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Abstract. In this paper, a numerical modeling for free surface flows over submerged porous media is outlined.

The governing equations used are two layers linear shallow water model. For flow in a submerged porous medi-

um, linear friction resistance is included in momentum equation. Solving the linearized full governing equations

analytically, we can obtain dispersion relation that holds for gravity waves over submerged porous media. This

dispersion relation explain diffusive mechanism of the porous structure. Numerically, finite volume on a staggered

grid is implemented to solve these equations. Numerical simulation of incoming waves over porous media shows

the wave amplitude is attenuated because of the porous structure. The validity of this numerical model is confirmed

with analytical result.

Keywords: submerged porous media; two layers linear shallow water equation; linear friction resistance; staggered

finite volume method.
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1. Introduction

An array of artificial reefs can be used as a submerged breakwater for offshore protection.

This type of breakwater provides environmental enhancement and aesthetics that are not found
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in conventional breakwaters. An array of reefballs is assumed to be a submerged porous layer

with certain dimension and diffusive parameters. This research study about wave amplitude

reduction due to wave interaction with a submerged porous breakwater.

The literatures that are discussed about wave over a submerged breakwater is in the following.

S.R. Pudjaprasetya [7] investigate the optimal dimension of submerged rigid structure as a wave

reflector. Kobayashi [4] study wave transmission over rigid breakwater. Chao-Lung Ting et.al.

[12] and K. Mizumura [6] study wave propagation with current over permeable ripple beds and

consider Bragg resonance phenomenon. For the submerged porous structure, Armono [1] study

the performance of submerged breakwater by using Multiple Regression Analysis. Chin-Piao

Tsai et al. [13] use potential wave theory for formulating an approximate linear equation for

monochromatic waves over submerged permeable breakwater. Pudjaprasetya and Magdalena

[8] study the wave energy dissipation within porous breakwater by using potential theory and

solve the approximate equation numerically by using Lax Wendroff Method. Wiryanto [14]

explained the behavior monochromatic waves passing over submerged porous breakwater by

using potential theory. Gu [3] study numerical modeling for wave energy dissipation within

porous submerged breakwaters, and solve the equation numerically by using boundary integral

element method.

In this paper, the effectiveness of a submerged porous permeable breakwater on dissipat-

ing wave amplitude is studied. We used the modified linear shallow water equation type for

submerged porous media. The linearized Forchheimer resistance is included in the momen-

tum equation for porous medium by means of extra friction terms. Here, we implement the

staggered conservative scheme to solve the Linear Shallow Water Equations (LSWE) numer-

ically. Numerical simulations were conducted to show wave damping of a submerged porous

breakwater. To validate our model, we compare wave amplitude reduction with the analytical

result.

2. Governing equations

The governing equation of two layer model is formulated below. Consider an upper layer Ω1

which is fluid over a porous structure and lower layer Ω2 is fluid in a porous medium.

For flow in a porous media with porosity n, the rate of change of free surface η depends on

the filtered horizontal momentum with filtered velocity U
n , where 0 < n ≤ 1. The momentum
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FIGURE 1. Sketch of two layer fluid domain.

equation (2) also gets an additional resistance by porous structure is denoted by f ω
n U. The full

governing equations are

ηt = −(hu)x −
1
n
(HU)x in Ω1 ∪Ω2,(1)

ut = −gηx −uux in Ω1,(2)

1
n

Ut = −gηx −
1
n2UUx − f

ω
n

U in Ω2,(3)

where ω wave frequency, f friction coefficient, and g gravitational acceleration. Note that capi-

tal notation is denoted information in lower layer and small letter is for upper layer. Notation η

denotes surface elevation, u,U horizontal fluid velocity, and h = d1(x)+η(x, t),H = d2(x) are

the layer thickness, where d1 is undisturbed thickness for upper layer and d2 is for lower layer.

3. Dispersion relation

In this section, we derived the dispersion relation for porous flow. We assume that our ob-

servation is in shallow area then we neglect the nonlinear term and approximate h ≃ d1 and

H ≃ d2. The linearized governing equations for flat bottom are:

ηt = −d1ux −d2
1
n

Ux in Ω1 ∪Ω2,(4)

ut = −gηx in Ω1,(5)

1
n

Ut = −gηx − f
ω
n

U in Ω2,(6)

In this section we derived dispersion relation for the full linearized governing equations (4-6).

We solve the full linearized governing equations using separation variables and assume periodic
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in time. They are expressed as

η(x, t) = F(x)eiωt ,(7)

u(x, t) = G(x)eiωt ,(8)

U(x, t) = E(x)eiωt .(9)

Introducing the equations (7, 8, 9) into equations (1-3) yields

iωF = −d1Gx −
d2

n
Ex,(10)

G =
−g
iω

Fx,(11)

E =
−ng

iω + f ω
Fx.(12)

By substituting (11,12) into equation (10), we get the general solution for ordinary differential

equation Fxx+ k2F = 0:

(13) F(x) = Aeikx +Be−ikx,

where k as a complex wave number follows this dispersion relation

(14) k2 =
ω2(1− i f )

gd1(1− i f )+gd2
.

We test the condition of no porous f = 0 then dispersion relation (14) become the well-known

dispersion relation for shallow water:

k2 =
ω2

g(d1 +d2)
.

Then, we test for an emerged porous structure d1 = 0 we have dispersion relation (14) become

k2 =
ω2(1− i f )

gd2

and it confirms the dispersion relation for surface waves pass through an emerged porous break-

water [5].

Taking parameter values ω = 6π , d1 = 10, d2 = 10, g = 9.81, n = 0.7, f = 0.25, dispersion

relation (14) will give us a complex value wave number k = 1.358501600−0.0820332133 i. A

monochromatic wave exp−i(κx−ωt) with negative imaginary part ℑ(k) will undergo amplitude

reduction, see Figure 2.
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FIGURE 2. The curve η(x, t) = exp−i(kx−ωt) with k = 1.358501600 −

0.0820332133 i (solid line) and its envelope (dotted line) KT = |η(x, t)|.

4. Staggered finite volume method

In this section, we solve equations (1, 2, 3) numerically using finite volume method on a

staggered grid. This method but for free fluid flow is described extensively in G.S.Stelling

[10, 11].

Equation (1) is approximated at a cell centered at full grid points xi. Equations (2,3) are

approximated at a cell centered at half grid points xi+1/2. The values of η will be computed at

every full grid points xi, with i = 1,2, ...,Nx using mass conservation (1). Velocity u,U will be

computed at every staggered grid points xi+ 1
2
, with i= 1,2, ...,Nx−1 using momentum equation

(2,3), see Figure (3).

Implement forward time center space to equations (4, 5, and 6) yield:

ηn+1
i −ηn

i
∆t

+

∗q|ni+1/2 −
∗ q|ni−1/2

∆x
+

1
n

∗Q|ni+1/2 −
∗ Q|ni−1/2

∆x
= 0(15)

un+1
i+1/2 −un

i+1/2

∆t
+g

ηn+1
i+1 −ηn+1

i

∆x
= 0(16)

1
nUn+1

i+1/2 −
1
nUn

i+1/2

∆t
+g

ηn+1
i+1 −ηn+1

i

∆x
+ f

ω
n

Un+1
i+1/2 = 0,(17)

where ∗q = ∗d1u and Q = ∗d2U.

In equation (15), the value of water thickness d1,i+1/2 and d2,i+1/2 in q,Q are not known,

because they are calculated only at full point xi. We approximate its value using first order
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FIGURE 3. Illustration of staggered grid with cell [xi− 1
2
,xi+ 1

2
] for mass conser-

vation and cell [xi−1,xi] for momentum equation.

upwind method:

(18) ∗d1,i+ 1
2
=

 d1,i, if ui+1/2 ≥ 0,

d1,i+1, if ui+1/2 < 0,

(19) ∗d2,i+ 1
2
=

 d2,i, if Ui+1/2 ≥ 0,

d2,i+1, if Ui+1/2 < 0.

These choice mean when the flow is going to the right ui+1/2 ≥ 0 the x− direction flux across

i+ 1/2 then we take information from the left d1,iui+1/2. And when the flow is going to the

left ui+1/2 < 0 the x− direction flux across i+ 1/2 then we take information from the right

d1,i+1ui+1/2. It is also hold for lower layer. That means we maintain mass conservation in each

cell [xi− 1
2
,xi+ 1

2
].

Implementing Von Neumann stability analysis, we obtain stability condition for the linear

equations of (15,16,17) is
√

g(d1 +d2)
∆t
∆x ≤ 1, where d1 +d2 is the flat bottom depth. Further-

more, this discretization has an amplification matrix that has eigenvalues with norm one, that

means this discretization is non-dissipative. Note the laminar friction term f ω
n U is calculated

implicitly in order to avoid more restricted stability condition.

5. Numerical simulation

When wave propagate over a porous breakwater, damping effect is observed due to interac-

tion between fluid and porous structure. Here we will simulate the effects of the porous structure

on wave damping. For validating our numerical scheme, we compare wave attenuation with the

analytical result.

5.1. Simulation of wave damping by a porous breakwater
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For simulation of an incoming monochromatic wave passing over a submerged porous break-

water, we take a computational domain 0 < x < 20,0 < t < 2. We take g = 9.81 and a constant

depth d1 = 10, d2 = 10. The initial condition is still water level η(x,0) = u1(x,0) = u2(x,0) = 0

and the left influx monochromatic wave of amplitude a = 1:

(20) η(0, t) = asin6πt.

Along the right boundary, we apply absorbing boundary by means of a sponge layer techniques.

For computations we use ∆x = 0.05,∆t = ∆x/
√

g(d1 +d2) = 0.0036.

We test the scheme for no porous condition: n = 1 and f = 0 equation (1, 2, and 3) reduces to

the shallow water equations. Numerical simulation for flat bottom, using zero initial condition

and left influx (20) will yield a monochromatic wave travels undisturbed in shape, as we expect.
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FIGURE 4. Amplitude of incoming monochromatic wave reduces over a sub-

merged porous breakwater.

When the lower layer in whole domain 0 ≤ x ≤ 20 is a porous media with parameters n = 0.7,

f = 0.25 then the results are given in Figure . It shows that wave amplitude reduced by the

porous media.

5.2. Comparison with Analytical Result

In this subsection, we show that our numerical surface profile reduces by the porous medi-

a with an envelope that confirms the analytical curve. For numerical computations, we use
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the same setup and parameters that we have used in Subsection . Using parameter values

above, dispersion relation (14) results in a complex value wave number k = 1.358501600−

0.0820332133 i that we have calculated in Subsection . We plot together the evolution of sur-

face elevation along x direction with the envelope which is the curve of wave damping solution

from analytic |exp−i(kx−ωt) |. The surface profile in a porous media is plotted in Figure . Clearly,

the numerical wave amplitude reduction confirms the analytical result.
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FIGURE 5. Comparison between numerical result (line) with analytical data (dash).

6. Conclusions

We have presented a nonlinear two layer shallow water equation for wave propagation over

porous bottom. From the full governing equation, the dispersion relation for this problem is

obtained. The dispersion relation give us a clear picture of the dissipative effect of gravity waves

over a submerged porous breakwater with certain characteristics. We implemented numerical

method for solving the nonlinear two layer model. Numerical simulation of wave dissipation

over porous media has been conducted. The numerical wave attenuation has confirmed the

analytical wave and experimental data from literature.
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