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Abstract.This paper studies the application of perturbation analysis in approximating non-stationary

first order autoregressive models. Asymptotic results using perturbation analysis are given. Error analysis

shows that our method works well. Some simulation results are also given.
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1. Introduction. Perturbation is a numerical technique designed for analyzing

problems which cannot be solved exactly but they can be characterized by adding a small

leading parameter (denoted by ε) to the exact solutions at hand. In this method, it is

assumed that an intricate dependency between the solution and ε exists and an expression

is derived for the desired solution (in terms of a power series in ε, for example, using Taylor

expansion). The final product of this process is the exact solution of initial problem with

further terms which describe the deviation in the solution. Finally, an error analysis is

necessary to evaluate the performance of this method in the case of study. This method

is applicable to solve algebraic and differential equations and for approximating integrals

and gradient and Monte Carlo estimations (see Nayfeh(1981)).
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The perturbation theory is also applicable for statistical problems. For example, it

can be used for design of control chart (see Fu and Hu (1997)), analysis of discrete-event

dynamic systems (refer to Gong and Ho (1987)) and studying generalized semi-Markov

process (see Fu and Hu (1992)). Fouque et al. (2003) applied this method for option

pricing models under stochastic volatility assumptions.

The first order autoregressive model AR(1) is often used for prediction in finance. This

model is non-stationary if it has a unit root. Therefore, it is assumed that the slop

parameter remains between −1 and 1. However, this parameter may be very close to 1.

This phenomena is referred to near unit root problem. For large sample size, Bobkoski

(1983) showed this process converges to Ornstein-Uhlenbeck (OU) process. He also derived

the asymptotic properties of least square estimate of slop. For more general results, see

Cox and Llatas (1991). But this is definitely not the end of the story. Results may vary

under slop perturbation. In the current paper, we study the perturbation analysis in near

unit root AR(1) model. This paper is organized as follows. In section 2, we propose

Bobkoski’s limiting distributions under perturbation assumption. Error analysis is also

studied in this section. Simulation results are given in section 3.

2. Perturbation analysis. Let Z1, Z2, ... be a sequence of independent and

identically distributed zero mean random variables with σ2. Suppose that Y n
k+1 = ϕnY

n
k +

Zk+1, k = 0, 1, ..., where ϕn = 1−β/n. One can note that ϕn is very close to 1 as n → ∞.

Bobkoski (1983) proved that Xn(t) = n(−1/2)Y n
[nt] converges weakly to a OU process with

parameters β and σ, i.e.,

dX = −βXdt+ σdW,

where W is standard Brownian motion on (0,1). In this note, we let

ϕε
n = 1− εβ/n,

where ε is a small number and replace Y n
k+1, Xn(t) with Y n,ε

k+1, X
ε
n(t), respectively. Notice

that the slop can be close to 1 because of two factors, first as n → ∞ and second as

ε → 0. Following Bobkoski (1983), as follows, we show that the convergence process is
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OU process with parameters εβ and σ. One can note that

Xε
n(t) = (ϕε

n)
[nt]Xε

n(0) +

∫ t

0

(ϕε
n)

[nt]−1−[ns]dWn(s),

where Wn(s) = n(−1/2)
∑[nt]

i=1 Zi. If X
ε
n(0) → Xε

0 , then Xε
n =⇒ Xε, where

Xε
t = e−βεtXε

0 +

∫ t

0

e−βε(t−s)dW (s),

or equivalently, dXε
t = −εβXε

t dt+ σdWt. When, ε = 0 then Xε
t is σWt. If ε → 0, then

e−βεt = (1− βεt+
(βεt)2

2
) +O(ε2).

Therefore, we can approximate Xε
t in the form of Xε

t = X̂ε
t +O(ε2), where

X̂ε
t = (1− βεt+

(βεt)2

2
)Xε

0

+

∫ t

0

(1− βε(t− s) +
(βε(t− s))2

2
)dW (s).

Here, we consider the error analysis for evaluate the performance of our method. A direct

computation shows that mean function is zero, i.e., E(X̂ε
t ) = 0 and the variance function

of perturbed process is

var(X̂ε
t ) = t(1 + βεt)σ2,

and for s < t, the covariance function is

cov(X̂ε
s , X̂

ε
t ) = s(1 + βεt)σ2.

One can see that these function are perturbation approximation of mean, variance and

covariance functions of a OU process with parameters εβ and σ (i.e., Xε
t ) as ε → 0. This

shows that our method approximates these functions well. Since the main properties of

each OU is derived from this functions, we find that our method works well.

3. Simulations. In this section, we study the behavior of slop estimation in

perturbed OU process. We consider two cases, the fixed volatility model and second the

stochastic volatility case.

Fixed volatility model. Let ϕ̂ε
n be the least square estimate of ϕε

n. Then

n−1∑
k=0

Y n,ε
k {(ϕε

n − ϕ̂ε
n)Y

n,ε
k + Zk+1} = 0.
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This equations says that

n(ϕε
n − ϕ̂ε

n)

∫ n−1
n

0

Xε
n(s)ds =

∫ n−1
n

0

Xε
n(s

−)dWn(s).

As n → ∞, then n(ϕ̂ε
n − ϕε

n) converges to in distribution to U ε where

U ε =
σ
∫ 1

0
Xε

sdW (s)∫ 1

0
X2ε

s ds
.

One should note that β̂ − β = ε−1U ε. For small ε process Xε
t is approximated by X̂ε

t in

above formula and Û ε is obtained. It is expected Û ε is close to U ε. Here, using a Monte

Carlo simulation study with M = 1000 repetitions, we derive the maximum (max) and

median (med) of errors |Û ε − U ε| for various values of ε. We fixed β = 0.5 and σ = 1.

The results are given in the following table.

Table 1: Max and Med of errors

ε 0.1 0.05 0.025 0.001 0.0001

max 0.1 0.08 0.08 0.05 0.01

med 0.05 0.045 0.033 0.022 0.006

Stochastic volatility case. The OU process plays an important role in financial engi-

neering. The volatility of this process isn’t fixed in practice and a stochastic volatility

model is fitted much better to financial time series. Therefore, we consider the following

models  dXε
t = εβXε

t dt+ σtdWt

dσ2
t = µσ2

t dt+ ξσ2
t dBt,

where Wt and Bt are two independent Wiener processes. Following Kutoyants (2004), the

least square estimate ζ̂ε = εβ̂ε is the minimizer of∫ 1

0

σ−2
t (dXε

t − εβXε
t dt)

2.

It is seen that

ζ̂ε =

∫ 1

0
σ−2
s Xε

sdW (s)∫ 1

0
σ−2
s X2ε

s ds
.

It is easy to see that ζ̂ε − ζε = U ε
sv, where

U ε
sv =

∫ 1

0
σ−1
s Xε

sdW (s)∫ 1

0
σ−2
s X2ε

s ds
.
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Again, in practice Xε
s is approximated by perturbed process X̂ε

t . The following table gives

the value of maximum and median errors as we did for table 2. Here, we let µ = 0.4,

ξ = 0.75 and β = 0.5.

Table 2: Max and Med of errors; SV model

ε 0.1 0.05 0.025 0.001 0.0001

max 0.12 0.076 0.083 0.075 0.01

med 0.08 0.032 0.013 0.068 0.003
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