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1. Introduction

Wilson introduced the concept of semi-metric spaces in 1931, many fixed point theorems

have been proved in this space. Jungck and Rhoads [1] initiated the the concept of weakly com-

patible mappings which are weaker than compatible mappings. Recently Jungck and Rhoads

[9] introduced the concept of occasionally weakly compatible mappings which are more gen-

eral among compatible mappings. The purpose of this paper is to obtain a common fixed point

theorem for six self maps in fuzzy symmetric space.
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2. Preliminaries

Definition 2.1. A binary operation ∗ : [0,1] ∗ [0,1]→ [0,1] is called a continuous t-norm if ∗

satisfies the following conditions:

(i) ∗ is commutative and associative

(ii) ∗ is continuous

(iii) a∗1 = a

(iv) a∗b≤ c∗d, where a≤ c,b≤ d and a,b,c,d ∈ [0,1].

Definition 2.2. The 3-tupple (X ,M,∗) is called a fuzzy metric space if X is an arbitrary non

empty set, ∗ is continuous t-norm and M is a fuzzy set in X2× (0,∞) which satisfies the follow-

ing conditions:

(i) M(x,y, t)> 0,

(ii) M(x,y, t) = 1 if and only if x = y,

(iii) M(x,y, t) = M(y,x, t),

(iv) M(x,y, t)∗M(y,z,s)≤M(x,z, t + s),

(v) M(x,y, .) : (0,∞)→ [0,1] is continuous for all x,y,z ∈ X and t,s > 0.

Definition 2.3. The pair (X ,M) is called fuzzy symmetric space if X is an arbitrary non empty

set and M is fuzzy set in X2× (0,∞) satisfying the following conditions:

(i) M(x,y, t)> 0,

(ii) M(x,y, t) = 1 if and only if x = y,

(iii) M(x,y, t) = M(y,x, t),

(iv) M(x,y, .) : (0,∞)→ [0,1] is continuous for all x,y,z ∈ X and t,s > 0.

If (X ,M) is a symmetric space, then M is called fuzzy symmetric space for X .

Every fuzzy metric space is a fuzzy symmetric space but not conversely.

Example 2.4. Consider X = [0,2) and M(x,y, t) = t
t+e|x−y|−1

Let x = 1,y = 1/2,z = 0, t = 1,s =

0 then (iv) of definition is not satisfied and hence (X ,M) is fuzzy semi-metric space but a not

fuzzy metric space.
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Definition 2.5. Let A and B be two self mappings of a fuzzy symmetric space (X ,M). Then A

and B are said to be compatible if limn→∞(ABxn,BAxn, t) = 1 whenever a sequence {xn} in X

such that limn→∞(Axn,x, t) = limn→∞(Bxn,x, t) = 1 for some t ∈ X .

Definition 2.6. Let X be a set A and B be self mappings of X . A point x in X is called a

Coincidence point of A and B if and only if Ax = Bx. We denote w = Ax = Bx a point of

coincidence of A and B.

Definition 2.7. Let A and B be two self mappings of a fuzzy symmetric space (X ,M) then, A

and B are said to be weakly compatible if they commute at their coincidence point.

Definition 2.8. Let A and B be two self maps of a fuzzy symmetric space (X ,M) then A and B

are to be occasionally weekly compatible if there is a point x ∈ X which is coincidence point of

A and B at which A and B commute.

Lemma 2.9. Let X be a set. Let A and B be occasionally weakly compatible self maps of X . If

A and B have a unique point of coincidence w = Ax = Bx then w is the unique common fixed

point of A and B.

Lemma 2.10. If for all x,yX , t > 0 and for a number k ∈ (0,1), then M(x,y,kt)≥M(x,y, t) then

x = y.

Proof. Suppose that there exists k ∈ (0,1) such that M(x,y,kt)≥M(x,y, t),for all x,y in X and

t > 0. Then M(x,y, t) ≥ M(s,y, t/k) and after n-th iteration M(x,y, t) ≥ M(x,y, t/kn) for some

positive integer taking limit as n→ ∞ we have M(x,y,t)≥ 1. Hence x=y.

3. Main results

Theorem 3.1. Let (X,M) be a fuzzy symmetric space. A, B, S, T, P and Q be self maps of X such

that

I: . (AP,S) ,(BQ, T) are occasionally weakly compatible

II: . M(APx, BQy, qt)≥ Min {M(Sx, Ty,t), M(APx, Sx,t) , M(BQy,Ty,t), M(APx, Ty,t)} for

all x,y∈ X ,q∈ (0.1).



4 B. VIJAYA BASKER REDDY, V. SRINIVAS

Then AP, BQ, S, and T have unique common fixed point. Further if (A, P) and (B, Q) are

commuting pair of mapping s then A, B, S, T, P and Q have a unique common fixed point.

Proof. Since (AP,S) and (BQ,T ) are occasionally weekly compatible then there exits x,y ∈ X

Such that APx = x and BQy = Ty. We claim APx = BQy.

M(APx,BQy,qt)≥min{M(Sx,Ty, t),M(APx,Sx, t),M(BQy,Ty, t),M(APx,Ty, t)}.

M(APx,BQy,qt)≥min{M(APx,BQy, t),M(APx,APx, t),M(BQy,BQy, t),M(APx,BQy, t)}.

M(APx,BQy,qt)≥min{(APx,BQy, t)1,1,M(APx,BQy, t)}.

M(APx,BQy,qt) ≥ M(APx,BQy, t).APx = BQy.APx = BQy = Sx = Ty (3.1.1). If there is an-

other point of coincidence t such that Apt = St then using (II) we get APt = BQy = St = Ty

(3.1.2). Also from (3.1.1) and (3.1.2) APx = APz⇒ t = x. Hence w = APx = Sx for w ∈ X

is the unique point of coincidence of AP and S. By the lemma, w is a unique common fixed

point of AP and S Hence APw = Sw = w. Similarly there is a unique common fixed point

of BQ and T . Hence BQu = Tu = u Suppose u 6= w which contradicts the inequality (3.I-

I). Hence w is unique common fixed point AP,BQ,S and T. We show that w is only common

fixed point of A,B,S,T,P and Q. If the pairs (A,Q) (B,Q) are commuting pairs then for this

we have A(APw) = A(PAw) = AP(Aw) = Aw. x = Aw,y = w in (3.II). M(AP(Aw)BQw,qt) ≥

min{M(S(Aw),Tw, t,),M(AP(Aw),S(Aw), t),M(BQw,Tw, t),M(AP(Aw),Tw, t)}. M(Aw,w,qt)≥

min{M(Aw,w, t)M(Aw,Aw, t),M(w,w, t),M(Aw,w, t)}⇒ (Aw,w,qt)≥M(Aw,w, t). Therefore Aw=

wAPw = w⇒ Pw = w. Put x = w,y = Qw in (3.II). M(APw,BQ(Qw),qt)≥

min{M(Sw,T (Qw), t),M(APw,Sw, t),M(BQ(Qw),T (Qw)t),M(AQw,T (Qw), t)}. M(w,Qw,qt)≥

min{M(w,Qw, t),M(w,w, t)M(Qw,Qw, t)M(w,Qw, t)}whichgivesQw=w. BQw=w implies Bw=

w. Therefore, we have Sw = Tw = Pw = Aw = Qw = Bw = w. Hence A,B,S,T,Q and P have a

unique common fixed point.

Example 3.2. consider X = [0,2) with the fuzzy semi metric space (X ,M) defined by M(x,y, t)=
t

t+e|x−y|−1
for x,y all in X .Define self mappings A,B,S,T,P and Q as

A(x) = Q(x) =
{

x if x∈ [0,2);
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B(x) = BQ(x) =

 3/4 if x∈ [0,1);

1 if x∈ [1,2).

T (x) =

 3x/2 if x∈ [0,1);

1 if x∈ [1,2).

P(x) = AP(x) =


x/2 if x∈ [0,1);

1 if x=1;

0.95 if x∈ (1,2).

S(x) =


1/4 if x∈ [0,1);

1/x if x=1;

1/x2 if x∈ (1,2).

It is easy to verify that the pairs (AP, S) and (BQ, T) are occasionally weakly compatible map-

pings and 1 is common fixed point.

The above example reveals that occasionally weakly compatible mappings are not weakly com-

patible. Since it has two coincidence points 1/2 and 1 (AP,S) and (BQ,T) are not commuting at

x=1/2. We observed that the self mappings (A, P) and (B, Q) are commuting and the mappings

A, B, S, T, P and Q have unique common fixed point.

Corollary 3.3. Let (X, M) be a fuzzy symmetric space. A, B, S, T, P and D be self maps of X

such that

I: . (AP,S) and (BQ,T) are occasionally weekly compatible

II: . [M(APx, BQy, kt)]2 *[M(APx, BQy, kt)* M(Sx, Ty,t)]

≥ k1 [M(BQy,Sx,1.25kt)* M(APx,Ty,1.25kt)]+k2[M(APx, Sx,2.5kt)* M(BQy,Ty,2.5kt)]M(Sx,

Ty,t).

for all x,y in X And k1, k2 ≥ 0, k1+k2≥1. Then AP, BQ, S, and T have unique common fixed

point. If (A, P) and (B, Q) are commuting pair of mapping s then A, B, S, T, P and Q have a

unique common fixed point theorem.

Remark 3.4. Our result is partially generalizes Bijendra Singh, Arihant Jain and Aijaz Ahmed

Masoodi [11] and Srinivas, Reddy and Umamaheswarrao [12].
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