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Abstract. The problem addressed in this paper is to obtain new exact solitary solutions for the Boussinesq-like

B(m,n) equations with fully nonlinear dispersion. The exact solitary wave solutions can be used to specify initial

data for the incident waves in the Boussinesq numerical model and for the verification of the associated computed

solution. We use differential transform method. The nonlinear terms can be handled by the use of Adomian

polynomials. The proposed technique is general and can be easily modified to solve a wide range of Boussinesq-

like equations in coastal engineering.
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1. Introduction

Study of wave propagation in fluids has become very important since long time ago and there

is a large number of researches in this field. Shallow water waves have been expressed as a

couple of equations by Whitham(1967). Many researchers have been continued studies in this

subject by Whitham’s shallow water equations shall immediately produce a coupled form of
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Boussinesq equation. Since the model is a wave propagation in a shallow water, one would

expect soliton solutions for such equations. Several members of Boussinesq system have been

studied up to know. Yan [4] introduced a class of fully Boussinesq equations B(m,n)

(1) utt = (un)xx +(um)xxxx, m,n ∈ R,

and presented some of its compacton solutions when m = n. Zhu [5, 6] studied Boussinesq-like

B(m,n) equations

(2) utt +(un)xx− (um)xxxx = 0, m,n > 1,

(3) utt− (un)xx +(um)xxxx = 0, m,n > 1,

and

(4) utt +(u2n)xx +(u2n)xxxx = 0, n > 1,

by using the extended decomposition method. Yildirim [7] studied the Boussinesq-like equa-

tions with fully nonlinear dispersion B(m,n) equations which exhibit solutions with solitary

patterns and found new exact solitary solutions of the equations using homotopy perturbation

method. In [8] Fernandez commented on some analytical solutions obtained in [7] and derived

more general results by means of travelling waves and argue that a curious superposition princi-

ple may not be of any mathematical or physical significance. Physical phenomena are generally

modeled as functional equations and for most of these equations, exact solutions are very rear.

So, there are some analytic techniques to address such issues, which are based on either pertur-

bation techniques [10], or traditional non-perturbation methods. Perturbation method is one of

the well-known methods for solving nonlinear problems analytically. It is based on the existence

of small/large parameters, the socalled perturbation quantities. However, many nonlinear prob-

lems do not contain such kind of perturbation quantities. In general, the perturbation method

is valid only for weakly nonlinear problems. To overcome the restrictions of perturbation tech-

niques, some non-perturbation techniques are proposed. Differential Transform Method (DTM)

is one of the analytical methods for differential equations. The basic idea was initially intro-

duced by Zhou [11] in 1986. Its main application therein is to solve both linear and nonlinear
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initial value problems in electrical circuit analysis. This method develops a solution in the form

of a polynomial. Though it is based on Taylor series, still it is totally different from the tradi-

tional higher order Taylor series method. This technique has been employed to solve a large

variety of linear and nonlinear problems. In this paper, this method combined with Adomian

polynomials is applied to solving the Boussinesq equations. The paper is organized as follows.

In Sec. 2, we present the Differential Transform method(DTM) and its modification(MDTM)

by Adomian polynomials to fix notation and provide a convenient reference. In sec. 3, we ex-

tend the application of the method to construct analytical solutions of Boussinesq-like equation.

Finally, some conclusions are given in Section 4.

2. Modified Differential Transform Method (DTM)

The goal of this section is to recall notations, definitions and some theorems of the DTM

and modified differential transform method(MDTM) that will be used in this paper. If function

u(x, t) is analytic and differentiated continuously with respect to time t and space x in the domain

of interest, then let

(5) Uk(x) =
1
k!
[

∂ k

∂ tk u(x, t)]t=0,

and the inverse transform of Uk(x) is defined as

(6) u(x, t) =
∞

∑
k=0

Uk(x)tk,

then combining (5) and (6), we obtain

(7) u(x, t) =
∞

∑
k=0

1
k!
[

∂ k

∂ tk u(x, t)]t=0tk.

If we consider the expressions (5),(6) and (7), it’s clearly shown that the concept of the dif-

ferential transform is derived from the power series expansion. Here we present some basic

properties of the DTM.

Let u(x, t) , v(x, t) and w(x, t) be functions of time t and space x and Uk(x) , Vk(x) and Wk(x)

are their corresponding differential transform. Then

i: If u(x, t) = v(x, t)±w(x, t), then Uk(x) =Vk(x)±Wk(x).

ii: If u(x, t) = cv(x, t), then Uk(x) = cVk(x).
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iii: if u(x, t) = xmtn, then Uk(x) = xmδ (k−n).

iv: if u(x, t) = xmtnv(x, t), then Uk(x) = xmVk−n(x).

v: if u(x, t) = v(x, t)w(x, t), then Uk(x) = ∑
k
r=0Vr(x)Wk−r(x) = ∑

k
r=0Vr(x)Wk−r(x).

vi: If u(x, t) = ∂ r

∂ tr v(x, t), then Uk(x) = (k+1)...(k+ r)Vk+r(x).

vii: if u(x, t) = ∂ r

∂xr v(x, t), then Uk(x) = dr

dxr Vk(x).

We consider the case of a nonlinear function f (u) that is approximated by the series

f (u) =
∞

∑
n=0

An,

where the An are the Adomian polynomials determined by the definitional formula[1, 2]

An =
1
n!
[

dn

dλ n [ f (
∞

∑
i=0

λ
iui)]]λ=0, n = 0,1, · · · .

The Adomian polynomials of f (u(x, t)) are arranged in the form[2]

A0 = f (u0),

A1 = u1 f (1)(u0),

A2 = u2 f (1)(u0)+
1
2!u

2
1 f (2)(u0),

A3 = u3 f (1)(u0)+u1u2 f (2)(u0)+
1
3!u

3
1 f (3)(u0),

A4 = u4 f (1)(u0)+(u1u3 +
1
2!u

2
2) f (2)(u0)+

1
2!u

2
1u2 f (3)(u0)+

1
4!u

4
1 f (4)(u0),

A5 = u5 f (1)(u0)+(u2u3 +u1u4) f (2)(u0)+
1
2!(u

2
1u3 +u1u2

2) f (3)(u0)

+ 1
3!u

3
1u2 f (4)(u0)+

1
5!u

5
1 f (5)(u0),

...

In the following, the differential transform components of f (u) are computed and by using their

properties, they can be written in the following form[3]

Ã0(x) = f (u(x,0)) = f (U0(x)),

Ã1(x) = ∂

∂ t f (u(x, t))|t=0 =
∂

∂ t u(x,0) f (1)(u(x,0)) =U1(x) f (1)(U0(x)),

Ã2(x) = 1
2!(

∂ 2

∂ t2 u(x,0) f (1)(u(x,0))+( ∂

∂ t u(x,0))2 f (2)(u(x,0))

=U2(x) f (1)(U0(x))+ 1
2!(U1(x))2 f (2)(U0(x)),

Ã3(x) =U3(x) f (1)(U0(x))+U1(x)U2(x) f (2)(U0(x))+ 1
3!U1(x)3 f (3)(U0(x)),

Ã4(x) =U4(x) f (1)(U0(x))+(U1(x)U3(x)+ 1
2!(U2(x))2) f (2)(U0(x))

+ 1
2!(U1(x))2U2(x) f (3)(U0(x))+ 1

4!(U1(x))4 f (4)(U0(x)),
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Ã5(x) =U5(x) f (1)(U0(x))+(U2(x)U3(x)+U1(x)U4(x)) f (2)(U0(x))+ 1
2!((U1(x))2U3(x)+

U1(x)(U2(x))2) f (3)(U0(x))+ 1
3!(U1(x))3U2(x) f (4)(U0(x))+ 1

5!(U1(x))5 f (5)(U0(x)),
...

So, Ãk(x) is obtained from the Adomian polynomials of f(u(x,t)) by replacing each uk by Uk(x).

Now, consider the nonlinear differential equation of the form

(8)
∂ 2

∂ t2 u = f (u(x, t)),

where f (u(x, t)) denotes a nonlinear function. Therefore, taking differential transform on both

sides of (8), we have the following recurrence scheme

(9) (k+1)(k+2)Uk+2(x) = Ãk(x).

3. Numerical Applications

In order to illustrate the advantages and the accuracy of the MDTM for solving Boussinesq

equations, we have applied the method to three different examples.

Example 1. Consider the Boussinesq-like equation B(2,2), of the form

(10) utt +(u2)xx− (u2)xxxx = 0,

subject to two initial conditions

(11) u(x,0) =
4
3

v2sinh2(
x
4
) , ut(x,0) =−

1
3

v3sinh(
x
2
).

Applying the Modified Differential Transform to (10-11), the recurrence scheme for this prob-

lem is given by

(12)

 (k+1)(k+2)Uk+2(x)+ ∂ 2

∂x2 (Ãk)− ∂ 4

∂x4 (Ãk) = 0,

U0(x) = 4
3v2sinh2( x

4), U1(x) = −1
3 v3sinh( x

2),

where the Ãk are obtained from the Adomian polynomials for the nonlinearity u2 as follows

A0 = (u0)
2, Ã0 = (U0(x))2,

A1 = 2(u0)u1, Ã1 = 2U0(x)U1(x),

A2 = 2u0u2 +(u1)
2, Ã2 = 2U0(x)U1(x)2,
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A3 = 2u0u3 +2u1u2, Ã3 = 2U0(x)U3(x)+2U1(x)U2(x),
...

So, the following differential transform components are obtained

U2(x) =
1

12
v4cosh(

x
2
), U3(x) =−

1
72

v5sinh(
x
2
), U4(x) =

1
576

v6cosh(
x
2
),

U5(x) =−
1

5760
v6sinh(

x
2
), ....

By applying the inverse differential transformation, we obtain the series solution as

(13)
u(x, t) = 4

3v2sinh2( x
4)−

1
3v3sinh( x

2)t +
1
12v4cosh( x

2)t
2− 1

72v5sinh( x
2)t

3

+ 1
576v6cosh( x

2)t
4− 1

5760v6sinh( x
2)t

5 + ....

Using Taylor series into (13), we find the closed form solution

(14) u(x, t) =
4
3

v2 sinh2(
x− vt

4
).

In addition as in [7], we can develop another exact solution for the B(2,2) equation. Now we

consider another initial value problem of B(2,2) equation

(15) utt +(u2)xx− (u2)xxxx = 0,

subject to two initial conditions

(16) u(x,0) =−4
3

v2sinh2(
x
4
) , ut(x,0) =

1
3

v3sinh(
x
2
).

Using the manner as discussed above, we obtain another exact solution given by

(17) u(x, t) =−4
3

v2 cosh2(
x− vt

4
).

Therefore, by combining the two results, we will find that

(18) u(x, t) =
4
3

Kv2 sinh2(
x− vt

4
)− 4

3
Lv2 cosh2(

x− vt
4

),

is solution of B(2,2) equation if K = L or K = L− 1. When K = L the new exact solution is

trivial solution

(19) u(x, t) =−4
3

Lv2.
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And if K = L−1 the new exact solution is of the form

(20) u(x, t) =
4
3
(1−L)v2 sinh2(

x− vt
4

)− 4
3

Lv2 cosh2(
x− vt

4
).

Moreover, adding a constant to the arguments in (14) and (17) will exhibit more exact solutions.

In other words, we have the exact solutions

(21) u(x, t) =
4
3

v2 sinh2(
x− vt

4
+ c),

and

(22) u(x, t) =−4
3

Lv2 cosh2(
x− vt

4
+ c),

where c is a constant.

Example 2. Consider the initial value problem B(3,3),

(23) utt +(u3)xx− (u3)xxxx = 0,

(24) u(x,0) =

√
6

2
v sinh(

x
3
), ut(x,0) =−

√
6

6
v2cosh(

x
3
),

where v is an arbitrary constant. Applying the Modified Differential Transform to (23-24), the

recurrence scheme for this problem is given by

(25)

 (k+1)(k+2)Uk+2(x)+ ∂ 2

∂x2 (Ãk)− ∂ 4

∂x4 (Ãk) = 0,

U0(x) =
√

6
2 v sinh( x

3), U1(x) =−
√

6
6 v2cosh( x

3),

where the Ãk are obtained from the Adomian polynomials for the nonlinearity u3 as follows

A0 = (u0)
3, Ã0 = (U0(x))3,

A1 = 3(u0)
2u1, Ã1 = 3(U0(x))2U1(x),

A2 = 3u2
0u2 +3uo(u1)

2, Ã2 = 3(U0(x))2(U2(x))+3U0(x)(U1(x))2,

A3 = 3u2
0u3 +6u0u1u2 +u3

1, Ã3 = 3(U0(x))2U3(x)+6U0(x)U1(x)U2(x)+(U1(x))3,
...

So, the following differential transform components are obtained

U2(x) =

√
6

36
v3sinh(

x
3
), U3(x) =−

√
6

324
v4cosh(

x
3
), U4(x) =

√
6

3888
v5sinh(

x
3
), ....
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By applying the inverse differential transformation, we obtain the series solution as

(26)
u(x, t) =

√
6

2 v sinh( x
3)−

√
6

6 v2cosh( x
3)t +

√
6

36 v3sinh( x
3)t

2−
√

6
324v4cosh( x

3)t
3+

√
6

3888v5sinh( x
3)t

4 + ....

Using Taylor series into (26), we find the closed form solution

(27) u(x, t) =

√
6

2
vsinh(

x− vt
3

).

In addition, we can develop another exact solution for the B(3,3) equation. Now we consider

another initial value problem of B(3,3) equation

(28) utt +(u3)xx− (u3)xxxx = 0,

subject to two initial conditions

(29) u(x,0) =

√
6

2
v sinh(

x
3
), ut(x,0) =−

√
6

6
v2cosh(

x
3
).

According to the similar steps as discussed above, we have another exact solution given by

(30) u(x, t) =−
√

6
2

vsinh(
x− vt

3
).

As the previous example a new exact solution can be obtain by combining the two above results

and found that

(31) u(x, t) =

√
6

2
vK sinh(

x− vt
3

)−
√

6
2

vLsinh(
x− vt

3
),

satisfies the B(3,3) equation when K = L, K = 1+L or L =−1+L.

Moreover, similar to the previous example, adding a constant to the arguments in (27) and (30)

will exhibit more exact solutions

(32) u(x, t) =

√
6

2
vsinh(

x− vt
3

+ c),

and

(33) u(x, t) =−
√

6
2

vsinh(
x− vt

3
+ c),

where c is a constant.
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Example 3. We consider the following Boussinesq equation

(34) utt−uxx−uxxxx +(u2)xx = 0,

with the initial conditions

(35) u(x,0) =
6
x2 ut(x,0) =−

12
x3 .

Applying the Modified Differential Transform to (34-35), the recurrence scheme for this prob-

lem is given by

(36)

 (k+1)(k+2)Uk+2(x)+ ∂ 2

∂x2Uk(x)− ∂ 4

∂x4Uk(x)+ ∂ 2

∂x2 (Ãk) = 0,

U0(x) = 6
x2 , U1(x) =−12

x2 ,

where the Ãk are obtained from the Adomian polynomials for the nonlinearity u2. So we have

U2(x) =
18
x4 , U3(x) =−

24
x5 , U4(x) =

30
x6 , ....

By applying the inverse differential transformation, we obtain the series solution as

(37) u(x, t) =
6
x2 −

12
x3 t +

18
x4 t2− 24

x5 t3 +
30
x6 t4 + ....

This will, in the limit of infinitely many terms, yields the closed-form solution

(38) u(x, t) =
6

(x+ t)2 ,

which is the exact solution of the equation.

4. Conclusions

In this research, differential transform method combined with Adomian polynomials has been

applied to solving the Boussinesq equations. The method is applied in a direct way without

using linearization, transformation, discretization or restrictive assumptions. Three different

examples were tested and the results were in excellent agreement with the exact solution.
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