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Abstract: Andreev’s Theorem provides a complete characterization of 3-dimensional compact hyperbolic 

combinatorial polytope having non-obtuse dihedral angles. Cube is one of such polytope. In this article, with the 

help of Andreev’s Theorem, a special type of compact hyperbolic coxeter cube, called thin cube has been 

studied. Using graph theory and combinatorics, it has been found that there are exactly 3 such cubes in 

hyperbolic space upto symmetry. 
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1. Introduction  

The angle between two faces of a polytope, measured from perpendiculars to the edge 

created by the intersection of the planes is called a dihedral angle. For a combinatorial 

polyhedron P  with E  edges, the space of dihedral angles PD  of all compact hyperbolic 

polyhedrons that realize P  is generally not a convex subset of E
  [19]. If P  has more 

than four faces, Andreev’s Theorem states that the corresponding space PD   obtained by 

restricting to non-obtuse angles is a convex polytope. Tetrahedron, the only polyhedron with 
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four faces and the space of dihedral angles of compact hyperbolic tetrahedron after restricting 

to non-obtuse angles is non-convex. Therefore, except tetrahedron, Andreev’s Theorem [22] 

provides a complete characterization of 3-dimensional compact hyperbolic combinatorial 

polytope having non-obtuse dihedral angles. On the other hand, Roland K. W. Roeder’s 

Theorem [11] provides the classification of compact hyperbolic tetrahedron by restricting to 

non-obtuse dihedral angles.  

A simple polytope P  in n -dimensional hyperbolic space nH  is said to be coxeter, if 

the dihedral angles of P  are of the form 
n
π  where, n  is a positive integer 2≥ . There is 

no complete classification of hyperbolic coxeter polytopes. Vinberg proved in [21] that there 

are no compact hyperbolic coxeter polytopes in nH  when 30n ≥ . Tumarkin classified the 

hyperbolic coxeter pyramids in terms of coxeter diagram and John Mcleod generalized it in 

his article [9]. P. Kalita and B. Kalita [1] found that there are exactly one, four and thirty 

coxeter Andreev’s tetrahedrons having respectively two edges of order 6n ≥ , one edge of 

order 6n ≥  and no edge of order 6n ≥ , n∈  upto symmetry. Again using Roland K. W. 

Roeder’s Theorem, P. Kalita and B. Kalita [2] proved that there are exactly 3 CHC (compact 

hyperbolic coxeter) tetrahedrons upto symmetry in real projective space. These 3 tetrahedrons 

can be realized uniquely [10] in Hyperbolic space and these are nothing but the 3 coxeter 

Andreev’s tetrahedrons found by theorems 3.20 and 3.21 in [1]. 

Many communication networks can be viewed as graphs called k-ray n-cubes, whose 

special cases include rings, hypercubes, and toruses. A k-ray n-cube has nk  nodes. In this 

article, with the help of Andreev’s Theorem, a special type of compact hyperbolic coxeter 

cube, called thin cube has been studied. Using graph theory and combinatorics, it has been 

found that there are exactly 3 such cubes in hyperbolic space upto symmetry.  

The paper is organized as follows: The section 1 includes introduction. The section 2 includes 

some basic terminologies from graph theory and geometry. The section 3 focuses some 

already existed results on graph theory and geometry. Main results and conclusions are 

included in the sections 4 and 5 respectively. 
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2. Basic Terminologies 

There is a strong link between graph theory and geometry. Graph theoretical concepts are 

used to understand the combinatorial structure of a polytope in geometry. Here we will 

mention some essential terminologies from graph theory and geometry. 

Definition 2.1: Two graphs ( )1 1 1,G V E=  and ( )2 2 2,G V E=  are said to be isomorphic if 

there exists a bijective function 1 2:f V V→  such that ( )1xy E G∈  if and only if 

( ) ( ) ( )2f x f y E G∈ . The function f  is said to an isomorphism. In case of weighted graphs, 

isomorphism preserves the weights as well. If 1G  and 2G  are identical, then f  is said to 

an automorphism. An automorphism is therefore a permutation on the vertices of the graph 

that maps edges to edges and nonedges to nonedges. A permutation can be expressed as a 

product of disjoint cycle. 

Definition 2.2: A polytope is a geometric object with surfaces enclosed by edges that exist in 

any number of dimensions. A polytope in 2D, 3D and 4D is said to be polygon, polyhedron 

(plural polyhedra or polyhedrons) and polychoron respectively. The enclosed surfaces are 

said to be faces. The line of intersection of any two faces is said to be an edge and a point of 

intersection of three or more edges is called a vertex.  

Definition 2.3: Let P  be a convex polyhedron. The abstract graph of P  is denoted by 

( )G P  and is defined as ( ) ( ) ( )( ),G P V P E P= , where ( )V P  is the set of vertices of P  

and two vertices ( ),x y V P∈  are adjacent if and only if ( ),x y  is an edge of P . 

Definition 2.4: If the dihedral angle of an edge of a compact hyperbolic polytope is , n
n
π  is 

a positive number, then n  is said to be the order of the edge. We define a trivalent vertex to 

be of order ( ), ,l m n  if the three edges at that vertex are of order , ,l m n .  

Definition 2.5: A coxeter dihedral angle is a dihedral angle of the form 
n
π  where, n  is a 

positive integer 2≥ . A compact polytope in hyperbolic space with coxeter dihedral angles is 

called a compact hyperbolic coxeter polytope. 

Definition 2.6: A cell complex C  on 2S  is called trivalent if each vertex is the intersection 
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of three faces.  

Definition 2.7: A 3-dimensional combinatorial polytope is a cell complex C  on 2S  that 

satisfies the following conditions: 

(a) Each edge of C  is the intersection of exactly two faces  

(b) A nonempty intersection of two faces is either an edge or a vertex. 

(c) Each face is enclosed by not less than 3 edges. 

Any trivalent cell complex C  on 2S  that satisfies the above three conditions is said to be 

abstract polyhedron. 

Definition 2.8: A 3D polytope is called a simple polytope if each vertex is the intersection of 

exactly 3 faces. The 1-skeleton of a polytope is the set of vertices and edges of the polytope. 

The skeleton of any convex polyhedron is a planar graph and the skeleton of any 

k − dimensional convex polytope is a k − connected graph.  

Definition 2.9: A prismatic k − circuit ( )p kΓ  is a k − circuit such that no two edges of C  

which correspond to edges traversed by ( )p kΓ  share a common vertex.  

Hyperbolic geometry [2] is difficult to visualize as many of its theorems are 

contradictory to similar theorems of Euclidean geometry which are very similar to us. 

Therefore technology has been used in creation of geometric models in Euclidean space to 

visualize Hyperbolic geometry. Hyperbolic [11] planes in these models correspond to 

Euclidean hemispheres and Euclidean planes that intersect the boundary perpendicularly. 

Furthermore, these models are correct conformally. That is, the hyperbolic angle between a 

pair of such intersecting hyperbolic planes is exactly the Euclidean angle between the 

corresponding spares or planes. 

We will concentrate on 3-dimensional compact hyperbolic orbifolds whose base spaces 

are homeomorphic to a convex polyhedron and whose sides are silvered. The compact 

hyperbolic polyhedron is simple, therefore, the combinatorial polyhedron of a compact 

hyperbolic polyhedron can be known from 3-connected planar graph of the polyhedron. In 

case of compact hyperbolic cube, the corresponding 3-connected planar graph has 8 vertices, 

12 edges, 6 faces and exactly 4 disjoint edges upto symmetry. The following figure 2.1 and 
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figure 2.2 shows the Euclidean cube and hyperbolic cube which are found in [8].  

                                               

           Figure 2.1                           Figure 2.2 

The figure 2.3 gives the Euclidean cube and the figure 2.4 gives an isomorphic graph of the 

Euclidean cube which is a 3-connected planar graph. 

                    
               Figure 2.3                           Figure 2.4 

Definition 2.10: We define a thin cube to be a cube whose order of the opposite sides are 

same. Therefore the edges of a thin cube can be ordered by 1 2 3 4 5 6, , , , ,n n n n n n  as shown in 

the figure 2.5. 
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Figure 2.5 

 

3. Known Results 

E. M. Andreev provides a complete characterization of 3D compact hyperbolic polytope 

with non-obtuse dihedral angles in his article [22]. Therefore, Andreev’s theorem is a 
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fundamental tool for classification of 3D compact hyperbolic coxeter polytope. Before stating 

Andreev’s Theorem, some already existed results [5] on graph and polytope have been 

mentioned. 

Theorem 3.1: (Blind and Mani) If P  is a convex polyhedron, then the graph ( )G P  

determines the entire combinatorial structure of P . In other words, if two simple polyhedral 

have isomorphic graphs, then their combinatorial polyhedral are also isomorphic. 

Theorem 3.2: (Ernst Steinitz) A graph ( )G P  is a graph of a 3-dimensional polytope P  if 

and only if it is simple, planar and 3-connected. 

Corollary 3.3: Every 3-connected planar graph can be represented in a plane such that all the 

edges are straight lines, all the bounded regions determined by these and the union of all the 

bounded regions are convex polygons. 

Theorem 3.4: (Andreev Theorem, [14, 17]) A combinatorial polyhedron P  which is not 

isomorphic to a tetrahedron or a triangular prism has a geometric realization in 3H  with 

interior dihedral angle measures 0
2i
πθ< ≤  at edge ie  if and only if: 

(1)  The 1-skeleton of P  is trivalent. 

(2)  If , ,i j ke e e  are distinct edges which meet at a vertex, then  i j kθ θ θ π+ + > . 

(3)  If , ,i j ke e e  form a prismatic 3-circuit ( )3pΓ , then i j kθ θ θ π+ + < . 

(4) If , , ,i j k le e e e  form a prismatic 4-circuit ( )4pΓ , then 2i j k lθ θ θ θ π+ + + < . 

Furthermore, this polyhedron is unique up to isometrics of hyperbolic 3H .  

Andreev’s restriction to non-obtuse dihedral angles is necessary to ensure that  P  be 

convex. A compact hyperbolic polyhedral realizing a given abstract polyhedron may not be 

convex without the restriction of non-obtuse dihedral angle [17]. Since Coxeter polyhedrons 

have non-obtuse dihedral angles, Andreev’s Theorem provides a complete characterization of 

3-dimensional compact hyperbolic Coxeter polyhedra.  

Corollary 3.5: For compact hyperbolic coxeter cube, the condition (3) of Andreev’s theorem 

is vacuous. 
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Figure 3.1 

Proof: A compact hyperbolic cube has no prismatic 3-circuit. Therefore the condition (3) of 

Andreev’s theorem is vacuous. It has 3 numbers of prismatic 4-circuits. In figure 3.1, these 

are shown in red, blue and green colors.  

 

4. Main Results 

The main results are here presented below: 

Theorem 4.1: In a 3-dimensional compact hyperbolic coxeter polytope T , the order of the 

edges at one vertex is one of the forms: ( ) ( ) ( ) ( )2,2, 2 , 2,3,3 , 2,3,4 , 2,3,5n ≥ . 

Proof: Suppose the three distinct edges , ,i j ke e e  of T  with respective orders , ,i j kn n n  

meet at one vertex v . Then the coxeter dihedral angles of  , ,i j ke e e  at v  are  , ,
i j kn n n
π π π , 

with positive integers , , 2i j kn n n ≥ . By Second condition of Andreev’s Theorem:  

1 1 1 1i j k
i j k i j kn n n n n n
π π πα α α π π+ + > ⇒ + + > ⇒ + + >  

So upto permutations, the triples ( ), ,i j kn n n  are respectively ( ) ( )2,2, 2 , 2,3,3n ≥ , ( )2,3,4 , 

( )2,3,5 . Hence the order of the edges at one vertex is one of the forms: 

( ) ( )2,2, 2 , 2,3,3 ,n ≥ ( ) ( )2,3,4 , 2,3,5 . 

Theorem 4.2: In a 3-dimensional compact hyperbolic coxeter polytope T , if an edge at one 

vertex is of order 6n ≥ , then the other two edges must be of order 2. 

Proof: Let , ,i j ke e e  be three edges at one vertex v  of T  with orders 6, ,i j kn n n≥  

respectively. 
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v
ie je

ke

6in ≥ 2jn ≥

2kn ≥

 
Figure 4.1 

By Second condition of Andreev’s Theorem:   

i j kn n n
π π π π+ + >                                                     

Since 6in ≥ , therefore: 

5
6 6i j k j k j kn n n n n n n

π π π π π π π π ππ π< + + ⇒ < + + ⇒ < +                   (3) 

Since, ,j kn n  are positive integers, therefore, the inequality (3) has only the solutions 

2j kn n= = . 

Corollary 4.3: In a 3-dimensional compact hyperbolic coxeter polytope T , the number of 

edges of order 2 at one vertex is at least 1 and at most 3. 

Proof: From Theorem 4.1, in a 3-dimensional compact hyperbolic coxeter polytope T , the 

order of the edges at one vertex is one of the forms: ( ) ( ) ( ) ( )2,2, 2 , 2,3,3 , 2,3,4 , 2,3,5n ≥ . 

Therefore, it is clear that at one vertex, the number of edges of order 2 is at least 1 and at 

most 3. 

Theorem 4.4: Suppose C  is a compact hyperbolic coxeter thin cube. If n  is the order of an 

edge of C  then 6n < . 

Proof: Suppose n  is the order of an edge of a compact hyperbolic coxeter thin cube C  and 

suppose 6n ≥ . Without loss of generality, let the order of the edge AD be 6n ≥  and hence 

the order of the edge FG be 6n ≥ . By Theorem 4.2, other two edges adjacent to the edge of 

order 6n ≥  must be of order 2 as shown in the following figure 4.2. 
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Figure 4.2 

In figure 4.2, PQRS is a prismatic 4-circuit and hence by Andreev’s 4th condition: 

2 2 2
2 2 2 2
π π π π π π π+ + + < ⇒ <  

And this is not possible. Therefore if n  is the order of an edge of a compact hyperbolic coxeter 

thin cube C  then 6n < . 

Corollary 4.5: Suppose C  is a compact hyperbolic coxeter thin cube. If n  is the order of an 

edge of C  then 2 5n≤ ≤ . 

Proof: By Theorem 4.1, in a 3-dimensional compact hyperbolic coxeter polytope, the order of 

the edges at one vertex is one of the forms: ( ) ( ) ( ) ( )2,2, 2 , 2,3,3 , 2,3,4 , 2,3,5n ≥ . Also by 

Theorem 4.4, if n  is the order of an edge of compact hyperbolic coxeter thin cube C  then 

6n < . Thus by Theorem 4.1 and Theorem 4.4, we have the conclusion 2 5n≤ ≤ . 

Theorem 4.6: Suppose C  is a compact hyperbolic coxeter thin cube with edges ordered by 

1 2 3 4 5 6, , , , ,n n n n n n . Then at most three out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2. 

Proof: Suppose the edges of the compact hyperbolic coxeter thin cube C  are ordered as 

shown in the following figure 4.3. 

1n
1n2n 2n

3n

3n

4n

4n

5n

5n

6n

6n

 

Figure 4.3 

 

There are 3 numbers of prismatic 4-circuits and hence by Andreev’s 4th condition: 
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1 2 1 2 3 4 3 4 5 6 5 6

1 2 3 4 5 6

1 2 3 4 5 6

2 , 2 , 2

2 2 ,2 2 ,2 2

1 1 1 1 1 11, 1, 1

n n n n n n n n n n n n

n n n n n n

n n n n n n

π π π π π π π π π π π ππ π π

π π π π π ππ π π

+ + + < + + + < + + + <

    
⇒ + < + < + <    

     

⇒ + < + < + <

 

Therefore ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6, 2, 2 , , 2, 2 , , 2, 2n n n n n n≠ ≠ ≠ . Clearly at most one in  of each 

pair ( ) ( ) ( )1 2 3 4 5 6, , , , ,n n n n n n  is 2 and hence at most three out of 1 2 3 4 5 6, , , , ,n n n n n n  are 2. 

Theorem 4.7: Suppose C  is a compact hyperbolic coxeter thin cube with edges ordered by 

1 2 3 4 5 6, , , , ,n n n n n n . Then at least three out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2. 

Proof: Suppose the edges of the compact hyperbolic coxeter thin cube C are ordered as shown 

in the following figure 4.4. 

1n1n2n 2n

3n

3n

4n

4n

5n

5n

6n

6n

 

Figure 4.4 

There are 8 vertices in the cube (thin). By corollary 4.3, in a 3-dimensional compact hyperbolic 

coxeter polytope, the number of edges of order 2 at one vertex is at least one. Also each edge is 

adjacent with two vertices. Therefore there are at least four edges are of order 2. Since C  is a 

thin cube therefore at least two out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2. Suppose exactly two out of  

1 2 3 4 5 6, , , , ,n n n n n n  are 2. Now all the edges of order 2 must be disjoint (otherwise, it will 

violate the corollary 4.3) and hence we have only the cases as shown in the following figure 

4.5. 
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Figure 4.5 

There are 3 numbers of prismatic 4-circuits in cube (thin) and in each case, due to prismatic 

4-circuit by Andreev’s 4th condition, we must have  

2 2 2
2 2 2 2
π π π π π π π+ + + < ⇒ <  

This is not possible. Therefore, there cannot be exactly two out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2 

and hence at least three out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2. 
Corollary 4.8: Suppose C  is a compact hyperbolic coxeter thin cube with edges ordered by 

1 2 3 4 5 6, , , , ,n n n n n n . Then there are exactly three out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2. In other 

words, exactly one in  of each pair ( ) ( ) ( )1 2 3 4 5 6, , , , ,n n n n n n  is 2 

Proof: Clear from Theorem 4.6 and 4.7. 

Theorem 4.9: Suppose C  is a compact hyperbolic coxeter thin cube, then there are exactly 

3 such cubes in hyperbolic space upto symmetry. 

Proof: Suppose C  is a compact hyperbolic coxeter thin cube with edges ordered by 

1 2 3 4 5 6, , , , ,n n n n n n  as shown in the figure 4.6.  

1n1n2n 2n

3n

3n

4n

4n

5n

5n

6n

6n

 

Figure 4.6 
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From corollary 4.8, there are exactly three out of  1 2 3 4 5 6, , , , ,n n n n n n  are 2 or in other words, 

exactly one in  of each pair ( ) ( ) ( )1 2 3 4 5 6, , , , ,n n n n n n  is 2. Therefore we have the only 8 cases 

obtained from the following tree diagram in figure 4.7. 

1n

2n

3n

3n

4n

4n

5n

5n

5n

5n

6n

6n

6n

6n

( ) ( )1 3 6, , 2, 2, 2n n n =

( ) ( )1 4 5, , 2, 2, 2n n n =

( ) ( )1 4 6, , 2, 2, 2n n n =

( ) ( )2 3 5, , 2, 2, 2n n n =

( ) ( )2 3 6, , 2, 2, 2n n n =

( ) ( )2 4 5, , 2, 2, 2n n n =

( ) ( )2 4 6, , 2, 2, 2n n n =

( ) ( )1 3 5, , 2, 2, 2n n n =

 

Figure 4.7 

For ( ) ( ) ( ) ( ) ( ) ( )1 3 5 1 4 6 2 3 6, , 2, 2, 2 , , , 2, 2, 2 , , , 2, 2, 2n n n n n n n n n= = =  and 

( ) ( )2 4 5, , 2, 2, 2n n n = ; the cubes are respectively C-1, C-2, C-3 and C-4 as shown in figure 4.8.  

2

2

2
2

2

2

A

B C

D
E

F G

H

                          

2

2

2
2

2

2

A

B C

D
E

F G

H

 
               C-1                                                 C-2 

2

2
2

2

2
2

A

B C

D
E

F G

H

                          

2

2

2
2

2

2

A

B C

D
E

F G

H

 
               C-3                                                 C-4 

Figure 4.8 
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Now we treat these graphs C-1, C-2, C-3 and C-4 as weighted graphs, where the weights are the 

orders of the edges. Although the graphs C-1, C-2, C-3 and C-4 are different due to their 

weights, they are automorphic image of each other. For example, the graph C-1 is an 

automorphic image of the graphs C-2, C-3 and C-4 under the automorphisms 

( )( )ABCD EFGH , ( )( )( )( )AC BD EG FH  and ( )( )ADCB EHGF  (expressed as a product of 

disjoint cycles) respectively. Therefore these graphs C-1, C-2, C-3 and C-4 are same upto 

automorphism. Let us take one of these graphs and name it C shown in the figure 4.9. 

2

2

2
2

2

2

A

B C

D
E

F G

H

 
Figure 4.9  

Now, there exists one vertex B (in figure 4.9) at which there is no edge of order 2. But by 

corollary 4.3, in a 3-dimensional compact hyperbolic coxeter polytope, the number of edges 

of order 2 at one vertex is at least one. Therefore the graph shown in figure 4.9 is not possible. 

For ( ) ( ) ( ) ( ) ( ) ( )1 3 6 1 4 5 2 3 5, , 2, 2, 2 , , , 2, 2, 2 , , , 2, 2, 2n n n n n n n n n= = =  and ( ) ( )2 4 6, , 2, 2, 2n n n = ; 

the cubes are respectively C-5, C-6, C-7 and C-8 as shown in figure 4.10.  
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Figure 4.10 

Again we treat these graphs C-5, C-6, C-7 and C-8 as weighted graphs and they are 

automorphic image of each other. For example, the graph C-5 is an automorphic image of the 

graphs C-6, C-7 and C-8 under the automorphisms ( )( )ADCB EHGF , ( )( )( )( )AC BD EG FH  

and ( )( )ABCD EFGH  (expressed as a product of disjoint cycles) respectively. Therefore 

these graphs C-5, C-6, C-7 and C-8 are same upto automorphism. Let us take one of these 

graphs and name it TC shown in the figure 4.11. 

2
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Figure 4.11  

Next we order the remaining edges of the thin cube shown in figure 4.11. By corollary 4.5, 

the order of each vertex is one of the forms: ( ) ( ) ( ) ( )2,2,2 5 , 2,3,3 , 2,3,4 , 2,3,5n≤ ≤ . The 
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form ( )2,2, 2n =  has been discussed in figure 4.9 and in figure 4.11. By corollary 4.8, there 

are exactly 6 edges of order 2 which are already assigned in figure 4.11. Therefore we cannot 

assign any more 2 to the remaining edges and hence the form ( )2, 2,3 5n≤ ≤  cannot be took 

place. Now we are left with the forms: ( ) ( )2,3,3 , 2,3,4 , ( )2,3,5 . Therefore at least one edge 

at one vertex must be of order 3. Let us take one vertex H. At H, we can take HG 2=  or 

HE 2=  and these two are same under automorphism. Therefore suppose HG 3=  and 

hence AB 3=  (due to thin cube) as shown in figure 4.12.  
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3 3

 
Figure 4.12 

Now the only possibility for EH (and BC) is 3 and the only possibilities for AE (and GC) are 

3, 4, 5. Therefore we have exactly 3 thin cubes in hyperbolic space upto symmetry shown in 

figure 4.13. 

2

2

2
2

2

2

A

B C

D
E

F G

H

3

3

3

3

3

3

2

2

2
2

2

2

A

B C

D
E

F G

H

3

3

3

3

4

4

2

2

2
2

2

2

A

B C

D
E

F G

H

3

3

3

3

5

5

 
           TC-I                 TC-II                 TC-III 

Figure 4.13 

These 3 compact hyperbolic coxeter thin cubes can be realized [22] uniquely in 

Hyperbolic space upto symmetry. 

 

5. Conclusions 

We found all the compact hyperbolic coxeter thin cubes in this article.  Using Andreev’s 
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theorem, we proved that there exist exactly 3 such cubes in hyperbolic space and these are 

unique [22] up to symmetry. This research can be extended to other compact as well as 

non-compact hyperbolic polytopes in spaces of different dimensions. 
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