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Abstract. In this paper, a single species stage-structured model with feedback control and infinite delay is consid-

ered in this paper. By applying the comparison theorem of differential equations, sufficient condition is obtained

for the extinction of the system; By using an iterative method, sufficient condition is obtained for the global as-

ymptotic stability of the positive equilibrium of the model. Our results show that the death rate of mature species

plays important role on the persistent and stability property of the system.
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Consider the following single species stage-structured model with infinite delay and feedback

control:

ẋ1(t) = αx2(t)− γx1(t)−αe−γτx2(t− τ),

ẋ2(t) = αe−γτx2(t− τ)−dx2(t)−βx2
2(t)− cx2(t)

∫ t

−∞

K1(t− s)u(s)ds,

u̇(t) = −au(t)+b
∫ t

−∞

K2(t− s)x2(s)ds,

(1.1)

where the coefficients α,γ,β ,a,b,c are all positive constants. The delay kernels Ki : [0,+∞)→

(0,+∞), i = 1,2 are continuous functions such that

∫ +∞

0
Ki(s)ds = 1. (1.2)

We shall consider (1.1) together with the initial conditions

xi(s) = φi(s), u(s) = ψ(s), s ∈ (−∞,0], i = 1,2; (1.3)

where φi,ψ ∈ BC+ and

BC+ = {φ ∈C((−∞,0], [0,+∞)) : φ(0)> 0 and φ isbounded}, i = 1,2.

It is well known that by the fundamental theory of functional differential equations [1], system

(1.1) has a unique solution col(x1(t),x2(t),u(t)) satisfying the initial condition (1.3). We easily

prove xi(t)> 0 for all i = 1,2 and u(t)> 0 in maximal interval of existence of the solution. In

this paper, the solution of system (1.1) satisfying the initial conditions (1.3) is said to be posi-

tive.

There are considerable works on the study of ecosystem with feedback controls, and many

excellent results have been obtained([1]-[28]). However, seldom did scholars consider the in-

fluence of feedback controls on the stage-structured ecosystem([27]-[28]).

Based on the famous single species model proposed by Aiello and Freedman, Ding and
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Cheng[27] proposed the following single species stage-structured model with feedback con-

trol:

ẋ1(t) = αx2(t)− γx1(t)−αe−γτx2(t− τ),

ẋ2(t) = αe−γτx2(t− τ)−βx2
2(t)− cx2(t)u(t),

u̇(t) = −au(t)+bx2(t).

(1.4)

In [27], it was shown that if the inequality

aβ > bc (1.5)

holds, then x1(t)→ x∗1,x2(t)→ x∗2,u(t)→ u∗ as t→+∞.

Already, there are several papers studied the dynamic behaviors of ecosystem with both feed-

back control and time delays. For example, P. X. Weng[8] and Fan et al[6] studied the dynamic

behaviors of a n-species competition system with infinite feedback control, their results showed

that delay has no influence on the existence of positive periodic solution of the system; F. D.

Chen[5] studied the stability property of a n-species pure-delay type competition system with

feedback controls, his results imply that the delays play an important role on the stability of the

system. Z. Li et al. [19] studied an autonomous Lotka-Volterra competitive system with infinite

delays and feedback controls. If the Lotka-Volterra competitive system is globally stable, then

they showed that the feedback controls only change the position of the unique positive equilib-

rium and retain the stable property, and delay has no influence on the stability property of the

system. Recently, Y. P. Liu et al. [28] proposed a stage structured predator-prey system with

feedback control and infinite delay, they studied the persistent property and the existence of

positive periodic solution of the system, however, they did not investigate the stability property

of the system.

On the other hand, in their series papers, Chen et al. ([31]-[33]) studied the dynamic behav-

iors of the following stage-structured predator-prey system (stage structure for both predator
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and prey).

ẋ1(t) = r1(t)x2(t)−d11x1(t)− r1(t− τ1)e−d11τ1x2(t− τ1),

ẋ2(t) = r1(t− τ1)e−d11τ1x2(t− τ1)−d12x2(t)−b1(t)x2
2(t)− c1(t)x2(t)y2(t),

ẏ1(t) = r2(t)y2(t)−d22y1(t)− r2(t− τ2)e−d22τ2y2(t− τ2),

ẏ2(t) = r2(t− τ2)e−d22τ2y2(t− τ2)−d21y2(t)−b2(t)y2
2(t)+ c2(t)y2(t)x2(t),

(1.6)

where x1(t) and x2(t) denote the densities of the immature and mature prey species at time t,

respectively; y1(t) and y2(t) represent the immature and mature population densities of predator

species at time t, respectively; ri(t), bi(t), ci(t)(i = 1,2) are all continuous functions bounded

above and below by positive constants for all t ≥ 0. di j,τi, i, j = 1,2 are all positive constants,

d12 and d21 are the death rate of the mature prey species and mature predator species, respec-

tively. The main different assumption between the works of Ding and Cheng [27] and Chen

et al. [2] is that the latter one considering the death rate of the mature species. By using the

comparison theorem of differential equation, they investigated the partial survival and extinc-

tion property of the system [2]. Their results showed that that small birth rate of the immature

prey and predator species and large death rate of the mature prey and predator species will lead

to the broken of the system, in the sense that both prey and predator species are will be driven

to extinction. They also showed that for system (1.6), the extinction of prey species could not

lead to the extinction of predator species, which seems very interesting and ridiculous.

Since the death rate of mature species plays important roles on the persistent property of sys-

tem (1.6), it seems interesting to study a feedback control stage structure system with the death

rate of mature spcies, this motivated us to propose and study the dynamic behaviors of system

(1.1). We will focus on the stability property of the system, following are the main results of

this paper:

Theorem 1.1. Let col(x1(t),x2(t),u(t)) be a solution of (1.1) and (1.3). Assume that the coef-

ficients of system (1.1) satisfy the inequality αe−γτ ≤ d, the kernels Ki(t), i = 1,2 are positive

functions and satisfy (1.2). Then the boundary equilibrium E0(0,0,0) of system (1.1) is globally
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attractive, that is,

lim
t→+∞

xi(t) = 0, i = 1,2, lim
t→+∞

u(t) = 0.

Theorem 1.2. Let col(x1(t),x2(t),u(t)) be a solution of (1.1) and (1.3). Assume that the co-

efficients of system (1.1) satisfy the inequality (1.5) and αe−γτ > d, the kernels Ki(t), i = 1,2

are positive functions and satisfy (1.2). Then the unique interior equilibrium E∗(x∗1,x
∗
2,u
∗) of

system (1.1) is globally attractive, that is,

lim
t→+∞

xi(t) = x∗i , i = 1,2, lim
t→+∞

u(t) = u∗.

Remark 1.1. Theorem 1.1 shows that delays are harmless for the stability of the interior equi-

librium point.

We will give a strict prove of this theorem in the next section. In Section 3, an example is

presented to illustrate the feasibility of our main result.

2. Proof of the Main results

The equilibria of system (1.1) satisfies the following equations

αx2− γx1−αe−γτx2 = 0,

αe−γτx2−dx2−βx2
2− cx2u = 0,

−au+bx2 = 0.

(2.1)

Solving above equations, the equilibria of system (1.1) are E0(0,0,0) and E∗(x∗1,x
∗
2,u
∗), where

x∗1 =
aα(αe−γτ −d)(1− e−γτ)

γ(aβ +bc)
, x∗2 =

a(αe−γτ −d)
aβ +bc

, u∗ =
b(αe−γτ −d)

aβ +bc
.

Obviously, if αe−γτ > d hold, then E∗ is positive equilibrium.

Concerned with the positive solution of system (2.1), similarly to the analysis of Theorem 1

in [27], we have

Lemma 2.1. Solutions of system (1.1) with initial condition (1.3) are positive for all t > 0.
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Lemma 2.2 ([29]) Consider the following equations:

x
′
(t) = bx(t−δ )−a1x(t)−a2x2(t),

x(t) = φ(t)> 0, −δ ≤ t ≤ 0,

and assume that b,a2 > 0,a1 ≥ 0 and δ ≥ 0 are constants, then:

(i) If b≥ a1, then lim
t→+∞

x(t) =
b−a1

a2
;

(ii) If b≤ a1, then lim
t→+∞

x(t) = 0.

Following Lemma 2.1 is Lemma 3 of Francisco Montes de Oca and Miguel Vivas [30].

Lemma 2.3. Let x : R→R be a bounded nonnegative continuous function, and let k : [0,+∞)→

(0,+∞) be a continuous kernel such that
∫

∞

0 k(s)ds = 1. Then

liminf
t→+∞

x(t) ≤ liminf
t→+∞

∫ t

−∞

k(t− s)x(s)ds

≤ limsup
t→+∞

∫ t

−∞

k(t− s)x(s)ds≤ limsup
t→+∞

x(t).

As a direct corollary of Lemma 2.2 of Chen, Yang and Chen [18], we have

Lemma 2.4. Suppose that
dx
dt
≤−ax+b,

where a,b are positive constants, then

limsup
t→+∞

x(t)≤ b
a
.

Suppose that
dx
dt
≥−ax+b,

where a,b are positive constants, then

liminf
t→+∞

x(t)≥ b
a
.

Proof of Theorem 1.1. By the second equation of system (1.1), we have

ẋ2(t)≤ αe−γτx2(t− τ)−dx2−βx2
2(t). (2.2)
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Since αe−γτ ≤ d, it follows Lemma 2.2 (ii) that

lim
t→+∞

x2(t) = 0. (2.3)

From (2.3) and Lemma 2.3 that

lim
t→+∞

∫ t

−∞

K2(t− s)x2(s)ds = 0. (2.4)

therefore, for any enough small positive constant ε > 0, there exists T such that∫ t

−∞

K2(t− s)x2(s)ds < ε, x2(t)< ε for all t ≥ T. (2.5)

Thus, for t > T , it follows from the third equation of system (1.1) that

u̇(t)≤−au(t)+bε. (2.6)

Applying Lemma 2.4 to above differential inequality leads to

limsup
t→+∞

u(t)≤ bε

a
. (2.7)

On the other hand, from the positivity of u(t), one has

liminf
t→+∞

u(t)≥ 0. (2.8)

Setting ε → 0, from (2.7) and (2.8) we have

lim
t→+∞

u(t) = 0. (2.9)

Noting that the first equation of system (1.1) is equivalent to

x1(t) =
∫ t

t−τ

αe−γ(t−s)x2(s)ds, (2.10)

from (2.9) and (2.5), similarly to the analysis of (2.6)-(2.9), one could easily see that

lim
t→+∞

x1(t) = 0. (2.11)

(2.3), (2.9) and (2.11) show that E0(0,0,0) is globally attractive. This ends the proof of Theorem

1.1.

Proof of Theorem 1.2. Condition (1.5) together with αe−γτ > d leads to

αe−γτ −d > c · b
a
· (αe−γτ −d)

β
,
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and so there exists a enough small positive constant ε > 0 such that

m(1)
1

def
=

αe−γτ −d− c
(

b
a

( (αe−γτ−d)
β

+ ε
)
+ ε

)
β

− ε > 0; (2.12)

m(1)
2

def
=

b
a

m(1)
1 − ε > 0. (2.13)

By the second equation of system (1.1), we have

ẋ2(t)≤ αe−γτx2(t− τ)−dx2(t)−βx2
2(t).

From Lemma 2.2, it follows that

limsup
t→+∞

x2(t)≤
αe−γτ −d

β
. (2.14)

From (2.14) and Lemma 2.3 we have

limsup
t→+∞

∫ t

−∞

K2(t− s)x2(s)ds≤ limsup
t→+∞

x2(t)≤
αe−γτ −d

β
. (2.15)

Hence, for ε > 0 defined by (2.12), it follows from (2.14)-(2.15) that there exists a T ′1 > 0 such

that

x2(t)<
αe−γτ −d

β
+ ε

def
= M(1)

1 , for t > T ′1;∫ t

−∞

K2(t− s)x2(s)ds <
αe−γτ −d

β
+ ε

def
= M(1)

1 , for t > T ′1.
(2.16)

By the third equation and (2.16), we have

u̇(t) = −au(t)+b
∫ t

−∞

K2(t− s)x2(s)ds

≤ −au(t)+bM(1)
1 , for all t ≥ T ′1.

(2.17)

From Lemma 2.4 it follows that

limsup
t→+∞

u(t)≤
bM(1)

1
a

. (2.18)

From (2.18) and Lemma 2.3, we have

limsup
t→+∞

∫ t

−∞

K1(t− s)u(s)ds≤ limsup
t→+∞

u(t)≤
bM(1)

1
a

. (2.19)



GLOBAL ATTRACTIVITY OF A SINGLE SPECIES MODEL 9

Hence, for ε > 0 defined by (2.12), it follows from (2.18)-(2.19) that there exists a T1 > T ′1 such

that

u(t)<
bM(1)

1
a

+ ε
def
= M(1)

2 , for t > T1;∫ t

−∞

K1(t− s)u(s)ds <
bM(1)

1
a

+ ε
def
= M(1)

2 , for t > T1.

(2.20)

For t > T1, from the second equation of (1.1) and (2.20), we have

ẋ2(t) = αe−γτx2(t− τ)−dx2(t)−βx2
2(t)− cx2(t)

∫ t

−∞

K1(t− s)u(s)ds

≥ αe−γτx2(t− τ)−dx2(t)−βx2
2(t)− cM(1)

2 x2(t).
(2.21)

From (2.12) one could see that αe−γτ > cM(1)
2 , therefore, applying Lemma 2.2 to (2.21) leads

to

liminf
t→+∞

x2(t)≥
αe−γτ −d− cM(1)

2
β

. (2.22)

From (2.22) and Lemma 2.3, we have

liminf
t→+∞

∫ t
−∞

K2(t− s)x2(s)ds≥ liminf
t→+∞

x2(t)≥
αe−γτ −d− cM(1)

2
β

. (2.23)

That is, for ε > 0 be defined by (2.12), there exists a T ′2 > T1 such that

x2(t)>
αe−γτ −d− cM(1)

2
β

− ε
def
= m(1)

1 > 0, for t > T ′2;

∫ t

−∞

K2(t− s)x2(s)ds >
αe−γτ −d− cM(1)

2
β

− ε
def
= m(1)

1 > 0, for t > T ′2.

(2.24)

It follows from (2.24) and the third equation of system (1.1) that

u̇(t) = −au(t)+b
∫ t

−∞

K2(t− s)x2(s)ds

≥ −au(t)+bm(1)
1 , for t > T ′2.

(2.25)

Therefore, by Lemma 2.4 and (2.25), we have

liminf
t→+∞

u(t)≥
bm(1)

1
a

. (2.26)

From (2.26) and Lemma 2.3, we have

liminf
t→+∞

∫ t

−∞

K1(t− s)u(t− s)ds≥ liminf
t→+∞

u(t)≥
bm(1)

1
a

. (2.27)



10 RONGYU HAN, LIYA YANG, YALONG XUE

That is, for ε > 0 be defined by (2.13), there exists a T2 > T
′

2 such that

u(t)>
bm(1)

1
a
− ε

def
= m(1)

2 > 0, for t > T2;

∫ t

−∞

K1(t− s)u(s)ds >
bm(1)

1
a
− ε

def
= m(1)

2 > 0, for t > T2.

(2.28)

From (2.28) and the second equation of system (1.1), we have

ẋ2(t) = αe−γτx2(t− τ)−dx2(t)−βx2
2(t)− cx2(t)

∫ t

−∞

K1(t− s)u(s)ds

≤ αe−γτx2(t− τ)−dx2(t)−βx2
2(t)− cm(1)

2 x2(t), for t > T2.

(2.29)

It follows from (2.12) and (2.22) that

αe−γτ −d− cm(1)
2 > 0. (2.30)

Therefore, by applying Lemma 2.2 to (2.29), it follows that

limsup
t→+∞

x2(t)≤
αe−γτ −d− cm(1)

2
β

. (2.31)

From (2.31) and Lemma 2.3 we have

limsup
t→+∞

∫ t
−∞

K2(t− s)x2(s)ds≤ limsup
t→+∞

x2(t)≤
αe−γτ −d− cm(1)

2
β

. (2.32)

Hence, for ε > 0 be defined by (2.12), there exists a T ′3 > T2 such that

x2(t)<
αe−γτ −d− cm(1)

2
β

+
ε

2
def
= M(2)

1 , for t > T ′3;∫ t

−∞

K2(t− s)x2(s)ds <
αe−γτ −d− cm(1)

2
β

+
ε

2
def
= M(2)

1 , for t > T ′3.

(2.33)

(2.33) together with the third equation of system (1.1) leads to

u̇(t) ≤ −au(t)+bM(2)
1 , for all t ≥ T ′3. (2.34)

From Lemma 2.4 it follows that

limsup
t→+∞

u(t)≤
bM(2)

1
a

. (2.35)

From (2.35) and Lemma 2.3 we have

limsup
t→+∞

∫ t

−∞

K1(t− s)u(s)ds≤
bM(2)

1
a

. (2.36)
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Hence, for ε > 0 be defined by (2.12), it follows from (2.35)-(2.36) that there exists a T3 > T ′3

such that

u(t)<
bM(2)

1
a

+
ε

2
def
= M(2)

2 , for t > T3;∫ t

−∞

K1(t− s)u(s)ds <
bM(2)

1
a

+
ε

2
def
= M(2)

2 , for t > T3.

(2.37)

For t > T3, from the second equation of (1.1) and (2.37), we have

ẋ2(t) ≥ αe−γτx2(t− τ)−d−βx2
2(t)− cM(2)

2 x2(t). (2.38)

From (2.12), M(2)
1 < M(1)

1 , and the definition of M(2)
2 , one could see that αe−γτ > cM(2)

2 , There-

fore, by applying Lemma 2.2 to (2.38), it follows that

liminf
t→+∞

x2(t)≥
αe−γτ −d− cM(2)

2
β

. (2.39)

From (2.39) and Lemma 2.3, we have

liminf
t→+∞

∫ t
−∞

K2(t− s)x2(s)ds≥
αe−γτ −d− cM(2)

2
β

. (2.40)

That is, for ε > 0 be defined by (2.12), there exists a T ′4 > T3 such that

x2(t)>
αe−γτ −d− cM(2)

2
β

− ε

2
def
= m(2)

1 > 0, for t > T ′4;

∫ t

−∞

K2(t− s)x2(s)ds >
αe−γτ −d− cM(2)

2
β

− ε

2
def
= m(2)

1 > 0, for t > T ′4.

(2.41)

It follows from (2.41) and the third equation of system (1.1) that

u̇(t) ≥ −au(t)+bm(2)
1 , for t > T ′4. (2.42)

Therefore, by Lemma 2.4 and (2.13), we have

liminf
t→+∞

u(t)≥
bm(2)

1
a

. (2.43)

From (2.43) and Lemma 2.3, we have

liminf
t→+∞

∫ t

−∞

K1(t− s)u(s)ds≥
bm(2)

1
a

. (2.44)
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That is, for ε > 0 defined by (2.13), there exists a T4 > T
′

4 such that

u(t)>
bm(2)

1
a
− ε

2
def
= m(2)

2 > 0, for t > T4;

∫ t

−∞

K1(t− s)u(s)ds >
bm(2)

1
a
− ε

2
def
= m(2)

2 > 0, for t > T4.

(2.45)

Obviously,

M(2)
1 =

αe−γτ −d− cm(1)
2

β
+

ε

2
<

αe−γτ

β
+ ε = M(1)

1 ;

M(2)
2 =

bM(2)
1

a + ε

2 <
bM(1)

1
a + ε = M(1)

2 ;

m(2)
1 =

αe−γτ −d− cM(2)
2

β
− ε

2
>

αe−γτ −d− cM(1)
2

β
− ε = m(1)

1 ;

m(2)
2 =

bm(2)
1

a
− ε

2
>

bm(1)
1

a
− ε = m(1)

2 .

(2.46)

Repeating the above procedure, we get four sequences M(n)
i ,m(n)

i , i = 1,2,n = 1,2, · · · , such that

for n≥ 2

M(n)
1 =

αe−γτ −d− cm(n−1)
2

β
+

ε

n
;

M(n)
2 =

bM(n)
1

a + ε

n ;

m(n)
1 =

αe−γτ −d− cM(n)
2

β
− ε

n
;

m(n)
2 =

bm(n)
1

a
− ε

n
.

(2.47)

By induction, one could show that sequences M(n)
i , i= 1,2 are strictly decreasing, and sequences

m(n)
i , i = 1,2 are strictly increasing. Also

m(n)
1 < x2(t)< M(n)

1 , m(n)
2 < u(t)< M(n)

2 , for t ≥ T2n, i = 1,2.

Therefore,

lim
t→+∞

M(n)
1 = x2, lim

t→+∞
M(n)

2 = u, lim
t→+∞

m(n)
1 = x2, lim

t→+∞
m(n)

2 = u. (2.48)
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Letting n→+∞ in (2.47), we obtain

βx2 = αe−γτ −d− cu;

u = b
ax2;

βx2 = αe−γτ −d− cu;

u = b
ax2.

(2.49)

Solving (2.49), we obtain

x2 = x2 = x∗2 =
a(αe−γτ −d)

aβ +bc
, u = u = u∗ =

b(αe−γτ −d)
aβ +bc

,

that is

lim
t→+∞

x2(t) = x∗2 lim
t→+∞

u(t) = u∗. (2.50)

Noting that the first equation of system (1.1) is equivalent to

x1(t) =
∫ t

t−τ

αe−γ(t−s)x2(s)ds, (2.51)

from (2.50)-(2.51), one could easily see that

lim
t→+∞

x1(t) = x∗1 =
aα(αe−γτ −d)(1− e−γτ)

γ(aβ +bc)
. (2.52)

Thus, the unique interior equilibrium E∗(x∗1,x
∗
2,u
∗) is globally attractive. This completes the

proof of Theorem 1.1.

3. Examples

The following example shows the feasibility of our main result.

Example 3.1. Consider the following system

ẋ1(t) = 2x2(t)− x1(t)−2e−1x2(t−1),

ẋ2(t) = 2e−1x2(t−1)−dx2(t)− x2
2(t)− x2(t)

∫ t

−∞

e−(t−s)u(s)ds,

u̇(t) = −3u(t)+
∫ t

−∞

e−(t−s)x2(s)ds.

(3.1)

Here, corresponding to system (1.1), we set α = 2,γ = β = b = c = τ = 1,a = 3, Ki(t) =

e−t . One could easily see that aβ = 3 > 1 = bc. Obviously (1.5) holds, then it follows from

Theorems 1.1 that if d ≥ 2e−1 hold, E0(0,0,0) is globally attractive, and if d < 2e−1 hold, then
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from Theorem 1.2 the unique interior equilibrium E∗
(3(1−e−1)

e , 3
2e−1, 1

2e−1) of system (3.1) is

globally attractive.

4. Discussion

Stimulated by the works of Ding and Cheng[27] and Chen et al[31, 32, 33], we propose a

single species model with feedback control and infinite delays. The main difference between

the model of [27] and system (1.1) is that we incorporate the death rate of mature species to the

system.

Theorem 1.1 and 1.2 show that the death rate of mature species plays important role on the

persistent and stability property of the system. Indeed, Ding and Cheng [27] had showed that

for the system (1.4), E0(0,0,0) is unstable, which means that the species could not be driven to

extinction. However, our result Theorem 1.1 shows that if the death rate d of mature species is

enough large, then the system will outbreak in the sense that the species will be driven to the

extinction.

It is also interesting that from (2.1) we know that condition αe−γτ > d is needed to ensure

the existence of the positive equilibrium. Then the essential condition of Theorem 1.2 is (1.5),

which is coincidence with the condition to ensure the global attractivity of the positive equilib-

rium of system (1.4). It’s in this sense that our Theorem 1.2 can be seen as the generalization

of the main result of Ding and Cheng [27] to the infinite delay case.
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