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Abstract. In this paper, we show if the half-linear part of an equation is oscillatory, so would be some of its related

perturbed equations. For one-dimentional cases, it can be resumed as the following: if the half-linear equation

P(y) := {a(t)φ(y′)}′+c(t)φ(y) = 0 is oscillatory then any of its perturbed equations P(z)+Q′(t)h(y,y′) = 0 will

also be oscillatory whenever Q ∈C1(R) and h ∈C(R2, R).
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1. Introduction

This work is somehow an addendum to our earlier result in [4]. For a T > 0, define accord-

ingly ΩT := {x ∈ Rn | ||x|| > T, 1 < n ∈ N} or ΩT := (T, ∞) ⊂ R. We investigate some

oscillation criteria for equations of the type
(i)

{
a(t)φ(y′)

}′
+ c(t)φ(y)+g(t) f (y,y′) = 0, t ∈ΩT or

(ii) ∇ ·
{

A(x)Φ(∇v)
}
+C(x)φ(v)+H(x) ·F(v,∇v) = 0, x ∈ΩT ,

(1.1)
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where a, c, g ∈ C(ΩT ,R); f ∈ C(R2, R); H ∈ C(ΩT , Rn), F ∈ C(R×Rn, Rn); the dot de-

notes the scalar product in Rn. For some α > 0, φ(S) := |S|α−1S for S ∈ R and Φ(ζ ) :=

|ζ |α−1ζ , ζ ∈ Rn. They have the following properties: ∀t,s ∈ R and ζ ∈ Rn

φ(t)φ(s) = φ(ts); tφ ′(t) = αφ(t); tφ(t) = |t|α+1;

φ(s)Φ(ζ ) = Φ(sζ ); ζ Φ(ζ ) = |ζ |α+1.

Definition 1.1. Let u ∈C(R, R) ( or C(Rn, R)).

(1) A nodal set of u is any open and connected D(u) 6= /0 such that u 6= 0 in D(u) and

u|∂D(u) = 0.

(2) u is said to be oscillatory ( strongly oscillatory ) if it has a zero in any ΩR, R > 0 ( in

any nodal set D(u)⊂ΩR ).

(3) An equation will be said to be oscillatory if any of its non-trivial and bounded solutions

is oscillatory.

In the sequel the general hypotheses are: for some T,m > 0,

(H1): a ∈C1(ΩT , (m, ∞)) is non decreasing: A ∈C1(ΩT , (m, ∞));

g ∈C(ΩT , R);

(H2): c,C ∈C(ΩT , (m, ∞)) eventually; H, f ,F are as stated above;

(H3): On any compact E ⊂ΩT , ∃k > 0 such that

(i) |g(t) f (S,w)| ≤ k|w|α +φ(S) if |w|< 1 and S > 0 for the (1.1)(i) case;

(ii) |H(x) ·F(S,ζ )| ≤ k|ζ |α +φ(S) if |ζ |< 1 and S > 0 for the (1.1)(ii) case.

( The condition (H3) is to ensure that non-trivial solutions are not compact-supported ( see

[2] ).

Oscillation criteria for the equations (1.1)(i) will be obtained through some comparison meth-

ods, using some Picone-type identity.Some oscillation criteria for the half-linear equations

(i)
{

a(t)φ(y′)
}′

+ c(t)φ(y) = 0, t ∈ΩT and

(ii) ∇ ·
{

A(x)Φ(∇v)
}
+C(x)φ(v) = 0, x ∈ΩT

(1.2)

are well known; see e.g. [1,3,4] and references therein. For any w ∈ C(Rn, R+) define

W+(r) := rn−1 max|x|=r w(x) and W−(r) := rn−1 min|x|=r w(x). The equations in (1.2) are

oscillatory if
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(i) a satisfies (H1) and c satisfies (H2) or t 7→
∫ t

T c(s)ds diverges to infinity for (1.2) (i);

(Theorem 1.5 of [3])

(ii) a := A− and c :=C+ satisfy the conditions displayed in (i) above for (1.2) (ii).

(Theorem 5.1 of [4])

The criteria for (1.2) (ii) are obtained from those of (1.2) (i) using some rightaway transfor-

mations and some Picone-type identities; see [1] [3] and the references therein.

2. Picone-type formulae for the equations in (1.1)

If y is a non-trivial C2−solution , non zero in some D⊂ΩT of (1.1) (i) and z such a solution

for (1.2) (i) then

(a) if ∃G ∈C1(ΩT , R) such that G′(t) = g(t) in ΩT ,

(b)
{

a(t)zφ(z′)−a(t)zφ(
z
y

y′)− zφ(
z
y
)G(t) f (y,y′)

}′
= a(t)ζα(z,y)−G(t)

{
zφ(

z
y
) f (y,y′)

}′
,

(2.1)

where, ∀γ > 0, the two-form function ζγ is defined ∀u,v ∈C1(R, R) by

(Z1) : ζγ(u,v)


= |u′|γ+1− (γ +1)u′φγ(

u
v

v′)+ γv′
u
v

φγ(
u
v

v′)

= |u′|γ+1− (γ +1)u′φγ(
u
v

v′)+ γ|u
v

v′|γ+1

is strictly positive for non null u 6= v and is null only if u = λv for some λ ∈ R . Similarly,

if v ∈C2(ΩT , R) is a non-trivial solution for (1.1) (ii) and u such a solution of (1.2) (ii) then
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wherever v 6= 0

(a) if ∃h ∈C1(ΩT , R) such that ∇h = H(x) in ΩT ,

(b) ∇ ·
{

A(x)uΦ(∇u)−A(x)uΦ(
u
v

∇v)−uφ(
u
v
)h(t)F(v,∇v)

}
= A(x)Zα(u,v)−h(t)∇ ·

{
uφ(

u
v
)F(v,∇v)

}
,

where ∀γ > 0, ∀u,v ∈C1(Rn).

(Z2)(Z2)(Z2) : Zγ(u,v) := |∇u|γ+1− (γ +1)Φγ(
u
v

∇v) ·∇u+ γ|u
v

∇v|γ+1

= |∇u|γ+1− (γ +1)|u
v

∇v|γ−1 u
v

∇v ·∇u+ γ|u
v

∇v|γ+1.

(2.2)

We recall that ∀γ > 0 the two-form Zγ(u,v) > 0 for distinct non null u,v and is null only if

∃k ∈ R; u = kv; see [1].

3. Main results

Theorem 3.1. Assume that a,c,g and f satisfy (H1) to (H3). Then

(i)
{

a(t)φ(y′)
}′

+ c(t)φ(y) = 0, t > T is oscillatory,

(ii) so is
{

a(t)φ(y′)
}′

+ c(t)φ(y)+g(t) f (y,y′) = 0, t ∈ΩT

(3.1)

provided that ∃G ∈C1(ΩT ); G′(t) = g(t).

Theorem 3.2. Assume that A, C ,F, with a := A− , c :=C+ and H satisfy (H1) to (H3). Then

∇ ·
{

A(x)Φ(∇v)
}
+C(x)φ(v)+H(x) ·F(v,∇v) = 0, x ∈ΩT (3.2)

is oscillatory provided that ∃h ∈C1(ΩT , R); ∇h(x) = H(x).

Since the proofs of the two theorems are similar, we prove only the first one.

Proof of Theorem 3.1. In equation (3.1) (ii) g(t) can be replaced by G′µ(t) := [G(t) +

µ]′, ∀µ ∈ R. With that replacement, if y is a non-trivial solution of (3.1)(ii) with y > 0 in
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an ΩR, then for any oscillatory solution z of (3.1) (i), for any nodal set D(z)⊂ΩR

0 =
∫

D(z)

[
a(t)ζα(z,y)

]
dt

−
∫

D(z)
( G(t)+µ )

{
zφ(

z
y
) f (y,y′)

}′
dt ∀µ ∈ R.

(3.3)

For µ = 0 we get 0=
∫

D(z)

[
a(t)ζα(z,y)

]
dt−

∫
D(z)G(t)

{
zφ(

z
y
) f (y,y′)

}′
dt whence µ[zφ(

z
y
) f (y,y′)]≡

0 and so is ζα(z,y) in any such a D(z). Therefore no such a solution y can be non-zero in any

ΩR; it has to have a zero in any D(z)⊂ΩR.

Remark 3.3. Following the processes similar to those in the proofs of Theorem 3.4 and Theo-

rem 5.1 of [4], the hypotheses on G and H can be weakened to

∃k ∈C(ΩT , R) and K ∈C(ΩT , Rn)

bounded in ΩT such that the functions G and h above satisfy

G′(t) = g(t)+ k(t) and ∇h(x) = H(x)+K(x). (3.4)

But the penality to pay is that the corresponding solutions y will be oscillatory unless liminft↗∞ |y(t)|=

0 (liminf|x|↗∞ |y(x)|= 0).
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