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Abstract：We established a traveling wave solution by the ( 
G′

G
) -expansion method for nonlinear partial differential 

e：quations (PDEs).The proposed method gives more general exact solutions for four different types of nonlinear 

partial differential equations such as the modified regularized long wave equation, the improved Korteweg de Vries 

equation, the two dimension Korteweg de Vries (2D KdV) equations and Coupled equal width wave equations 
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1. Introduction 

The nonlinear partial differential equations (NPDEs) are widely used to describe many important 

phenomena and dynamic processes in physics, chemistry, biology, fluid dynamics, plasma, 

optical fibers and other areas of engineering. Many efforts have been made to study NPDEs. One 

of the most exciting advances of nonlinear science and theoretical physics has been a 

development of methods that look for exact solutions for nonlinear evolution equations. The 

availability of symbolic computations such as Mathematica or Maple, has popularized direct 

seeking for exact solutions of nonlinear equations. Therefore, exact solution methods of 

nonlinear evolution equations have become more and more important resulting in methods like  

the tanh method [1–3], extended tanh function method [4, 5], the modified extended tanh 
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function method [6], the generalized hyperbolic function [7] . Most of exact solutions have been 

obtained by these methods, including the solitary wave solutions, shock wave solutions, periodic 

wave solutions, and the like. In this letter, we propose the extended (
G′(ξ)

G(ξ)
)-expansion method to 

find the exact solutions of the modified regularized long wave (MRLW)equation, the improved 

Korteweg de Vries ( IKdV) equation , the two dimension Korteweg de Vries (2D KdV) equation 

and Coupled equal width wave equations (CEWE)[12] . In order to illustrate the effectiveness 

and convenience of the method, we consider the modified regularized long wave equation, the 

improved Korteweg de Vries ( IKdV) equation and  the two dimension Korteweg de Vries (2D 

KdV) equation.Our main goal in this study is to present the improved (
G′(ξ)

G(ξ)
)-expansion method 

[13-18] for constructing the travelling wave solutions. In section 2, we describe the (
𝐺′(ξ)

𝐺(ξ)
)-

expansion method. In section 3, we apply the method to four physically important nonlinear 

evolution equations. 

2. Outline of the (
G′(ξ)

G(ξ)
)-expansion method 

The (
G′(ξ)

G(ξ)
)-expansion method will be introduced as presented by A.Hendi [8] and by [13–18].The 

method is applied to find out an exact solution of a nonlinear ordinary differential equation. 

Consider the nonlinear partial differential equation in the form 

                𝑁(𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑥 , 𝑢𝑥𝑥, … . ) = 0                                                                                                             (1) 

Where 𝑢(x, t) is the solution of nonlinear partial differential equation Eq. (1). We use the 

transformation, ξ = (𝑥 − 𝑐 𝑡) , to transform 𝑢(x , t) to 𝑢 (ξ) give : 

              
∂ 

∂ t
= −c

d

dξ 
, 
∂ 

∂ x
= 

d

dξ 
, 
∂2 

∂ x2
= 

d2

dξ2 
, 
∂3 

∂ x3
= 

d3

dξ3 
,                                                                                   (2) 

 and so on, then Eq. (1) becomes an ordinary differential equation 

              𝑁(𝑢,−𝑐 𝑢′,  𝑢′ , 𝑐2 𝑢′′, −𝑐 𝑢′′, …… . ) = 0,                                                                                        (3)                                                         

The solution of Eq.(3) can be expressed by a polynomial in 
G′(  ξ)

G(  ξ)
 

              𝑢(ξ)  = ∑  𝑎𝑖(
G′(  ξ)

G(  ξ)
)
𝑖

𝑁
𝑖=−𝑁 ,                                                                                                  (4)                                                                                                      

Where 𝐺 =  𝐺(𝜉) satisfies, 

  𝐺′′(ξ) + 𝜆 𝐺′(ξ) + 𝜇 𝐺(ξ) = 0,                                                                                       (5)                                                                                      
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Where 𝐺′(𝜉) =
𝑑 𝐺(𝜉)

𝑑𝜉
  , 𝐺′′(𝜉) =

𝑑2 𝐺(𝜉)

𝑑𝜉
 ,𝑎𝑖, 𝜆 and 𝜇 are constants to be determined later,𝑎𝑖 ≠ 0, 

the unwritten part in (4) is also a polynomial in 
𝐺′(  ξ)

𝐺(  ξ)
 ),but the degree of which is generally equal 

to or less than 𝑚 − 1,the positive integer 𝑚 can be determined by balancing the highest order 

derivative terms with nonlinear term appearing in Eq.(3). The solutions of Eq.(5) for ( 
𝐺′

𝐺
 ) can be 

written in the form of hyperbolic, trigonometric and rational functions as given below[8]. 

 

          
𝐺′(  ξ)

𝐺(  ξ)
=

{
 
 
 
 

 
 
 
 √𝜆2−4𝜇

2
(
C1 sinh (

√𝜆2−4𝜇

2
𝜉)+C2 cosh (

√𝜆2−4𝜇

2
𝜉)

C1 cosh (
√𝜆2−4𝜇

2
𝜉)+C2 sinh (

√𝜆2−4𝜇

2
𝜉)

) −
𝜆

2
, when 𝜆2 − 4𝜇 > 0,

√4μ−λ2

2
(
−C1 sin(

√4μ−λ2

2
ξ )+C2 cos(

√4μ−λ2

2
ξ)

C1 cos(
√4μ−λ2

2
ξ)+C2 sin(

√4μ−λ2

2
ξ)

) −
λ

2
, when 𝜆2 − 4𝜇 > 0,

 
C2

C1+C2 ξ
−
λ

2
,                                                 when 𝜆2 − 4𝜇 = 0,

                     (6)                 

Where C1 and C2 are integration constants. Inserting Eq.(4) into (3) and using Eq.(5),collecting 

all terms with the same order 
G′( ξ)

G(  ξ)
 together, the left hand side of Eq.(3) is converted into another 

polynomial in (
G′(ξ)

G(ξ)
).Equating each coefficients of this polynomial to zero, yields a set of 

algebraic equations for 𝑎𝑖 ,  λ , and 𝜇 .with the knowledge of the coefficients 𝑎𝑖  and general 

solution of Eq.(5) we have more travelling wave solutions of the nonlinear evolution Eq.(1). 

3. Applications 

In order to illustrate the effectiveness of the proposed method four examples in mathematical are 

chosen as follows 

3.1 Test problem 

3.1.1 The modified regularized long wave (MRLW) equation 

       Consider the modified regularized long wave equation in the form [9-11] 

 𝑢𝑡 +  𝑢𝑥 + 𝜖𝑢
2𝑢𝑥 − 𝑢𝑥𝑥𝑡 = 0,                                                                                                    (7) 

By using the wave variable 𝜉 = 𝑥 − 𝑐𝑡 and𝑢(𝑥, 𝑡) = 𝑢(𝜉)) then Eq. (7) becomes,                             

−𝑐 𝑢′ + 𝑢′ + 𝜖 𝑢 2𝑢′ + 𝑐 𝑢′′′ = 0 ,                                                                                               (8) 

Integrating the above equation with respect to 𝜉, we get                                                                            

(1 − 𝑐)𝑢 + 𝜖

3
𝑢3 + 𝑐  𝑢′′ =  0,                                                                                                        (9) 
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Balancing 𝑢3 with 𝑢′′gives  𝑚 = 1.Thus we suppose solutions of Eq. (7) can be expressed by                

𝑢(𝜉) = 𝑎0 + 𝑎1 (
𝐺′(𝜉)

𝐺(𝜉)
),                                                                                                               (10) 

By solving this system with the aid of Mathematica we obtain                                                    

𝑎0 = ±
𝑖√3𝜆

√𝜖 √2+(𝜆2−4𝜇)
 , 𝑎1 = ±

2𝑖√3

√𝜖 √(2+𝜆2−4𝜇)
   and    𝑐 =

2

2+(𝜆2−4𝜇)
 ,                                         (11)  

Substituting Eq.(11) into Eq.(10) yields 

           𝑢(𝜉) = ±
𝑖√3 𝜆

√𝜖 √2+(𝜆2−4𝜇)
 ±

2𝑖√3

√𝜖 √(2+𝜆2−4𝜇)
(
𝐺′(𝜉)

𝐺(𝜉)
) ,                                                            (12) 

Where      𝜉 = 𝑥 − 
2𝑡

2+( 𝜆2−4𝜇)
 , With the knowledge of the solution of Eq.(5),we have three types 

of travelling wave solutions of Eq.(7) as 

The first type: when    𝜆2 − 4 𝜇 > 0,  

          𝑢1(𝜉) = (±
𝑖√3√𝜆2−4𝜇

√𝜖 √2+(𝜆2−4𝜇)
)(
𝐶1 𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇

2
𝜉)+𝐶2 𝑐𝑜𝑠ℎ(

√𝜆2−4𝜇

2
𝜉)

𝐶1 𝑐𝑜𝑠ℎ(
√𝜆2−4𝜇

2
𝜉)+𝐶2 𝑠𝑖𝑛ℎ(

√𝜆2−4𝜇

2
𝜉)

),                                          (13) 

The behavior of the solutions absolute 𝑢1(𝑥, 𝑡) and  𝑖𝑢1(𝑥, 𝑡) for MRLW equation in Figures(1,2) 

 

 

 

 

 

 

 

 

 

Fig(1),  C1 = 1, C2 = 2, 𝜆 = 50, and 𝜇 = 1 

 

The second type: when       𝜆2 − 4 𝜇 < 0,  

          𝑢2(𝜉) = (±
𝑖√3 √4μ−λ2

√ϵ(2+λ2−4μ)
)( 

C1sin(
√4μ−λ2

2
ξ)−C2cos(

√4μ−λ2

2
ξ )

C1cos(
√4μ−λ2

2
ξ)+C2 sin(

√4μ−λ2

2
ξ)

)                                                   (14) 
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The behavior of the solutions absolute 𝑢2(𝑥, 𝑡) and  𝑖𝑢2(𝑥, 𝑡) are shown in Figure(2) 

 

 

 

 

 

 

 

 

Fig(2),  C1 = 2, C2 = 4, 𝜆 = 50, and 𝜇 = 1 

 

The Third type: when  𝜆2 − 4 𝜇 = 0 

         𝑢3(𝜉) =
2𝑖 √3

√2𝜖
(

𝐶2

𝐶1+𝐶2𝜉
),                                                                                                       (15) 

3.1.2. The improved Korteweg de Vries (IKdV) equation 

We Consider the IKdV equation in the form [11] 

        𝑢𝑡 +  𝜖 𝑢 𝑢𝑥 + 𝛽𝑢𝑥𝑥𝑥 − 𝛿𝑢𝑥𝑥𝑡 = 0,                                                                                     (16) 

We make the transformation                                                                                                               

𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐 𝑡,                                                                                                                           (17) 

Eq. (16) becomes                                                                                                                            

−𝑐 𝑢′ + 𝜖 𝑢 𝑢′ + 𝛽 𝑢′′′ + 𝛿 𝑐 𝑢′′′ = 0 ,                                                                                      (18) 

Integrating the above equation with respect to 𝜉, we get                                                                    

−𝑐 𝑢 + 𝜖

2
𝑢2 + (𝛽 + 𝛿𝑐 )𝑢′′ =  0,                                                                                                 (19) 

Balancing 𝑢2 with 𝑢′′gives  𝑚 = 2. thus we suppose solutions of Eq. (18) can be expressed by           

𝑢(𝜉) = 𝑎0 + 𝑎1(
𝐺′(𝜉)

𝐺(𝜉)
) + 𝑎2(

𝐺′(𝜉)

𝐺(𝜉)
)2,                                                                                            (20) 

Where 𝑎0, 𝑎1, 𝑎2 are constants, Substituting Eq.(20) into Eq.(19),collecting the coefficients of 

(
𝐺′(𝜉)

𝐺(𝜉)
 ) we obtain a set of algebraic equations for 𝑎0, 𝑎1, 𝑎2 and 𝑐 ,and solving this system we 

obtain the two sets of solutions as  

Case (1) 
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   𝑎0 = −
2𝛽(𝜆2+2𝜇)

𝜖(1+𝛿(𝜆2−4𝜇))
, 𝑎1 = −

12𝛽 𝜆

𝜖(1+𝛿(𝜆2−4𝜇))
 ,  𝑎2 = −

12𝛽

𝜖(1+𝛿(𝜆2−4𝜇))
, and  𝑐 =

−𝛽(𝜆2−4𝜇)

1+𝛿(𝜆2−4𝜇)
,       (21) 

Case (2)         

  𝑎0 =
12𝛽𝜇

𝜖(−1+𝛿(𝜆2−4𝜇))
 , 𝑎1 =

12𝛽𝜆

𝜖(−1+𝛿(𝜆2−4𝜇))
,𝑎2 =

12𝛽

𝜖(−1+𝛿(𝜆2−4𝜇))
, and   𝑐 =

−𝛽(𝜆2−4𝜇)

−1+𝛿(𝜆2−4𝜇)
,             (22)  

By using Eq.(21) , Eq.(20)can written as          

        𝑢(𝜉) = −
2𝛽(𝜆2+2𝜇)

𝜖(1+𝛿(𝜆2−4𝜇))
−

12𝛽𝜆

𝜖(1+𝛿(𝜆2−4𝜇))
 (
𝐺′(𝜉)

𝐺(𝜉)
) −

12 𝛽

𝜖(1+𝛿(𝜆2−4𝜇))
(
𝐺′( 𝜉)

𝐺( 𝜉)
)2,                            (23)  

or by using Eq.(22),Eq.(20)can written as  

      𝑢(𝜉) =
12𝛽𝜇

𝜖(−1+𝛿(𝜆2−4𝜇))
+

12𝛽𝜆

𝜖(−1+𝛿(𝜆2−4𝜇))
(
𝐺′(  𝜉)

𝐺(  𝜉)
) +

12𝛽

𝜖(−1+𝛿(𝜆2−4𝜇))
(
𝐺′(  𝜉)

𝐺(  𝜉)
)2                          (24)  

We have three types of travelling wave solutions of the IKdV equation as 

The first type: when 𝜆2 − 4 𝜇 > 0,        𝑢1(𝜉) =

(
3𝛽(4𝜇−𝜆2)

𝜖(1+𝛿(𝜆2−4𝜇))
) ((

C1 sinh(
√λ2−4μ

2
ξ)+C2 cosh(

√λ2−4μ

2
ξ)

C1 cosh(
√λ2−4μ

2
ξ)+C2 sinh(

√λ2−4μ

2
ξ)

)2 −
1

3
),                                                             (25)  

Where   𝜉 = 𝑥 + 
𝛽( 𝜆2−4 𝜇)

1+𝛿(𝜆2−4𝜇)
𝑡, or    

    𝑢2(𝜉) = (
3𝛽(4𝜇−𝜆2)

𝜖(−1+𝛿(𝜆2−4𝜇))
) (1 − (

C1 sinh(
√λ2−4μ

2
ξ)+C2 cosh(

√λ2−4μ

2
ξ)

C1 cosh(
√λ2−4μ

2
ξ)+C2 sinh(

√λ2−4μ

2
ξ)

)2),                                       (26) 

Where 𝜉 = 𝑥 + 
𝛽(𝜆2−4𝜇)

1−𝛿(𝜆2−4𝜇)
𝑡,             

The second type: when  𝜆2 − 4 𝜇 < 0, 

    𝑢3(𝜉) = (
−3𝛽(4𝜇−𝜆2)

𝜖(1+𝛿(𝜆2−4𝜇))
) ((

−C1sin(
√4μ−λ2

2
ξ)+C2cos(

√4μ−λ2

2
ξ)

C1cos(
√4μ−λ2

2
ξ)+C2 sin(

√4μ−λ2

2
ξ)

)2 +
1

3
),                                            (27) 

Where 𝜉 = 𝑥 +
𝛽(𝜆2−4𝜇)

1+𝛿(𝜆2−4𝜇)
𝑡, or  

   𝑢4(𝜉) = (
3𝛽(4𝜇−𝜆2)

𝜖(−1+𝛿(𝜆2−4𝜇))
) ((

−C1sin(
√4μ−λ2

2
ξ)+C2cos(

√4μ−λ2

2
ξ)

C1cos(
√4μ−λ2

2
ξ)+C2 sin(

√4μ−λ2

2
ξ)

)2 + 1),                                           (28) 
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Where 𝜉 = 𝑥 − 
𝛽(𝜆2−4𝜇)

1−𝛿(𝜆2−4𝜇)
 𝑡, 

 

Fig(3) for IKdV equation where   C1 = 2, C2 = 4, 𝜆 = 150, and 𝜇 = 1, 𝛽 = 2, 𝛽 = 1; 

The Third type: when   𝜆2 − 4 𝜇 = 0 

    𝑢5(𝜉) =
−12𝛽

𝜖
(

𝐶2

𝐶1+𝐶2𝜉
)
2

,    Where 𝜉 = 𝑥 − 
𝛽(𝜆2−4𝜇)

1−𝛿(𝜆2−4𝜇)
 𝑡,                                                        (29)                                                                                                     

3.13. The two dimension Korteweg de Vries (2D KdV) equation [11] 

Consider the two dimensions Korteweg de Vries in the form 

         ( 𝑢𝑡 − 𝜖𝑢 𝑢𝑥 + 𝑢𝑥𝑥𝑥 )𝑥 + 3𝑢𝑦𝑦 = 0,                                                                                   (30) 

Put   𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 + 𝛽 𝑦 − 𝑐 𝑡, Eq. (30) become  

       (3𝛽2 − 𝑐)𝑢′′ − 𝜖(𝑢 𝑢′)′ + 𝑢′′′′ = 0 ,                                                                                  (31) 

Integrating the above equation with respect to 𝜉  , we get 

       (3𝛽2 − 𝑐)𝑢 −
𝜖

2
𝑢2 + 𝑢′′ = 0 ,                                                                                              (32) 

Balancing 𝑢2 with 𝑢′′gives  𝑚 = 2. thus we suppose solutions of Eq. (30) can be expressed by 

     𝑢(𝜉) = 𝑎0 + 𝑎1 (
𝐺′(𝜉)

𝐺(𝜉)
) + 𝑎2(

𝐺′(  𝜉)

𝐺(  𝜉)
)2,                                                                                     (33) 

Where 𝑎0, 𝑎1, 𝑎2 are constants, Substituting Eq.(33) into Eq.(32),collecting the coefficients of 

(
𝐺′(𝜉)

𝐺(𝜉)
 ) we obtain a set of algebraic equations for 𝑎0, 𝑎1, 𝑎2and 𝑐 ,and solving this system we 

obtain the two sets of solutions as 

Case (1)  

          𝑎0 =
12𝜇

𝜖
 , 𝑎1 =

12𝜆

𝜖
 , 𝑎2 =

12

𝜖
  and 𝑐 = 3𝛽2 + 𝜆2 − 4𝜇,                                                    (34) 
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Case (2) 

          𝑎0 =
2(𝜆2+2𝜇)

𝜖
,   𝑎1 =

12𝜆

𝜖
,   𝑎2 =

12

𝜖
, 𝑐 = 3𝛽2 − 𝜆2 + 4𝜇,                                               (35) 

By using Eq.(34)and Eq(35),Eq.(33) can written as 

 

    𝑢1(𝜉) =
12μ

ϵ
+
12λ

ϵ
(
G′(ξ)

G(ξ)
) +

12

ϵ
(
G′(  ξ)

G(  ξ)
)2,  or                                                                                   (36) 

 

     𝑢2(ξ) =
2(λ2+2μ)

ϵ
+
12 λ

ϵ
(
G′(ξ)

G(ξ)
) +

12

ϵ
(
G′(  ξ)

G(  ξ)
)2,                                                                         (37) 

With the knowledge of the solution of Eq.(5) and Eqs.(36-37),we have three types of travelling 

wave solutions of the Eq.(30) as 

The first type: when     λ2 − 4 𝜇 > 0,  

    𝑢1(𝜉) = −
3(C1

2−C2
2)(𝜆2−4𝜇)

𝜖(C1Cosh(
√𝜆2−4𝜇

2
𝜉)+C2 Sinh(

√𝜆2−4𝜇

2
𝜉))2

,                                                                        (38) 

Where    𝜉 = 𝑥 + 𝛽 𝑦 − (3𝛽2 + 𝜆2 − 4𝜇)𝑡, or 

    𝑢2(𝜉) =
(𝜆2−4𝜇)

𝜖
(2 −

3(C1
2−C2

2)

(C1Cosh(
√𝜆2−4𝜇

2
𝜉)+C2 Sinh(

√𝜆2−4𝜇

2
𝜉))2

),                                                       (39) 

Where 𝜉 = 𝑥 + 𝛽 𝑦 − (3𝛽2 − 𝜆2 + 4𝜇)𝑡 

The second type: when   𝜆2 − 4 𝜇 < 0 

    𝑢3(𝜉) =
(𝜆2−4𝜇)

𝜖
(2 −

3(C1
2+C2

2)

(C1Cos(
1

2
√−𝜆2+4𝜇𝜉)+C2Sin(

1

2
√−𝜆2+4𝜇𝜉))2

),                                                    (40) 

Where 𝜉 = 𝑥 + 𝛽 𝑦 − (3𝛽2 + 𝜆2 − 4𝜇)𝑡, or  

    𝑢4(𝜉) = −
3(C1

2+C2
2)(𝜆2−4𝜇)

𝜖(C1Cos(
1

2
√−𝜆2+4𝜇𝜉)+C2Sin(

1

2
√−𝜆2+4𝜇𝜉))2

,                                                                   (41) 

Where 𝜉 = 𝑥 + 𝛽 𝑦 − (3𝛽2 − 𝜆2 + 4𝜇)𝑡 

The Third type: when  𝜆2 − 4 𝜇 = 0, 

     𝑢5(𝜉) =
12C2

2

𝜖(C2+C2𝜉)2
,                                                                                                                 (42) 

Where  𝜉 = 𝑥 + 𝛽 𝑦 − 3𝛽2𝑡,                                                                                                          
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The behavior of the solutions 𝑢3(𝑥, 𝑡) and 𝑖𝑢3(𝑥, 𝑡) for 2DKdV equation are shown in Figure(4) 

Fig(4) C1 = 2, C2 = 4, 𝜆 = 3, and 𝜇 = 1, 

3.1.4 . Coupled equal width wave equation (CEWE)[12] 

In this case we consider the coupled equal width wave equations, in the normalized form 

       𝑢𝑡 + 𝑢 𝑢𝑥 − 𝑢𝑥𝑥𝑡  + 𝑣 𝑣𝑥 = 0,             𝑣𝑡 + 𝑣 𝑣𝑥 − 𝑣𝑥𝑥𝑡  = 0,                                             (43)                                                                                   

We put   𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝑣(𝑥, 𝑡) = 𝑣(𝜉),    and   𝜉 = 𝑥 − 𝑐 𝑡   Eq. (43) become 

  −𝑐 𝑢′ +  𝑢 𝑢′ + 𝑐 𝑢′′′ + 𝑣 𝑣′ = 0 ,       and  −𝑐 𝑣′ +  𝑣 𝑣′ + 𝑐 𝑣′′′ = 0 ,                                 (44) 

Integrating the above equation we get                            

         𝑐 𝑢′′ + 1

2
(𝑢2 + 𝑣2) − 𝑐 𝑢 =  0,      and  𝑐 𝑣′′ + 1

2
𝑣2 − 𝑐 𝑣 =  0,                                          (45) 

Balancing 𝑢2 with 𝑢′′gives  𝑚 = 2. thus we suppose solutions of Eq. (43) can be expressed by 

       𝑢(𝜉) = 𝑎0 + 𝑎1(
𝐺′(𝜉)

𝐺(𝜉)
) + 𝑎2(

𝐺′(𝜉)

𝐺(𝜉)
)2,                                                                                     

       𝑣(𝜉) = 𝑏0 + 𝑏1(
𝐺′(𝜉)

𝐺(𝜉)
) + 𝑏2(

𝐺′(𝜉)

𝐺(𝜉)
)2,                                                                                     (46) 

Substituting Eq.(46) into Eq.(45) and solving this system we obtain the two sets of solutions as 

Case (1)  

   𝑎0 =
3

2
(1 + 𝑖√3)𝑐(1 − 𝜆2), 𝑎1 = −6𝑐𝜆(1 + 𝑖√3), ,  𝑎2 = −6𝑐(1 + 𝑖√3),                            

   𝑏0 = 3𝑐(1 − 𝜆
2); 𝑏1 = −12𝑐𝜆; 𝑏2 = −12𝑐; and  𝜇 =

1

4
(−1 + 𝜆2),                                       (47) 

Case (2) 

  𝑎0 = −
1

2
(1 + 𝑖√3)𝑐(1 + 3𝜆2) , 𝑎1 = −6𝑐𝜆(1 + 𝑖√3),𝑎2 = −6𝑐(1 + 𝑖√3),                          

   𝑏0 = −𝑐(1 + 3𝜆
2); 𝑏1 = −12𝑐𝜆; 𝑏2 = −12𝑐; and  𝜇 =

1

4
(1 + 𝜆2),                                        (48) 
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By using Eq.(47),Eq.(46)can written as 

 𝑢(𝑥, 𝑡) =
3

2
(1 + 𝑖√3)𝑐(1 − 𝜆2) − 6𝑐𝜆(1 + 𝑖√3)(

𝐺′(𝜉)

𝐺(𝜉)
) − 6𝑐(1 + 𝑖√3)(

𝐺′(𝜉)

𝐺(𝜉)
)2,               

 𝑣(𝑥, 𝑡) = 3𝑐(1 − 𝜆2) − 12𝑐𝜆(
𝐺′(𝜉)

𝐺(𝜉)
)−12𝑐(

𝐺′(𝜉)

𝐺(𝜉)
)2,                                                                    (49) 

or by using Eq.(48),Eq.(46)can written as 

𝑢(𝑥, 𝑡) = −
1

2
(1 + 𝑖√3)𝑐(1 + 3𝜆2) − 6𝑐𝜆(1 + 𝑖√3) (

𝐺′(𝜉)

𝐺(𝜉)
)−6𝑐(1 + 𝑖√3) (

𝐺′(𝜉)

𝐺(𝜉)
)
2

,                                              

𝑣(𝑥, 𝑡) = −𝑐(1 + 3𝜆2) − 12𝑐𝜆(
𝐺′(𝜉)

𝐺(𝜉)
)−12𝑐(

𝐺′(𝜉)

𝐺(𝜉)
)2,                                                                  (50) 

We have two types of travelling wave solutions of the CEWE equation as 

The first type: when 𝜆2 − 4 𝜇 > 0 

𝑢1(𝑥, 𝑡) =
6𝑐(1+𝑖√3)(C1

2−C2
2)ⅇ𝑐𝑡+𝑥

[(𝐶1−𝐶2)ⅇ𝑐𝑡+(𝐶1+𝐶2)ⅇ𝑥]2
,                                                                  

 𝑣1(𝑥, 𝑡) =
3𝑐(C1

2−C2
2)

[𝐶1 cosh(
1

2
(𝑥−𝑐𝑡))+𝐶2 sinh(

1

2
(𝑥−𝑐𝑡))]2

,                                                                                (51) 

or  

 𝑢2(𝑥, 𝑡) =
(1−𝑖√3)𝑐[(C1

2+C2
2) cos(𝑥−𝑐𝑡)−2(C1

2−C2
2−𝑖𝐶1𝐶2 sin(𝑥−𝑐𝑡))]

2(𝐶1cos (
1

2
(𝑥−𝑐𝑡))−𝑖𝐶2 sin(

1

2
(𝑥−𝑐𝑡))]2

                                                 

 𝑣2(𝑥, 𝑡) = (2𝑐 +
3𝑐(𝐶1

2−𝐶2
2)

[𝑖𝐶1 𝑐𝑜𝑠(
1

2
(𝑥−𝑐𝑡))−𝐶2 𝑠𝑖𝑛(

1

2
(𝑥−𝑐𝑡))]2

),                                                                      (52) 

The second type: when  𝜆2 − 4 𝜇 < 0, 

𝑢3(𝑥, 𝑡) =
3(1−𝑖√3)𝑐(𝐶1

2+𝐶2
2)

2[𝐶1cosh(
1

2
(𝑥−𝑐𝑡))−𝑖𝐶2sinh(

1

2
(𝑥−𝑐𝑡))]2

,                                                                  

𝑣3(𝑥, 𝑡) =
3𝑐(𝐶1

2+𝐶2
2)

[𝐶1 𝑐𝑜𝑠ℎ(
1

2
(𝑥−𝑐𝑡))−𝑖𝐶2 𝑠𝑖𝑛ℎ(

1

2
(𝑥−𝑐𝑡))]2

,       or                                                                     (53) 

𝑢4(𝑥, 𝑡) =
(1−𝑖√3)𝑐((𝐶1

2−𝐶2
2)cos[𝑐𝑡−𝑥]−2(C12+C22+C1C2Sin[𝑐𝑡−𝑥]))

2[𝐶1cos (
1

2
(𝑥−𝑐𝑡))−𝐶2 sin(

1

2
(𝑥−𝑐𝑡))]2

,                                         

 𝑣4(𝑥, 𝑡) = 𝑐(2 −
3(𝐶1

2+𝐶2
2)

(𝐶1 𝑐𝑜𝑠(
1

2
(𝑥−𝑐𝑡))+𝐶2 𝑠𝑖𝑛(

1

2
(𝑥−𝑐𝑡)))2

),                                                                      (54)  

The behavior of the solutions 𝑢3(𝑥, 𝑡) and 𝑣3(𝑥, 𝑡) for CEWE equation are shown in Fig.(5) 
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Fig(5) C1 = 2, C2 = 1, 𝜆 = 5, and 𝑐 = 1/50, 

4. Conclusion 

   In this letter the (
𝐺′(𝜉)

𝐺(𝜉)
 )-expansion method was applied successfully for solving some solitary 

wave equations in one and two dimensions. Four equations which are the MRLW, IKdV ,2D 

KdV and CEWE equations have been solved exactly. As a result, many exact solutions are 

obtained which include the hyperbolic functions, trigonometric functions and rational functions. 

It is worthwhile to mention that the proposed method is reliable and effective and gives more 

solutions. The method can also be efficiently used to construct new and more exact solutions for 

some other generalized nonlinear wave equations arising in mathematical physics. 
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