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1. Introduction 

Calderon formula [8] involving convolution related to the Fourier transform is useful in 

obtaining reconstruction formula for wavelet transform besides many other applications in 

decomposition of certain function spaces. It is expressed as follows: 

0
( ) ( )( ) ,t t

dt
f x f x

t
 



       (1.1) 

where : ( ) ( / ), 0.n n

tC and x t x t t     For conditions of validity of identity (1.1), we 

may refer to [8]. 

On the real line, the Dunkl operator are differential-difference operator introduced by Dunkl [1] 

and are denoted by  , where   is real parameter 1/ 2  .These operator associated with the 

reflection group
2 on . The Dunkl kernel E  is used to define the Dunkl transform which was 

introduced by Dunkl in [2]. Rosler in [3] show that the Dunkl kernels verify a product formula. 

This allows to define the Dunkl translation. As a result, we have the Dunkl convolution. 

Available online at http://scik.org

Eng. Math. Lett. 2015, 2015:4

ISSN: 2049-9337



2                                                          PANDEY, MOHAN AND TRIPATHI 

Dunkl Operator has a unique solution  E x  , called Dunkl kernel and given by 

    
 

 1 ,
2 1

x
E x j i x j i x  


  


 


 Rx ,    (1.2) 

where j  is the normalized Bessel function of the first kind and order  . 

Let 1/ 2    be a fixed number and   be the weighted Lebesgue measure on R, given by 

     
1 2 11: 2 1d x x dx



 
    .      (1.3) 

We define L
, (0, )p   ,  p1 , as the spaces of those real measurable function f on (0, ) for 

which 

      

1

,
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p
p

p

R

f f x d x if p


 
     
 
     (1.4) 

and  sup ( )
x R

f ess f x




  if p = . 

The Dunkl kernel gives rise to an integral transform, called Dunkl transform on R, which was 

introduced and studied in [7]. 

The Dunkl transform F  of a function 1, ( ),f L R  is given by 

         ˆ ;
R

F f f E i x f x d x R             (1.5) 

An inversion formula for this transform is given by  

             1 ˆ ˆ ˆ
       


    

R

F f f f x E i x f d    (1.6) 

An Parseval formula for this transform is given by 

       ˆ ˆf x g x dx f g 
 

 
        (1.7) 

To define Dunkl convolution   , we define 

  
0

, , ( ) ( ) ( ) ( )W x y z E x E y E z d        


      (1.8) 

      , , , , , ,1 , ,x y z z x y z y x x y z        
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and   is the Bessel kernel. Clearly  , ,W x y z  is symmetric in x, y, z. Apply inversion 

formula (1.6) to (1.8), we get 

  
0

( ) , , ( ) ( ) ( )E z W x y z d z E x E y       


 .    (1.9) 

Now setting 0  , we obtain 

  
0

, , ( ) 1W x y z d z 


 .       (1.10) 

Let , , [1, )p q r   and 1
111


qpr
. Then Dunkl convolution of )(, RLf p   and )(, RLg q   

is defined by [7] 

 

       ( )( ) ( , , )
R R

f g x f z g y W x y z d y d z            (1.11) 

   

Let   ,1,, rqp  and 1
111


qpr
,  ,pf L R  and  ,qg L R . Then convolution 

 *f g x  satisfies the following norm inequality  

(i) 
, , ,

* 4
r p q

f g f g   
        (1.12) 

Moreover for all  1,f L R  and  2,g L R , we have 

(ii)       *f g f g           (1.13) 

 

2. Calderon’s formula 

In this section, we obtain Calderon’s reproducing identity using the properties of Dunkl 

transform and Dunkl convolutions. 

Theorem 2.1 Let 1, [0, )and L


     be such that following admissibility condition holds: 

   
 

0

ˆ ˆ( ) ( ) 1
d  

   




      (2.1) 

for all [0, )   . Then the following Calderon’s reproducing identity holds: 

    
  1

0
( ) * * ( ) , ( )a a

d a
f x f x f L R

a



 


 



   . (2.2) 

Proof: Taking Dunkl transform of the right hand side of (2.2), we get 
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0
* * ( )a a

d a
F f x
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   =
 

0

垐 ˆ( ) ( ) ( )a a

d a
f

a

    


  

   =
 

0

垐 ˆ( ) ( ) ( )a a

d a
f

a

    


     (2.3) 

   =  
 

0

垐 ˆ( ) ( ) ( )
d a

f a a
a

    


  

   = ˆ ( )f   

Now, by putting a   

   
 

0

ˆ ˆ( ) ( )
d a

a a
a

   



 

0

ˆ ˆ( ) ( )
d  

   




    (2.4) 

      1 . 

Hence the result follows. 

Theorem 2.2 Suppose 1, [0, )L


   is real valued and satisfies 

   
 2

0

ˆ( ) 1.
d a

a
a

 

  
       (2.5) 

For 1, 2,[0, ) [0, )f L L
      , suppose that  

    
 

, ( ) * * ( )a a

d a
f x f x

a




   



      (2.6) 

Then ,
2,

0 0 & 0f f as


  
     . 

Proof: Taking Dunkl transform of both sides of (2.6) and using Fubini’s theorem, we get 

   
 2

,
ˆ ˆ ˆ( ) ( ) ( )




 



    

 
d a

f f a
a

    (2.7) 

By [4], we have 

   
2, 1, 2,

* * *a a a af f
  

    
     

   
2

1, 2,
.a f

  
       (2.8) 

Now using above inequality and Minkowski’s inequality [6, page 41], we get 
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      (2.9) 
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f
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2
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loga f

  






 
  

 
. 

Hence by Parseval formula, we get 

   
22

, ,
2,0 0 2,

ˆ ˆlim lim
 

     
 
 
 

  f f f f  

    
 

 

2

2

00

ˆ ˆlim ( ) 1 ( )










   






 
   

 
 

d a
f a d x

a
 (2.10) 

    0 . 

Since
 2

ˆ ˆˆ( ) 1 ( ) ( )







   
 

    
 


d a

f a f
a

, therefore by the dominated convergence theorem, 

the result follows. 

The reproducing identity (2.2) holds in the point wise sense under different set of nice conditions. 

Theorem 2.3 Suppose 1, 1,
ˆ, [0, ). [0, )f f L Let L

       be real valued and satisfies 

   
 

 
2

0

ˆ( ) 1, 0 .
d a

a R
a

  

    
     (2.11) 

Then 

    
 

0
lim * * ( ) ( )a a

d a
f x f x

a




 





 




  .  (2.12) 

Proof: Let 

    
 

, ( ) * * ( ) .a a

d a
f x f x

a




   



      (2.13) 

By [4, page 311], we have 
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1, 1, 1,

* * *a a a af f
  

    
     

     
2

1, 1,a f
  

     (2.14) 

Now 

      
 

,
1, 0

* * ( )a a

d a
f d x f x

a




     


  



    

       
 

0
* * ( )a a

d a
f x d x
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1,
* * ( )a a

d a
f x
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      (2.15) 

    
2

1, 1,a

dt
f

t 



  
   

    
2

1, 1,
loga f

  






 
  

 
. 

Therefore, 1

, (0, )f L    . Also using Fubini’s, we get theorem and taking Dunkl transform of 

(2.13), we get 

   
 

 ,
0

ˆ ( ) ( ) ( * * )( )a a

d a
f E x f x d a

a




     



    

  
  

 
   

     
 

0
( ) ( * * )( )a a

d a
E x f x d x

a




   



   



    (2.16) 

    
 ˆˆ ˆ( ) ( ) ( )







      a a

d a
f

a
 

    
 2ˆ ˆ( ) [ ( )]







   

d a
f a

a
. 

Therefore, by (2.11), ,
ˆ ˆ( ) ( )   f f . 

It follows that , 1,
ˆ [0, )f L

    .By inversion, we have 

    , ,
0

ˆ ˆ( ) ( ) ( )[ ( ) ( )] , [0, )         


    f x f x E x f f d x  (2.17) 

Putting 

   , ,
ˆ ˆ( : ) ( ) ( ) ( )         

 
h x E x f f  
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 2ˆ ˆ( ) ( ) 1 [ ( )]








   

 
  

 


d a
f E x a

a
 (2.18) 

we get 

    , ,
0

ˆ ˆ( ) ( ) ( ) ( ) ( )         


   
 f x f x E x f f d  (2.19) 

      ,
0

( : )h x d    


  . 

Now using (2.11) in (2.18), we get 

    ,
0

lim ( : ) 0, 0h x R 



 



   .    (2.20) 

Since ,
ˆ( : ) ( )h x f    , the Lebsegue dominated convergence theorem yields 

   ,
0

lim ( ) ( ) 0,f x f x x 





     .     (2.21) 
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