear subspace of lω , and

lω = lω
0 ⊕ lω

c , dimlω
c = 2.
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Now let us define X = Y = lω , (Ly)(k) = y(k+1)− y(k). It is trivial to see that L is a bounded

linear operator and

KerL = lω
c , ImL = lω

0 , dimKerL = 2 =CodimImL.

Then it follows that L is a Fredholm mapping of index zero. Let

N(u1,u2)
T = (N1,N2)

T := N(u,k),

where { N1 = a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)},

N2 = a2(k)−b2(k)exp{u2(k)}.

Px =
1
ω

ω−1

∑
s=0

x(s),x ∈ X , Qy =
1
ω

ω−1

∑
s=0

y(s),y ∈ Y.

It is not difficult to show that P and Q are two continuous projectors such that

ImP = KerL and ImL = KerQ = Im(I−Q).

Furthermore, the generalized inverse (to L) Kp: ImL→KerP∩DomL exists and is given by

Kp(z) =
k−1

∑
s=0

z(s)− 1
ω

ω−1

∑
s=0

(ω− s)z(s).

Thus

QNx =
1
ω

ω−1

∑
k=0

N(x,k),

K p(I−Q)Nx =
k−1

∑
s=0

N(x,s)+
1
ω

ω−1

∑
s=0

sN(x,s)− (
k
ω

+
ω−1

2ω
)

ω−1

∑
s=0

N(x,s).

Obviously, QN and Kp(I−Q)N are continuous. Since X is a finite-dimensional Banach space,

it is not difficult to show that Kp(I−Q)N(Ω) is compact for any open bounded set Ω ⊂ X .

Moreover, QN(Ω) is bounded. Thus, N is L-compact on any open bounded set Ω ⊂ X . The

isomorphism J of ImQ onto KerL can be the identity mapping, since ImQ=KerL.

Now we are at the point to search for an appropriate open, bounded subset Ω in X for the

application of the continuation theorem. Corresponding to the operator equation Lx = λNx,λ ∈

(0,1), we have

u1(k+1)−u1(k) = λ [a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}],

u2(k+1)−u2(k) = λ [a2(k)−b2(k)exp{u2(k)}].
(2.2)
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Suppose that y = (y1(k),y2(k))T ∈ X is an arbitrary solution of system (2.6) for a certain λ ∈

(0,1). Summing on both sides of (2.2) from 0 to ω−1 with respect to k, we reach

ω−1
∑

k=0
[a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}] = 0,

ω−1
∑

k=0
[a2(k)−b2(k)exp{u2(k)}] = 0.

That is,
ω−1

∑
k=0

b1(k)exp{u1(k)}= ā1ω +
ω−1

∑
k=0

c1(k)exp{u2(k)}, (2.3)

ω−1

∑
k=0

b2(k)exp{u2(k)}= ā2ω. (2.4)

From (2.3) and (2.4), we have

ω−1
∑

k=0
|u1(k+1)−u1(k)|

= λ
ω−1
∑

k=0
|a1(k)−b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}|

≤
ω−1
∑

k=0
|a1(k)|+

ω−1
∑

k=0

(
b1(k)exp{u1(k)}+ c1(k)exp{u2(k)}

)
=

ω−1
∑

k=0
|a1(k)|+ ā1ω +2

ω−1
∑

k=0
c1(k)exp{u2(k)}

= (Ā1 + ā1)ω +2
ω−1
∑

k=0
c1(k)exp{u2(k)},

ω−1
∑

k=0
|u2(k+1)−u2(k)|

= λ
ω−1
∑

k=0
|a2(k)−b2(k)exp{u2(k)}|

≤ (Ā2 + ā2)ω.

(2.5)

where Ā1 = 1
ω

ω−1
∑

k=0
|a1(k)|, Ā2 = 1

ω

ω−1
∑

k=0
|a2(k)|. Since {u(k)} = {(u1(k),u2(k))T} ∈ X , there

exist ηi,δi, i = 1,2 such that

ui(ηi) = min
k∈Iω

ui(k), ui(δi) = max
k∈Iω

ui(k). (2.6)

By (2.4), we have

exp{u2(η2)}
ω−1

∑
k=0

b2(k)≤ ā2ω.
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So

u2(η2)≤ ln
ā2

b̄2
. (2.7)

It follows from Lemma 2.2, (2.5) and (2.7) that

u2(k)≤ u2(η2)+
ω−1

∑
k=0
|u2(k+1)−u2(k)| ≤ ln

ā2

b̄2
+(Ā2 + ā2)ω. (2.8)

From (2.4), we also have

exp{u2(δ2)}
ω−1

∑
k=0

b2(k)≥ ā2ω,

and so

u2(δ2)≥ ln
ā2

b̄2
. (2.9)

It follows from Lemma 2.2, (2.5) and (2.9) that

u2(k)≥ u2(δ2)−
ω−1

∑
k=0
|u2(k+1)−u2(k)| ≥ ln

ā2

b̄2
− (Ā2 + ā2)ω, (2.10)

which together with (2.8) leads to

|u2(k)| ≤max
{
| ln ā2

b̄2
+(Ā2 + ā2)ω|, | ln

ā2

b̄2
− (Ā2 + ā2)ω|

}
def
= H2. (2.11)

It follows from (2.3) and (2.8) that

ω−1
∑

k=0
b1(k)exp{u1(η1)} ≤ ā1ω +

ω−1
∑

k=0
c1(k)exp{(Ā2 + ā2)ω + ln ā2

b̄2
},

and so,

u1(η1)≤ ln
∆1

b1
, (2.12)

where

∆1 = ā1 +
c̄1ā2

b̄2
exp{(Ā2 + ā2)ω}.

It follows from Lemma 2.2, (2.6) and (2.12) that

u1(k) ≤ u1(η1)+
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≤ (Ā1 + ā1)ω + ln ∆1
b1
+2

c̄1ā2ω

b̄2
exp{(Ā2 + ā2)ω}

def
= M1.

(2.13)

It follows from (2.3) and (2.10) that

ω−1
∑

k=0
b1(k)exp{u1(δ1)} ≥ ā1ω +

ω−1
∑

k=0
c1(k)exp{ln ā2

b̄2
− (Ā2 + ā2)ω},
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and so,

u1(δ1)≥ ln
∆2

b1
, (2.14)

where

∆2 = ā1 +
c̄1ā2

b̄2
exp{−(Ā2 + ā2)ω}.

It follows from Lemma 2.2, (2.6) and (2.14) that

u1(k) ≥ u1(δ1)−
ω−1
∑

k=0
|u1(k+1)−u1(k)|

≥ ln ∆2
b1
− (Ā1 + ā1)ω−2

c̄1ā2ω

b̄2
exp{−(Ā2 + ā2)ω}

def
= M2.

(2.15)

It follows from (2.13) and (2.15) that

|u1(k)| ≤max
{
|M1|, |M2|

}
def
= H1. (2.16)

Clearly, H1 and H2 are independent on the choice of λ . Obviously, the system of algebraic

equations

ā1− b̄1x1 + c̄1x2 = 0, ā2− b̄2x2 = 0 (2.17)

has a unique positive solution (x∗1,x
∗
2) ∈ R+

2 , where

x∗1 =
ā1 + c̄1x∗2

b̄1
, x∗2 =

ā2

b̄2
.

Let H =H1+H2+H3, where H3 > 0 is taken sufficiently enough large such that ||(ln{x∗1}, ln{x∗2})T ||=

| ln{x∗1}|+ | ln{x∗2}|< H3. Let H = H1 +H2 +H3, and define

Ω =
{

u(t) = (u1(k),u2(k))T ∈ X : ‖u‖< H
}
.

It is clear that Ω verifies requirement (a) in Lemma 2.1. When u ∈ ∂Ω∩KerL = ∂Ω∩R2, u is

constant vector in R2 with ||u||= B. Then

QNu =

 ā1− b̄1 exp{u1}+ c̄1 exp{u2}

ā2− b̄2 exp{u2}

 6= 0.

Moreover, direct calculation shows that

deg{JQN,Ω∩KerL,0}= sgn
(

b̄1b̄2 exp{x∗1}exp{x∗2}
)
= 1 6= 0.

where deg(.) is the Brouwer degree and the J is the identity mapping since ImQ = KerL.

By now we have proved that Ω verifies all the requirements in Lemma 2.1. Hence (2.1) has at
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least one solution (u∗1(k),u
∗
2(k))

T , in DomL∩Ω̄. And so, system (1.2) admits a positive periodic

solution (x∗1(k),x
∗
2(k))

T , where x∗i (k) = exp{u∗i (k)}, i = 1,2, This completes the proof of the

claim.
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