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Abstract. In this article, we introduce a new technique to find an approximate solution for first order

neutral delay differential equations. This technique depends on approximate the solution using the spline

functions expansion. Special attention is given to study the error estimation and the convergence of the

proposed method. Also, the stability of the technique is presented. The numerical results are compared

with the conventional approximate method, variational iteration method.
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1. Introduction

In fact, the neutral delay differential equations appear in modelling of the network-

s containing lossless transmission lines (as in high-speed computers where the lossless

transmission lines are used to interconnect switching circuits), in the study of vibrating

masses attached to an elastic bar, as the Euler equation in some variational problems,

theory of automatic control and in neuromechanical systems in which inertia plays an

important role ([3], [4], [5], [9]).
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Consider the following first order neutral delay differential equation:

y′(x) = f (x, y(x), y(g(x)), y′(g(x))) , a ≤ x ≤ b, (1.1)

with the following initial condition:

y(x0) = y0, y(x) = φ(x), x ∈ [a∗, a], (1.2)

where f is a given function and y is the unknown function to be found in the interval

[a, b]. The authors ([2]-[8]) have introduced the different methods to the approximate

solution of neutral differential equations. Also, the authors ([13], [15], [19]) have studied

spline approximation for solving differential equations with deviating argument and some

others discussed the numerical treatment of delay differential equations ([14], [17], [18])

and second order Fredholm integro-differential equations ([1], [11], [16]). The introduced

method is a one-step method o(hm+α) in yi(x), i = 0, 1. Assuming that f ∈ C[a, b]×R3,

0 < α ≤ 1 and m is an arbitrary positive integer number which is the number of iterations

used in computing the spline functions defined in the method.

The rest of this paper is organized as follows: Section 2 is assigned to introduce some

assumptions and procedure of the proposed method. In section 3, the error estimation

and convergence are given. In section 4, the stability of the method is presented. In

section 5, a test problem has been solved by the proposed method, to illustrate and show

the efficiency of the proposed method. Also, the conclusions and remarks will appear in

section 6.

2. Assumptions and procedure solution

We shall consider Eqs.(1.1)-(1.2) in a case, the delay function g is assumed to be

continuous in the interval [a, b], φ ∈ C[a∗, a], a∗ ≤ g(x) ≤ x, x ∈ [a, b].

Suppose that the function f : [a, b] × R3 → R is continuous and satisfies the Lipschitz

condition:

|f(x, y1, v1, z1)− f(x, y2, v2, z2)| ≤ L [ |y1 − y2|+ |v1 − v2|+ |z1 − z2| ] , (2.1)



34 M. M. KHADER1,∗ AND S. T. MOHAMED2

and there are two constants c1 and c2 such that:∣∣v1 − v2

∣∣ ≤ c1

∣∣f(x, y1, v1, z1)− f(x, y2, v2, z2)
∣∣, (2.2)

∣∣z1 − z2

∣∣ ≤ c2

∣∣f(x, y1, v1, z1)− f(x, y2, v2, z2)
∣∣, (2.3)

with L(c1 + c2) < 1 for all (x, y1, v1, z1) and (x, y2, v2, z2) in the domain of definition of

the function f . These conditions assure the existence of the unique solution of problem

(1.1).

Let 4 be an uniform partition of the interval [a, b] defined by the nodes

4 := a = x0 < x1 < x2 < ... < xk < xk+1 < ... < xn = b,

where xk = x0 + kh, h = b−a
n
< 1 and k = 0, 1, ..., n− 1.

We define the spline function approximating the solution y(x) by S(x) where

S(x) =

 S∆(x), a ≤ x ≤ b;

φ(x), a∗ ≤ x ≤ a.

Assume that the function y′ has a modulus of continuity:

w(y′, h) = w(h) = o(hα), 0 < α ≤ 1.

Choosing the required positive integer number m, then for any [ xk, xk+1 ], k = 0, 1, 2, ...n−

1, we define the spline function approximating the solution y(x) by S∆(x) where

S∆(x) = Smk (x) = Smk−1(xk) +

∫ x

xk

f(x, Sm−1
k (x), Sm−1

k (g(x)), S
′m−1
k (g(x)))dx, (2.4)

where Sm−1(x0) = y0, S m
−1(g(x0)) = φ(g(x0)), and S ′ m−1(g(x0)) = φ′(g(x0)).

In Eq.(2.4) we use the following m iterations for x ∈ [xk, xk+1], k = 0, 1, 2, ..., n− 1,

j = 1, 2, ...,m.

Sjk(x) = Smk−1(xk) +

∫ x

xk

f(x, Sj−1
k (x), Sj−1

k (g(x)), S
′j−1
k (g(x)))dx, (2.5)

where

S0
k(x) = Smk−1(xk) +

r∑
i=0

M i
k(x− xk)i+1

(i+ 1)!
, (2.6)

M i
k = f

(
xk, S

i
k−1(xk), S

i
k−1(g(xk)), S

′ i
k−1(g(xk))

)
, (2.7)
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it is clear that S∆(x) ∈ C[a, b] exists and unique.

The Eqs.(2.5)-(2.7) present the main scheme which obtained from the proposed method.

From this scheme, we can obtain the approximate solution of the problem (1.1). The

error estimate and the convergence of this scheme is studied in the following section.

3. Error estimation and convergence

To estimate the error, it is convenient to represent the exact solution y(x) in various

forms as described by the following scheme:

y0(x) = y(x) = yk +
r−1∑
i=0

yi+1
k (x− xk)i+1

(i+ 1)!
+
yr+1(ξk)(x− xk)r+1

(r + 1)!
, (3.1)

where ξk ∈ (xk, xk+1), yk = y(xk). For i = 1, 2, ...,m, we can write

yi(x) = y(x) = yk +

∫ x

xk

f
(
x, yi−1(x), y i−1(g(x)), y′ i−1(g(x))

)
dx. (3.2)

Moreover, we denote to the estimated error of yi(x) at any point x ∈ [a, b] where i = 0, 1

by:

e(x) = |y(x)− S∆(x)| , ek = |yk − S∆(xk)| . (3.3)

Lemma 3.1. Let α and β be non-negative real numbers and {Ai}mi=0 be a sequence

satisfying Ai ≤ α + βAi+1 for i = 1, 2, ...,m− 1, then:

A1 ≤ βm−1Am + α
m−2∑
i=0

βi.

Lemma 3.2. Let α and β be non-negative real numbers, β 6= 1 and {Ai}ki=0 be a sequence

satisfying A0 ≥ 0 and Ai+1 ≤ α + βAi for i = 0, 1, ..., k, then:

Ak+1 ≤ βk+1A0 + α

[
βk+1 − 1

β − 1

]
.

Definition 3.1. For any x ∈ [xk, xk+1], k = 0, 1, ..., n− 1 and j = 1, 2, ...,m, we define

the operator Tkj(x) by

Tkj(x) =
∣∣ym−j(x)− Sm−jk (x)

∣∣ ,
whose norm is defined by

||Tkj|| = max
x∈[xk,xk+1]

{Tkj(x)}.
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Lemma 3.3. For any x ∈ [xk, xk+1], k = 0, 1, ..., n− 1 and j = 1, 2, ...,m, then

||Tkm|| ≤ (1 + hd1)ek + d2h
r+1w(h), (3.4)

||Tk1|| ≤ d3ek + d4h
r+mw(h), (3.5)

such that

d0 =
L

1− L(c1 + c2)
, d1 = d0

r∑
i=0

1

(1 + i)!
, d2 =

1

(1 + i)!
, d3 =

m−1∑
i=0

di0+dm−1
0 d1, and d4 = dm−1

0 d2.

where the constants L, c1 and c2 are defined above in (2.1)-(2.3).

Proof.

Using (2.1), (2.2), (2.3), (2.6), (3.1) and (3.3), we get:

Tkm(x) =
∣∣y0(x)− S0

k(x)
∣∣ ≤ ∣∣yk − Smk−1(xk)

∣∣+
r−1∑
i=0

|yi+1
k −M i

k| |x− xk|i+1

(i+ 1)!

+
|yr+1(ξk)−M r

k | |x− xk|r+1

(r + 1)!
.

(3.6)

Since∣∣yi+1
k −M i

k

∣∣ =
∣∣f (i)(xk, yk, y(g(xk)), y

′(g(xk)))− f (i)(xk, S
m
k−1(xk), S

m
k−1(g(xk)), S

′ m
k−1(g(xk)))

∣∣
≤ L

1− L(c1 + c2)

∣∣yk − Smk−1(xk)
∣∣ = d0ek,

(3.7)

where d0 defined above. Similarly:

|yr+1(ξk)−M r
k | ≤ |yr+1(ξk)− yr+1

k |+ |y
r+1
k −M r

k | ≤ w(h) + d0ek.

Using (3.7) in (3.6), we get:

||Tkm|| = max
x∈[xk,xk+1]

{Tkm(x)} ≤ ek +
r−1∑
i=0

d0ekh
i+1

(i+ 1)!
+

hr+1

(r + 1)!

[
w(h) + d0ek

]
≤ (1 + hd1)ek + d2h

r+1w(h),

where d1 and d2 are defined above

To prove (3.5), we compute ||Tkj|| using (2.1), (2.2), (2.3), (2.5), (3.2) and (3.3), we get:

Tkj(x) =
∣∣ym−j(x)− Sm−jk (x)

∣∣ ≤ ek + d0

∫ x

xk

Tk(j+1)(x)dx,

||Tkj|| = max
x∈[xk,xk+1]

{Tkj(x)} ≤ ek + d0h||Tk(j+1)||.
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Using Lemma 3.1, and the inequality (3.4), we get:

||Tk1|| ≤ (d0h)m−1||Tkm||+
[m−2∑
i=0

(d0h)i
]
ek

≤
[m−2∑
i=0

di0 + dm−1
0 d1

]
ek + dm−1

0 d2h
m+rw(h)

≤ d3ek + d4h
m+rw(h),

where d3 and d4 are constants independent of h and defined above.

Lemma 3.4. Let e(x) be defined as in (3.3), if there exist constants d5, d6, independent

of h, then the following inequality holds:

e(x) ≤ (1 + hd5)ek + d6h
m+r+1w(h).

Proof.

Using (2.1), (2.2), (2.3), (2.4), (3.2), (3.3) and (3.5), we get:

e(x) = |y(x)− S∆(x)| ≤ ek + d0

∫ x

xk

max
x∈[xk,xk+1]

{Tk1(x)}dx ≤ ek + hd0||Tk1||

≤ (1 + hd5)ek + d6h
m+r+1w(h),

(3.8)

where d5 = d0d3 and d6 = d0d4 are constants independent of h. The inequality (3.8) holds

for any x ∈ [a, b]. Setting x = xk+1, we get:

ek+1 ≤ (1 + hd5)ek + d6h
m+r+1w(h).

Using Lemma 3.2 and noting that e0 = 0, we get

e(x) ≤ d7h
m+rw(h) = o(hm+r+α), (3.9)

where d7 = d6
d5

[
ed5(b−a) − 1

]
is a constant independent of h.

Now, we are going to estimate |y′(x)−S ′∆(x)|. For this purpose we use (2.1), (2.2), (2.3),

(2.4), (3.2), (3.3), (3.5) and (3.9), we get

|y′(x)− S ′∆(x)| ≤ d0||Tk1|| ≤ d0

[
d3ek + d4h

m+rw(h)
]
≤ d8h

m+rw(h),

where d8 = d0[d3d7 + d4].

Hence from above Lemma we have arrive to the following theorem.
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Theorem 3.1. Let y(x) be the exact solution of the problem (1.1), S4(x) given by (2.4)

is the approximate solution for the same problem, f ∈ C[a, b] × R3, then there exist a

constant p independent of h, such that the following inequalities∣∣∣y(q)(x)− S(q)
4 (x)

∣∣∣ ≤ phm+rw(h),

hold for all x ∈ [a, b] and q = 0, 1.

4. Stability of the proposed method

To study the stability of the proposed method given by (2.4), we change S4(x) to

W4(x) where

W4(x) = Wm
k (x) = Wm

k−1(xk) +

∫ x

xk

f(x,Wm−1
k (x),Wm−1

k (g(x)),W
′m−1
k (g(x)))dx, (4.1)

where Wm
−1(x0) = y∗0, W

m
−1(g(x0)) = φ(g(x0)). In Eq.(4.1) we use the following m itera-

tions, i.e., for x ∈ [xk, xk+1], k = 0, 1, ..., n− 1 and j = 1, 2, ...,m we obtained

W i
k(x) = Wm

k−1(xk) +

∫ x

xk

f(x,Wm−1
k (x),Wm−1

k (g(x)),W
′m−1
k (g(x)))dx, (4.2)

W 0
k (x) = Wm

k−1(xk) +
r∑
i=0

N i
k(x− xk)i+1

(i+ 1)!
, (4.3)

N i
k = f (i)

(
xk,W

m
k−1(xk),W

m
k−1(g(xk)),W

′ m−1
k−1 (g(xk))

)
. (4.4)

Moreover, we use the following notation:

e∗(x) = |S4(x)−W4(x)| , e∗k = |S4(xk)−W4(xk)| . (4.5)

Definition 4.1 For any x ∈ [xk, xk+1 ], k = 0, 1, ..., n − 1 and j = 1, 2, ...,m, we define

the operator T ∗kj(x) by:

T ∗kj(x) =
∣∣Sm−jk (x)−Wm−j

k (x)
∣∣ ,

whose norm is defined by:

||T ∗kj|| = max
x∈[xk,xk+1]

{T ∗kj(x)}.

Lemma 4.1. For any x ∈ [xk, xk+1 ], k = 0, 1, ..., n− 1 and j = 1, 2, ...,m, then:

||T ∗km|| ≤ (1 + hd1)e∗k, (4.6)
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||T ∗k1|| ≤ d3 e
∗
k, (4.7)

where d1 and d3 are constants defined in Lemma 3.3.

Proof.

To prove (4.6)-(4.7), using (2.1), (2.2), (2.3), (2.6), (4.3) and (4.5). The proof is similar

to the proof of Lemma 3.3.

Lemma 4.2.

Let e∗(x), be defined as in (4.5), then the following inequality holds:

e∗(x) ≤ (1 + hd5)e∗k,

where d5 is a constant defined as in Lemma 3.4.

Proof.

Using (2.1), (2.2), (2.3), (2.4), (3.8), (4.5), and (4.7). The proof is similar to the proof

of Lemma 3.4.

Theorem 4.1. Let S4(x) given by (2.4) be the approximate solution of the problem (1.1)

with the initial condition y(x0) = y0 and let W4(x) given by (4.1) be the approximate

solution for the same problem with the initial condition y∗(x0) = y∗0 and f ∈ C[a, b]×R3,

then the inequalities hold: ∣∣∣S(q)
4 −W

(q)
4

∣∣∣ ≤ d9 e
∗
0,

for all x ∈ [a, b], q = 0, 1, and e∗0 = |y0 − y∗0|, where d9 is a constant independent of h.

5. Numerical example

In this section, we consider the following neutral delay differential equation:

y′(x) =
1

2
y(x) +

1

2
y(x/2).y′(x/2),

with the initial conditions, y(0) = 1. The exact solution of this problem is y(x) = ex.

Table 1, shows the numerical results of this problem. In this table we compute the first

approximate solution (First app. sol.), first absolute error (the difference between the

exact and approximate solution before change), the second approximate solution (Sec-

ond app. sol.) and the second absolute error (the difference between the first and
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second solutions), where r = 2, with different iteration number m at some values of

x = 0.1, 0.2, 0.3, 0.4, 0.5.

The above simulation proves that the proposed method is a very useful numerical

method to get accurate solutions to first order neutral delay differential equations.

Figure 1, presents a comparison between the exact solution, yexact, the solution ob-

tained from the proposed method, yspline and the solution using the variational iteration

method, yVIM in the interval [0, 1]. From figure 1, we can deduce that the proposed

method provides excellent approximations to the solution of related equation to first or-

der neutral delay differential equations. The numerical results showed that this method

has very accuracy and reductions of the size of calculations compared with the VIM

([10], [12], [20], [21]).

Figure 1. Comparison between the exact solution and the solution obtained

from the proposed method with the solution using VIM.
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6. Concluding remarks and discussion

This paper centralized to present a new method for solving the first order neutral delay

differential equations. From the presented analysis shows that the proposed technique has

much impact on the accuracy and efficiency of the solution on the first order neutral delay

differential equations. We investigate the error estimation and the stability of the proposed

method. The analytical approximation to the solutions is reliable, and confirms the power

and ability of the proposed technique as an easy device for computing the solution of such

these problems. Also, a comparison with the approximate method, variational iteration

method is given. All computations in this paper are done using Matlab 7.1.

x m First app. sol. First absolute error Second app. sol. Second absolute error

0.1 1 1.10517091 3.5×10−09 1.10518247 1.1×10−5

2 1.10517091 1.3×10−10 1.10518222 1.1×10−5

3 1.10517091 4.4×10−12 1.10518292 1.2×10−5

4 1.10517091 1.4×10−13 1.10518299 1.2×10−5

5 1.10517091 4.7×10−15 1.10518303 1.2×10−5

0.2 1 1.22140275 7.8×10−9 1.22141653 1.4×10−5

2 1.22140273 2.1×10−8 1.22141692 1.4×10−5

3 1.22140273 2.6×10−8 1.22141710 1.4×10−5

4 1.22140273 1.9×10−8 1.22141727 1.4×10−5

5 1.22140274 1.0×10−8 1.22141732 1.4×10−5

0.3 1 1.35774334 7.0×10−3 1.35776052 7.9×10−3

2 1.35308270 3.2×10−3 1.35309976 3.2×10−3

3 1.35093385 1.0×10−3 1.35095107 1.0×10−3

4 1.50144873 2.9×10−4 1.35016221 3.0×10−4

4 1.34991115 5.2×10−5 1.34992858 6.9×10−4

0.4 1 1.50189327 1.0×10−2 1.50191342 1.0×10−2

2 1.49656938 4.7×10−3 1.49658973 4.7×10−3

3 1.49382185 1.9×10−3 1.49384232 2.0×10−3

4 1.49125616 2.3×10−4 1.49258221 7.6×10−4

5 1.49205339 2.2×10−4 1.49207150 2.5×10−4

0.5 1 1.66054058 1.1×10−2 1.66056441 1.7×10−2

2 1.65526313 6.5×10−3 1.65528715 6.5×10−3

3 1.65195568 3.2×10−3 1.65198099 3.2×10−3

4 1.65009713 1.3×10−3 1.65012150 1.4×10−3

5 1.64920214 4.8×10−4 1.64922664 5.0×10−4
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