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1. Introduction

The concept of fuzzy set is introduced by Zadeh [7]. Lee [5] introduced the concept of fuzzy automata and Lee

[4] generalized the classical notion of languages to the concept of fuzzy languages. The concept of intuitionistic

fuzzy set was introduced by [1] as a generalization of the notion of fuzzy set. Using the notion of intuitionistic

fuzzy sets [1], it is possible to obtain intuitionistic fuzzy language [6]. The concept of (SP) partition for an ffa is

formulated by [3] in analogy with that of stochastic automaton given by [2]. In [3] the finite fuzzy automata is

minimized by using (SP) partition. This minimized quotient machine is shown to be behaviourally equivalent to

the given machine.

In this paper the concept of substitution property (SP) partition for an iffa is formulated and the quotient iffa
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with respect to an (SP) partition that refines the set of final states is defined. The quotient machine is shown to be

behaviourally equivalent to the given machine.

2. Preliminaries

For convenience, the operations of max and min will be denoted by ∨ and ∧ respectively, i.e. for any two

nonnegative numbers a,b.

a∨b = max{a,b},a∧b = min{a,b}.

For a finite number of nonnegative numbers ai(i = 1,2, · · · ,n)
n∨

i=1
ai = max{ai : i = 1,2, · · · ,n},

n∧
i=1

ai = min{ai : i = 1,2, · · · ,n}.

Definition 2.1. (Intuitionistic Fuzzy Matrices) An intuitionistic fuzzy matrix is a pair of m×n matrices A=(A1,A2)

where A1 = (a1i j) and A2 = (a2i j) such that 0≤ a1i j +a2i j ≤ 1.

Multiplication of two intuitionistic fuzzy matrices is defines as follows. Let A = (A1,A2) be an m× n intu-

itionistic fuzzy matrix and B = (B1,B2) be an n× pintuitionistic fuzzy matrix then the product AB is an m× p

intuitionistic fuzzy matrix defined by

AB = (c1ik,c2ik)m×p where for all i,k

c1ik =
∨
j
(a1i j ∧b1 jk)

and c2ik =
∧
j
(a2i j ∨b2 jk).

Lemma 2.1. Let A = (A1,A2) be an m× n intuitionistic fuzzy matrix having identical row max a1 in A1 and

identical row min a2 in A2 and B = (B1,B2) be an n× p intuitionistic fuzzy matrix having identical row max b1 in

B1 and identical row min b2 in B2. Then AB has identical row max a1∧b1 in A1B1, and identical row min a2∨b2

in A2B2.

Proof. Given

∀i,
∨
j

a1i j = a1, ∀ j,
∨
k

b1 jk = b1,

∀i,
∧
j

a2i j = a2, ∀ j,
∧
k

b2 jk = b2.

Then for every i, we have∨
k

c1ik =
∨
k
(
∨
j
(a1i j

∧
b1 jk)) = a1∧b1,∧

k
c2ik =

∧
k
(
∧
j
(a2i j

∨
b2 jk)) = a2∨b2

since for all i,k,c1ik ≤ a1 ∧ b1 and c2ik ≥ a2 ∨ b2 but ∀i,∃ j′ such that a1i j′ = a1,a2i j′ = a2 and ∃k′ such that

bi j′k′ = b1,b2 j′k′ = b2.

3. Basic concepts and notations
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Definition 3.1. ( Intuitionistic Fuzzy Automata) A finite intuitionistic fuzzy automaton over an input alphabet X is

defined to be an algebraic system.

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
where

(1) Q = {q1,q2, · · · ,qn} is a finite set of states.

(2) X is finite alphabet.

(3) A(a) = (A1(a),A2(a)) is an n×n intuitionistic fuzzy matrix.

(4) α1 = (α11,α12, · · · ,α1n) and α2 = (α21,α22, · · · ,α2n) is an intuitionistic fuzzy row vector, called the

initial state designator.

(5) F is a subset of Q, called the set of final states.

(6) ηF
1 = (η11,η12, · · · ,η1n)

T where η1i has value 1 if qi ∈ F or 0 if qi ∈ Q−F.

ηF
2 = (η21,η22, · · · ,η2n)

T where η2i has value 0 if qi ∈ F or 1 if qi ∈ Q−F.

ηF
1 and ηF

2 is called the final state designator.

Example 3.1. Consider the intuitionistic fuzzy automaton

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
where Q = {q1,q2,q3},F = {q3}

α1 = (0.3 0.8 0.9), α2 = (0.5 0.2 0.1) and

A1(a) =


0.8 0.6 0.3

0.7 0.9 0.5

0.4 1 0.2

 A1(b) =


0.4 0.9 0.6

0.1 0.7 0.5

1 0.3 0.8



A2(a) =


0.2 0.3 0.7

0.1 0 0.4

0.5 0 0.8

 A2(b) =


0.3 0.1 0.4

0.7 0.2 0.4

0 0.6 0.1


ηF

1 = (0 0 1)T

ηF
2 = (1 1 0)T

Note that For any word x ∈ X∗, the intuitionistic fuzzy matrix

A = (A1(x),A2(x);x ∈ X∗)

(1) A1(λ ) = {a1ii = 1 and a1i j = 0 for i 6= j

A2(λ ) = {a2ii = 0 and a2i j = 1 for i 6= j

λ being the null word.
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(2) ∀x ∈ X∗,∀a ∈ X ,A1(xa) = A1(x)A1(a)

A2(xa) = A2(x)A2(a).

The behavior of an iffa M is defined to be an intuitionistic fuzzy subset of X∗, denoted by βM = (µβM ,γβM )

whose membership and non membership function is given by, ∀x ∈ X∗,µβM (x) = α1A1(x)ηF
1 = α1ηF

1 (x) and

γβM (x) = α2A2(x)ηF
2 = α2ηF

2 (x), where we write ηF
1 (x) = A1(x)ηF

1 and ηF
2 (x) = A2(x)ηF

2 . Two iffa’s M and M′

are said to be behaviourally equivalent, written M ≡M′ if βM = βM′ .

4. Quotient intuitionistic fuzzy automata

Definition 4.1. (Substitution Property) A partition π of Q for an iffa

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
is said to have the substitution property (SP) if for every a ∈ X , each of the intuitionistic fuzzy submatrices into

which the matrix A1(a) is partitioned by the blocks of π has identical row max and A2(a) is partitioned by the

blocks of π has identical row min. A partition π of Q is said to refine the set F of final states if every block of π is

contained either in F or in Q−F.

Example 4.1. Consider an iffa M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
,

where Q = {q1,q2,q3,q4,q5}, X = {a,b}, F = {q4,q5}, α1 = (0.5 0.6 0.1 0.7 0.4), α2 = (0.4 0.2 0.8 0.3 0.5),

A1(a) =



0.3 0.6 0.2 0.3 0.2

0.6 0.4 0.2 0.1 0.3

0.7 0.1 0.7 0.8 0.4

0.6 0.2 0.5 0.1 0.6

0.3 0.6 0.5 0.6 0.5


A2(a) =



0.6 0.2 0.7 0.4 0.5

0.2 0.5 0.7 0.8 0.4

0.2 0.8 0.1 0.2 0.5

0.4 0.6 0.5 0.7 0.3

0.7 0.4 0.5 0.3 0.4



A1(b) =



0.7 0.9 0.2 0.4 0.3

0.9 0.7 0.2 0.1 0.4

0.8 0.2 0.8 0.9 0.5

0.6 0.3 0.3 0.2 0.7

0.4 0.6 0.3 0.7 0.6


A2(b) =



0.3 0.1 0.7 0.5 0.6

0.1 0.2 0.7 0.9 0.5

0.2 0.6 0.1 0.1 0.4

0.3 0.5 0.4 0.6 0.2

0.5 0.3 0.4 0.2 0.4


Hence the partition satisfies substitution property π = {[q1,q2], [q3], [q4,q5]}.

Theorem 4.1. If for an iffa

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
.
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π is an SP partition of Q, then for any x ∈ X∗, each of the submatrices into which the intuitionistic fuzzy matrix

A1(x) is partitioned by the blocks of π has identical row max and A2(x) is partitioned by the blocks of π has

identical row min.

Proof. Let A1(a) = a1i j,A2(a) = a2i j and x ∈ X∗. We prove the result by induction on lg(x) = n. If n = 0 then

x = λ , A1(λ ) = {a1ii = 1 and a1i j = 0 for i 6= j, A2(λ ) = {a2ii = 0 and a2i j = 1 for i 6= j. Clearly, A1(λ ) is

partitioned by the blocks of π has identical row max and A2(λ ) is partitioned by the blocks of π has identical row

min.

Suppose now the result is true ∀y ∈ X∗ where length is ≤ n− 1,n > 0. Let x = ya with y ∈ X∗,a ∈ X and

A1(ya) = A1(y).A1(a),A2(ya) = A2(y).A2(a).

By lemma 2.1, A1(x) is partitioned by the blocks of π has identical row max and A2(x) is partitioned by the

blocks of π has identical row min.

Definition 4.2. ( Quotient Intuitionistic Fuzzy Automata) Let M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α =

(α1,α2),F,ηF = (ηF
1 ,η

F
2 )

)
be an iffa and π is an SP partition of Q which refines F. Then the quotient iffa

M/π =

(
Q′,X ,{A′(a) = (A′1(a),A

′
2(a)) : a ∈ X},α ′ = (α ′1,α

′
2),F

′,ηF ′ = (ηF ′
1 ,ηF ′

2 )

)
is an iffa where Q′ =

{B1,B2, · · · ,Bm} is the set of blocks of π(m = rank π), for every a ∈ X ,A′1(a) is the m×m fuzzy matrix ob-

tained by replacing each of the submatrices into which A1(a) is partitioned by the blocks of π by its constant

row max and A′2(a) is the m×m fuzzy matrix obtained by replacing each of the submatrices into which A2(a) is

partitioned by the blocks of π by its constant row min, α ′1 is the fuzzy row m-vector obtained by replacing each of

the subvectors into which α1 is partitioned by the blocks of π by its max and α ′2 is the fuzzy row m-vector obtained

by replacing each of the subvectors into which α2 is partitioned by the blocks of π by its min and F ′ is the set of

blocks of π partitioning F.

Definition 4.3.

(1) M/π is well defined.

(2) For any x ∈ X∗,A′(x) = (A′1(x),A
′
2(x)) where A′1(x) is an m×m fuzzy matrix obtained by replacing each

of the submatrices into which A1(x) is partitioned by the blocks of π by its constant row max and A′2(x)

is an m×m fuzzy matrix obtained by replacing each of the submatrices into which A2(x) is partitioned

by the blocks of π by its constant row min.

(3) For any x ∈ X∗,ηF(x) = (ηF
1 (x),η

F
2 (x)) has identitcal entries corresponding to each block of π and

ηF ′(x) = (ηF ′
1 (x),ηF ′

2 (x)) where ηF ′
1 (x) is a fuzzy column m-vector obtained by replacing each of the

column subvectors into which ηF
1 (x) is partitioned by the blocks of π by its constant entry and ηF ′

2 (x)

is a fuzzy column m-vector obtained by replacing each of the column subvectors into which ηF
2 (x) is

partitioned by the blocks of π by its constant entry.
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Example 4.2. From example 4.1, consider a quotient iffa

M/π =

(
Q′,X ,{A′(a) = (A′1(a),A

′
2(a)) : a ∈ X},α ′ = (α ′1,α

′
2),F

′,ηF ′ = (ηF ′
1 ,ηF ′

2 )

)
, where Q′ = {B1,B2,B3},

X = {a,b}, F ′ = {B3}, α ′1 = (0.6 0.1 0.7), α ′2 = (0.2 0.8 0.3),

A′1(a) =


0.6 0.2 0.3

0.7 0.7 0.8

0.6 0.5 0.6

 A′2(a) =


0.2 0.7 0.4

0.2 0.1 0.2

0.4 0.5 0.3



A′1(b) =


0.9 0.2 0.4

0.8 0.8 0.9

0.6 0.3 0.7

 A′2(b) =


0.1 0.7 0.5

0.2 0.1 0.1

0.3 0.4 0.2


ηF ′

1 = (0 0 1)T , ηF ′
2 = (1 1 0)T .

5. State equivalence, induced SP partition and minimal machine

Definition 5.1. (State Equivalence) Let M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF =

(ηF
1 ,η

F
2 )

)
be given iffa. Two states qi and q j of M are said to be equivalent, written qi ≡ q j, iff for every word

x ∈ X∗,ηF
1 (x) has identical ith and jth entries and ηF

2 (x) has identical ith and jth entries. The partition of Q induced

by this equivalence relation will be denoted by πF and called the induced partition for M.

Theorem 5.1.

(1) πF refines F.

(2) πF is an SP partition.

Proof.

(1) ηF
1 (λ ) = ηF

1 which has constant entries 1 on F and 0 on Q−F.

ηF
2 (λ ) = ηF

2 which has constant entries 0 on F and 1 on Q−F

and hence follows (1).

(2) Let a ∈ X ,x ∈ X∗, then if πF = {Bk : k = 1, · · · ,m},ηF
1 (ax) = A1(a)ηF

1 (x) and ηF
2 (ax) = A2(a)ηF

2 (x) so

that

ηF
1i(ax) =

∨
j
(a1i j(a)∧ηF

1 j(x))

=
∨
k

∨
q j∈Bk

(a1i j(a)∧ηF
1 j(x))

ηF
2i(ax) =

∧
j
(a2i j(a)∨ηF

2 j(x))

=
∧
k

∧
q j∈Bk

(a2i j(a)∨ηF
2 j(x))
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Since ηF
1 j(x) and ηF

2 j(x) has a constant value for all j for which q j ∈ Bk, and writing

ηF
1 j(x) = λk(x) for q j ∈ Bk(k = 1, · · · ,m),

ηF
1i(ax) =

∨
k
(λk(x)∧

∨
q j∈Bk

a1i j(a))

If qi ≡ ql , then ηF
1i(ax) = ηF

1l(ax)

or ηF
1i(ax) =

∨
k
(λk(x)∧

∨
q j∈Bk

a1i j(a))

=
∨
k
(λk(x)∧

∨
q j∈Bk

a1l j(a))

and ηF
2 j(x) = βk(x) forq j ∈ Bk(k = 1, · · · ,m),

ηF
2i(ax) =

∧
k
(βk(x)∨

∧
q j∈Bk

a2i j(a))

If qi ≡ ql , then ηF
2i(ax) = ηF

2l(ax)

or ηF
2i(ax) =

∧
k
(βk(x)∨

∧
q j∈Bk

a2i j(a))

=
∧
k
(βk(x)∨

∧
q j∈Bk

a2l j(a))

Since this holds for λk(x) and βk(x) (k = 1, · · · ,m) ∀x ∈ X∗, we conclude∨
q j∈Bk

a1i j(a) =
∨

q j∈Bk

a1l j(a)

and
∧

q j∈Bk

a2i j(a) =
∧

q j∈Bk

a2l j(a)

for all a ∈ X which proves (2).

Theorem 5.2.πF is the largest SP partition for A which refines F.

Definition 5.2. If πF is the induced partition for an iffa M, then the quotient iffa M/πF will be called minimal

machine associated with M and denoted by MM.

Theorem 5.3.

(1) MM is well defined.

(2) MM ≡M.

6. Finite procedure for computing the minimal machine

For obtaining a finite procedure for computing the minimal machine of a given iffa, i.e., for computing the

induced partition, we introduce the concept of k-equivalences.

Definition 6.1. Let k be a nonnegative integer and M a given iffa. A state qi is said to be k-equivalent to a state q j

iff for any word x ∈ X∗ such that lg(x) ≤ k,ηF(x) = (ηF
1 (x),η

F
2 (x)) in which ηF

1 (x) and ηF
2 (x) has the same ith

and jth entries. And the partition induced by this k-equivalence will be denoted by πk.

We are now in a position to give an algorithm for computation of the induced partition.

Algorithm 6.1. For a given iffa

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
,
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to compute the induced partition πF , we proceed along the following steps.

(1) Compute π0 = {F,S−F}.

(2) Having obtained πh, compute πh+1 as follows:

Write down ηF(x) = (ηF
1 (x),η

F
2 (x)) for all x ∈ X∗ such that lg(x) = h. Calculate A1(a)ηF

1 (x) and

A2(a)ηF
2 (x) for all a ∈ X and for all x ∈ X∗, such that lg(x) = h. Denote by τh the partition of Q over the

blocks of which the entries of A1(a)ηF
1 (x) and A2(a)ηF

2 (x) are constant.

Then τh+1 = πhτh.

(3) If πh = πh+1, then go to step 5, otherwise goto step 4.

(4) Replace h by h+1 and repeat step 2.

(5) Halt and set πF = πh.

Example 6.1. Consider an iffa

M =

(
Q,X ,{A(a) = (A1(a),A2(a)) : a ∈ X},α = (α1,α2),F,ηF = (ηF

1 ,η
F
2 )

)
,

where Q = {q1,q2, · · · ,q9},X = {a,b},F = {q6,q7,q8,q9}

α1 = (0.3 0.7 0.8 0.2 1 0.4 0 0.5 0.9) and α2 = (0.4 0.2 0.2 0.6 0 0.5 0.7 0.3 0.1)

A1(a) =



1 0.3 0.5 0.8 0.7 0.9 0.7 0.9 0.3

0.3 1 0.5 0.4 0.8 0.9 0.5 0.4 0.9

0.5 0.2 1 0.3 0.8 0.1 0.9 0.9 0.7

0.8 0.4 0.8 1 0.2 0 0.5 0.3 0.2

0.7 0.8 0.8 0.2 1 0.5 0.4 0.5 0.5

0.9 0.9 0.7 0 0.5 1 0.8 0.7 0.4

0.7 0.9 0.7 0.5 0.4 0.8 1 0.6 0.7

0.9 0.4 0.7 0.3 0.5 0.7 0.6 1 0.2

0.3 0.9 0.7 0.2 0.5 0.4 0.7 0.2 1



A2(a) =



0 0.7 0.4 0.1 0.2 0.1 0.3 0.1 0.6

0.5 0 0.4 0.5 0.1 0.1 0.4 0.5 0.1

0.4 0.6 0 0.7 0.2 0.9 0.1 0.07 0.2

0.2 0.6 0.2 0 0.8 1 0.4 0.6 0.7

0.3 0.2 0.2 0.7 0 0.4 0.6 0.4 0.5

0.1 0.1 0.3 0.9 0.4 0 0.2 0.1 0.3

0.2 0.1 0.3 0.4 0.5 0.2 0 0.4 0.2

0.1 0.3 0.3 0.7 0.4 0.3 0.4 0 0.8

0.4 0.1 0.3 0.4 0.5 0.5 0.3 0.7 0
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A1(b) =



1 0.6 0.7 0.2 0.5 0.8 0.7 0.2 0.4

0.6 1 0.7 0.5 0.3 0.4 0.8 0.1 0.4

0.7 0.2 1 0.3 0.5 0.8 0.1 0.8 0.8

0.2 0.5 0.3 1 0.7 0.5 0.6 0.6 0.5

0.5 0.3 0.3 0.7 1 0.6 0.2 0.5 0.6

0.8 0.4 0.8 0.5 0.6 1 0.3 0.2 0.1

0.7 0.8 0.8 0.6 0.2 0.3 1 0.1 0.2

0.2 0.8 0.8 0.6 0.5 0.2 0.1 1 0.7

0.8 0.4 0.8 0.5 0.6 0.1 0.2 0.7 1



A2(b) =



0 0.3 0.2 0.5 0.3 0.09 0.3 0.5 0.6

0.4 0 0.2 0.3 0.5 0.5 0.2 0.7 0.09

0.3 0.7 0 0.5 0.3 0.2 0.9 0.2 0.1

0.8 0.4 0.6 0 0.3 0.4 0.3 0.2 0.5

0.4 0.7 0.6 0.2 0 0.4 0.6 0.4 0.2

0.1 0.5 0.2 0.1 0.2 0 0.7 0.6 0.9

0.3 0.1 0.2 0.2 0.6 0.6 0 0.9 0.7

0.6 0.1 0.2 0.4 0.2 0.8 0.7 0 0.3

0.1 0.5 0.2 0.2 0.3 0.7 0.4 0.2 0


ηF

1 = (0 0 0 0 0 1 1 1 1)T

ηF
2 = (1 1 1 1 1 0 0 0 0)T

π0 = {[q1 q2 q3 q4 q5], [q6 q7 q8 q9]}

ηF
1 (a) = A1(a)ηF

1 = (0.9 0.9 0.9 0.5 0.5 1 1 1 1)T

ηF
1 (b) = A1(b)ηF

1 = (0.8 0.8 0.8 0.6 0.6 1 1 1 1)T

ηF
2 (a) = A2(a)ηF

2 = (0.1 0.1 0.07 0.4 0.4 0 0 0 0)T

ηF
2 (b) = A2(b)ηF

2 = (0.09 0.09 0.1 0.2 0.2 0 0 0 0)T

τ0 = {[q1, q2], [q3], [q4, q5], [q6, q7, q8, q9]}

π1 = π0τ0 = {[q1,q2], [q3], [q4,q5], [q6,q7,q8,q9]}

ηF
1 (aa) = A1(a)ηF

1 (a) = (0.9 0.9 0.9 0.8 0.8 1 1 1 1)T

ηF
1 (ab) = A1(a)ηF

1 (b) = (0.9 0.9 0.9 0.8 0.8 1 1 1 1)T

ηF
1 (ba) = A1(b)ηF

1 (a) = (0.9 0.9 0.9 0.6 0.6 1 1 1 1)T

ηF
1 (bb) = A1(b)ηF

1 (b) = (0.8 0.8 0.8 0.6 0.6 1 1 1 1)T

ηF
2 (aa) = A2(a)ηF

2 (a) = (0.1 0.1 0.07 0.2 0.2 0 0 0 0)T
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ηF
2 (ab) = A2(a)ηF

2 (b) = (0.09 0.09 0.07 0.2 0.2 0 0 0 0)T

ηF
2 (ba) = A2(b)ηF

2 (a) = (0.09 0.09 0.07 0.2 0.2 0 0 0 0)T

ηF
2 (bb) = A2(b)ηF

2 (b) = (0.09 0.09 0.1 0.2 0.2 0 0 0 0)T

τ1 = {[q1, q2], [q3], [q4, q5], [q6, q7, q8, q9]},

τ2 = π1τ1 = π1 = πF .

Minimal Machine

MM = M/πF = (Q,X ,{A′(a) = (A′1(a),A
′
2(a)) : a ∈ X},α ′ = (α ′1,α

′
2),F

′,

ηF ′ = (ηF ′
1 ,ηF ′

2 )), where Q′ = {B1,B2,B3,B4}, α ′1 = (0.7 0.8 1 0.9), α ′2 = (0.2 0.2 0 0.1) and F ′ = {B4},

ηF ′
1 = (0 0 0 1), ηF ′

2 = (1 1 1 0) and

A′1(a) =


1 0.5 0.8 0.9

0.5 1 0.8 0.9

0.8 0.8 1 0.5

0.9 0.7 0.5 1

 A′2(a) =


0 0.4 0.1 0.1

0.4 0 0.2 0.07

0.2 0.2 0 0.4

0.1 0.3 0.4 0



A′1(b) =


1 0.7 0.5 0.8

0.7 1 0.5 0.8

0.5 0.3 1 0.6

0.8 0.8 0.5 1

 A′2(b) =


0 0.2 0.3 0.09

0.3 0 0.2 0.1

0.4 0.6 0 0.2

0.1 0.2 0.2 0


µβM (ab)=α1ηF

1 (ab)= 0.9, µβ ′M
(ab)=α ′1ηF ′

1 (ab)= 0.9, and γβM (ab)=α2ηF ′
2 (ab)= 0.1, γβ ′M

(ab)=α ′2ηF ′
2 (ab)=

0.1.

7. Conclusion

By Example 6.1 we conclude that the minimization of number of states in intuitionistic fuzzy automata is always

greater than or equal to minimization of number of states in fuzzy automata.
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