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Abstract. This paper firstly presents a nonlinear extended deterministic model for assessing the impact of immi-

gration on the spread of the Hepatitis B Virus (HBV) pandemic in a population with acute and chronic groups.

This model studies the impact of optimal control on the treatment of immigrants and vaccination of HBV on the

transmission dynamics of the disease in a homogeneous population with constant immigration. First, we derived

the condition in which disease free equilibrium is locally and globally asymptotically stable. Second, we investi-

gated by formulating the costs function problem as an optimal control problem, and we then use the Pontryagins

Maximum Principle to solve the optimal control problems. The impact of each control mechanism individually

and the combinations of these strategies in the control of HBV is also investigated. Numerical simulation of the

model is implemented to investigate the sensitivity of certain key parameters on the treatment and vaccination of

infected immigrants on the spread of the disease with acute and chronic group.
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Hepatitis B is a serious and common infectious disease of the liver, affecting millions of

people throughout the world [1],[7],[8]. Hepatitis B virus (HBV) causes an enormous amount

of human suffering, particularly in Asia, sub-Saharan Africa, parts of the Arabian Peninsula, the

South Pacific, tropical South America, and arctic North America [3]. More than 2,000 million

people alive today have been infected with HBV at some time in their lives. Three quarters of

the worlds population live in areas where there are high levels of infection.

Africa has the second largest number of chronic carriers after Asia and is considered a region

of high endemicity. The exact burden of hepatitis B in Africa is difficult to assess due to in-

accurate records and under-reporting, but between 70% and 95% of the adult population show

evidence of past exposure to HBV infection and the estimated HBsAg seroprevalence ranges

from 6-20% [10], [11].

The virus targets the liver, and about 17.5% (350 million) of those who harbor an active HBV

infection suffer chronic hepatitis [16]. Up to 0.06% of HBV-infected persons are likely to die

from complications associated with the disease within the year [9], [13]. But mortality is not

the only way HBV impacts the human population. All who suffer HBV infection experience

significant morbidity, ranging from weeks to months of nausea, fatigue, jaundice, and joint

pain associated with acute disease to liver cirrhosis or hepatocellular carcinoma characteristic

of late-stage chronic infection.

Every year there are over 4 million acute clinical cases of HBV, and about 25% of carriers, 1

million people a year, die from chronic active hepatitis, cirrhosis or primary liver cancer [10].

Hepatitis B (HBV) affects many people and ranks behind HIV as the tenth leading cause of

death in the world. In Ghana, HBV is largely a disease of children and young adults aged 10-50

years. About 0.7 to 1.6 million Ghanaians are chronic hepatitis B carriers.

In most cases, a new infection (acute HBV) may go away on its own in the first six months

of infection. Most people do not need any therapy at the early stage of the disease. Thus, if

an adult gets infected with the HBV virus, there is about 90% chance that the persons immune

system (the bodys defense system) will fight the disease off in the first six months (the acute

phase) and no treatment might be necessary.
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Despite the vast population of infected persons, efforts to prevent and control HBV have met

with increasing levels of success and hold promise for large reductions in disease burden in the

future. A great deal of credit for achievements to date stems from the introduction of hepatitis

B vaccines. First licensed in the United States in 1981, hepatitis B vaccine is now one of the

most widely used vaccines in the world and is part of the routine vaccination schedule for many

of the worlds infants and children. It is the worlds first cancer prevention vaccine and the first

vaccine to prevent a sexually transmitted disease. In countries where large-scale vaccination

efforts were made in the first decade after introduction of the vaccine, the epidemiology of

hepatitis B and HBV infection has been transformed, and there are early signs that the burden

of HBV-related sequelae will be significantly reduced as vaccinated populations age.

Several models have been introduced for understand the HBV dynamics [21]. However,

the complex characteristics of human HBV make theoretical researchers difficult to determine

the specific kinetic parameters of HBV infection, immune responses, and development of liver

disease [5].

2. Model formulation

In this thisis we are going to present a model to describe the macro method of infection for the

hepatitis B virus with infected immigrant. The proposed model with the population under study

is divided into compartments. The total population at time t, denoted by N is subdivided into

4 mutually exclusive classes namely, Susceptible group (S), Acute Infected group (I), Chronic

Infected group (C), Vaccinated group (V ), such that

P = S+ I +C+V.

The susceptible group are recruited at a rate (1− πi)P where πi(i = I,C,V ) are the rates at

which acute infected group (I), chronic infected group (C) and vaccinated group (V ) enters the

population respectively and become infected with the disease at the rate λ , where

λ = (β I + γC)
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β is the effective contact rate of individuals with acute hepatitis B disease in the I class whiles

γ is the effective contact rate of individuals with chronic hepatitis B disease in the C class and

the recovery rates due to efficacy of treatment from the acute infected group is m. A proportion

of the acute infected immigrants enters the population at a rate π1 and decrease the poulation by

developing disease symptoms at a rate δ . A proportion of chronic infected immigrants enters the

population at a rate π2 and die due to induced chronic infection at a rate ρ . Finally a proportion

of vaccinated immigrats enters the population at a rate pi3 and progression to susceptible group

from vaccinated group due waning immunity at a rate σ . Individuals in all classes die at a

natural death rate µ . Taking into account the above considerations, we then have the following

schematic flow diagram (Figure 1):

FIGURE 1. Compartmental model of hepatitis B virus disease in a population

with infected immigrants

From the model formulation and the schematic flow diagram above we now present the model

equations:

dS
dt = (1−π1−π2−π3)P− (β I + γC)S−µS+mI +σV,
dI
dt = π1P+(β I + γC)S− (µ +δ +m)I,
dC
dt = π2P+δ I− (µ +ρ)C,

dV
dt = π3P− (µ +σ)V.

(1)

2.1. Positivity of solutions
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Since the model monitors human population we need to show that all the state variables

remain non-negative at all times.

Theorem 2.1. Let Ω =
{
(S, I,C,V ) ∈ R4

+ : S(0)> 0, I(0)> 0,C(0)> 0
}

then the solutions of

{S(0), I(0),C(0),V (0)} of the system (1) are positive for all t ≥ 0.

Proof. Note that lim
t→∞

sup(S+ I +C+V )≤ P
µ
. Thus the considered region for the system (1) is

Ω =

{
(S, I,C,V ) : (S+ I +C+V )≤ P

µ
,S > 0, I > 0,C > 0,V > 0

}
.

The vector fields points to the interior of Ω on the part of the boundary when (S+I+C+V ) = P
µ

for t > 0 and Ω is positively invariant. The model system (1) has a disease free equilibrium given

by E0 =
(

P
µ
,0,0,0

)
. Taking the first equation of (5.1), we have

dS
dt

= (1−π1−π2−π3)P− (λ +µ)S+mI +σV,

dS
dt
≥−(λ +µ)S,

dS
S
≥−(λ +µ)dt,∫ dS

S
≥
∫
−(λ +µ)dt,

S(t)≥ S(0)e−(λ+µ)dt ≥ 0.

From the second equation of (1), we have

dI
dt

= π1P+λS− (µ +δ +m)I,

dI
dt
≥−(µ +δ +m)I,

dI
I
≥−(µ +δ +m)dt,∫ dI
I
≥
∫
−(µ +δ +m)dt,

I(t)≥ I(0)e−(µ+δ+m)dt ≥ 0.
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Similarly the third equation of (1), we have

dC
dt

= π2P+δ I− (µ +ρ)C,

dC
dt
≥−(µ +ρ)C,

dC
C
≥−(µ +ρ)dt,∫ dC
C
≥
∫
−(µ +ρ)dt,

C(t)≥C(0)e−(µ+ρ)dt ≥ 0.

Finally, the fourth equation of (1), we have

dV
dt

= π3P− (µ +σ)V,

dV
dt
≥−(µ +σ)V,

dV
V
≥−(µ +σ)dt,∫ dV

V
≥
∫
−(µ +σ)dt,

V (t)≥V (0)e−(µ+σ)dt .

Given that the parameters are all non-negative, it has been shown that starting with non-negative

initial conditions implies that the solution will always be non-negative. Therefore we have

shown that the state variables of the model system (1) are all positive for all t ≥ 0.

2.2. Invariant Region

Theorem 2.2. The system (1) has solutions which are contained in feasible region Ω

Proof. Let (S, I,C,V ) ∈ R4
+ be any solution of the system with non negative initial conditions

the adding the equations of the system (1), we have

dS
dt

+
dI
dt

+
dC
dt

+
dV
dt

= P−µ(S+ I +C+V )−ρC ≤ P
µ

is positively invariant. Hence, the system is both mathematically and epidemiologically well-

posed. Therefore, for initial starting point (S, I,C,V ) ∈ R4
+, the trajectory lies in Ω. Thus, we

can restrict our analysis to the region Ω.
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TABLE 1. Estimated parameter values used for the HBV infected immigrant model

Parameter Values Reference

1 π1 0.0002 Estimated

2 π2 0.0001 Estimated

3 π3 0.0004 Estimated

4 β 0-1 Pang et. al., 2010

5 γ 0.5 Pang et. al., 2010

6 m 0.1 Estimated

7 µ 0.0143 Yuan et. al., 2008

8 δ 0.3 Yuan et. al., 2008

9 σ 0.5 Estimated

10 ρ 0.1 WHO, 2002

11 P 0.0384 Estimated

Figure 2 below, shows the distribution of proportion of population with time in all classes

with the rates of infective immigrants πi(i = 1,2,3) . It is found that initially proportion of

susceptible group decreases with time, due to immigration of infected immigrants and then in-

creases with time due to waning immunity σ , and the efficacy of treatment m and then reaches

its equilibrium position. Also the susceptible class decreases with time since individuals shifted

to acute infected group at the rate β .The acute infected group decreases with time since in-

fected group shifted to chronic infected group. As the rate of vaccinated group increases, the

infective group decreases with time leading to the increase of susceptible group and reaches its

equilibrium position.

3. Local stability analysis

In the absence of infectious immigrants entering the population πi = 0, i = I,C,V (which

can be interpreted as a quarantine program), the system of equations (1) has a disease-free

eqilibrium, obtained by setting the right-hand sides of the equations in the model to zero, given
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FIGURE 2. The plot shows HBV disease transmission in a population with in-

fected immigrants

by

E0 =

(
P
µ
,0,0,0

)
.

The linear stability of E0 can be established using the next generation operator method in [19]

on the system (1), the matrices F and V , for the new infection terms and the remaining transfer

terms, are, respectively, given by,

F =


βP
µ

γP
µ

0

0 0 0

0 0 0

 ,

and

V =


µ +δ +m 0 0

−δ µ +ρ 0

0 0 µ +σ

 .
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It follows that the reproductive number of the model (1), denoted by R0 is given by

(2) R0 =
βP(µ +ρ)+ γPδ

µ(µ +δ +m)(µ +ρ)
.

The threshold quantity R0 is the basic reproduction number of the model (1) for HBV infec-

tion in a population with infected immigrants. It measures the average number of new HBV

infections generated by a single infected individual in a completely susceptible population.

Lemma 3.1.The disease-free equilibrium of the model (1) with infected immigrants is locally

asymptotically stable if R0 < 1 and unstable R0 > 1.

Epidemiologically, Lemma 3.1, above implies that HBV can be eliminated from the com-

munity when R0 < 1 if the initial size of the sub-population of the model are in the basin of

attraction of the disease free equilibrium R0.

This is to say, if R0 < 1, then on average an infected individual produce less than one new

infected individual over the cause of its infectious period, and the infection can not grow, from

(2), for R0 to be less than 1, this will only be possible when m (efficacy of treatment) is in-

creased without bound in collaboration with other intervention strategies to all people including

immigrants in a given locality which may result into the decreasing effect on β ,π1,γ and π2 pro-

vided that acute infectives (I) will take all necessary precaution measures against transmission

of HBV since they are aware of their infection.

Conversely, if R0 > 1, then each infected individual produces on average more than one new

infection, and the disease can invade the population, this situation can be realized easily when

we try to assess the contribution of (I) and (C) in terms of β ,π1 and γ,π2 respectively from (2)

above,

(3) R01 =
βP

µ(µ +δ +m)
, R02 =

γPδ

µ(µ +δ +m)(µ +ρ)
,

where

(4) R0 = R01 +R02

from the equation (3) it is clear that R01 > R02 which implies that chronic infectives (C) are

the one contributing much on the transmission of the infection and keeping the disease endemic
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(say,R0 > 1) in the population through γ and π2 compared to acute infective (I) under β and

π1. In the absence of infection, the population size approaches the stead state P
µ

.

Then, R0 is the number of secondary infections made by a topical newly infective individual

entering the population at the disease-free equilibrium during his or her average infective period.

So R0 is the basic reproduction number when new members of immigration are all susceptible,

or π1 +π2 +π3 = 0.

Theorem 3.2. Suppose π1 +π2 +π3 = 0 or new members of immigration are all susceptible.

Then

(1) The point E0 =
(

P
µ
,0,0,0

)
∈ Ω, the disease-free equilibrium of the system (1) and it

exists for all nonnegative values of its parameters. E0 is globally asymptotically stable

when R0 ≤ 1 and it is unstable when R0 > 1.

(2) When R0 > 1, the solutions of the system (1) starting sufficiently close to E0 in Ω move

away from E0 except those starting on the invariant S−axis which approach E0 along

this axis.

Further, using ([20], Theorem 2), the following result is established. The disease-free equi-

librium is locally asymptotical stable if R0 < 1 and unstable if R0 > 1

3.1. Stability and existence of endemic equilibrium

In the presence of HBV, that is I(t) 6= 0,C(t) 6= 0, the model system (1) has an equilibrium

point, called the endemic equilibrium point, denoted by E1 given by:

E1 = (S∗, I∗,C∗,V ∗) 6= 0.

E1 is the steady state endemic equilibrium point where the disease persist in the population. For

the existence and uniqueness of E1 its coordinate has to satisfy the following conditions.

0 < S∗,0 < I∗,0 <C∗,0 <V ∗.
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The equilibria for (1) can be found by setting the right sides of the four differential equations of

(1) equal to zero, giving the algebraic system,

(1−π1−π2−π3)P+mI +σV = (β I + γC)S+µS,

π1P+(β I + γC)S = (µ +δ +m)I,

π2P+δ I = (µ +ρ)C,

π3P = (µ +σ)V.

(5)

Adding all equations in (5), we obtain

C∗ =
1
ρ
(P−µN∗).

Then S∗, I∗ and V ∗ can be expressed in terms of N∗ as

S∗ =
(1−π1−π2−π3)P+mI∗+σV ∗

µ +β I∗+ γ

ρ
(P−µN∗)

,

I∗ =
π1P+ γS∗

ρ
(P−µN∗)

(µ +δ +m)−βS∗
,

V ∗ =
π3P

µ +σ
,

where N∗= S∗+ I∗+C∗+V ∗. We note that ω = (S∗, I∗,C∗,V ∗) are always positive and this has

a unique endemic equilibrium when R0 > 0. Therefore, we state without proof the following

Lemma.

Lemma 3.3. The endemic equilibrium ω exists and is positive if and only if R0 > 0.

We will analyze the local asymptotic stability of endemic equilibrium by using the Center

Manifold theory [18] as described in (Theory 4.1) . In this case we make the following change

of variables in order to apply the Center Manifold theory S = x1, I = x2,C = x3 and V = x4. We

now use the vector notation X = (xi)
T (i = 1,2,3,4). Then the model equation (5.1) can be

written in the form (
dx
dt

)
= F(X) = ( f1, f2, f3, f4)

T ,
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such that

x
′
1 = f1 = (1−π1−π2−π3)P− (βx2 + γx3)x1−µx1 +mx2 +σx3,

x
′
2 = f2 = π1P+(βx2 + γx3)x1− (µ +δ +m)x2,

x
′
3 = f3 = π2P+δx2− (µ +ρ)x3,

x
′
4 = f4 = π3P− (µ +σ)x4.

(6)

The Jacobia matrix of the system (5.6) is given by,

J|DFE =


−µ −βP

µ
+m − γP

µ
+σ 0

0 βP
µ
−µ−δ −m γP

µ
0

0 δ −µ−ρ 0

0 0 0 −µ−σ

 ,

Let β = β ∗ be a bifurcation parameter and if we consider the case R0 = 1 and solve for β = β ∗

gives β ∗ = µ(µ+δ+m)(µ+ρ)−γPδ

µ2 . The the system of the transformed equation with β = β ∗ has

a simple zero eigenvalues. Hence the Center Manifold theory [18] can be used to analyse the

dynamics of
(dx

dt

)
= F(X) = ( f1, f2, f3, f4)

T near β = β ∗. It can be shown that the Jacobian of(dx
dt

)
= F(X) = ( f1, f2, f3, f4)

T at β = β ∗ has an eigenvector associated with the zero eigenval-

ues given by U = (U1,U2,U3,U4)
T , where

(7) U1 =−µ,U2 =−µ−σ ,U3,4 =
−B±

√
B2−4AC
A

,

where

A = µ,

B =−2µ2−ρµ +βP−µδ −µm,

C = µ3−µ2ρ−µ2δ −µ2m−µβP.

4. Global stability of disease-free equilibruim

We present the global stability of disease-free equilibrium (DFE) of the system (1). We

define and contruct Lyapunvor function for the global stability of DFE. Furthermore, we use

the Lyapunvor function to find its global asymptotical stability for the endemic equilibrium.
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Theorem 4.1. For R0 ≤ 0, the disease-free equilibrium of the system (1) is stable globally

asymptotically, if S = S0 and unstable for R0 > 1.

Proof. Here, we define the Lyapunov function for the global stability of disease-free equilibri-

um, given by

(8) L(t) =
[
d1(S−S0)+d2I +d3C+d4V

]
.

Differentiating the previous function with respect to t and using the system (1),

L
′
(t) = d1S

′
+d2I

′
+d3C

′
+d4V

′
,

L
′
(t) = d1 [(1−π1−π2−π3)P− (β I(t)+ γC(t))S(t)−µS(t)+mI(t)+σV (t)] ,

+d2 [π1P+(β I(t)+ γC(t))S(t)− (µ +δ +m)I(t)] ,

+d3 [π2P+δ I(t)− (µ +ρ)C(t)] ,

+d4 [π3P− (µ +σ)V (t)] ,

(9)

where di, i = 1, ...,4 are some positive constants to be chosen later. After the arrangement, we

obtain

L
′
(t) = [d2−d1] (β I + γC)S+[d3δ −d2(µ +δ +m)] I +[d1−d4(µ +σ)]V

−d3(µ +ρ)C−d1µS+d1mI +[d2−d1]π1P+[d3−d1]π2P

[d4−d1]π3P+d1P.

(10)

Choosing the constants, d1 = d2 = δ , d3 = µ +δ +m, and d4 =
δσ

µ+σ
. After the simplification,

we get

(11) L
′
(t) =

(
S−S0)−δmI− (µ +δ +m)(µ +ρ)C,

where S0 =
(µ+m)π2P+

(
µδ

µ+σ

)
π3P+δP

δ µ
. L

′
(t) = 0 if and only if S = S0 and I = C = V = 0. Also,

L
′
(t) is negative for S > S0. So, by [12], the DFE is globally asymptotically stable in Ω. Hence

the prove.

The figures below shows the phase portrait of proportion of acute, chronic and vaccinated

groups plotted against the proportion of susceptible population. This shows the dynamic be-

haviour of the endemic equilibrium of the model (1) using the estimated parameter values in

table 1 for different starting values in four cases as shown below.
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FIGURE 3. Phase portrait: Proportion of acute infected group agaist proportion

of susceptible group

In the above Figures 3-5, it is seen that for any initial start, the solution curves tend to the

endemic equilibrium point E1. Hence, we infer that the system (1) is globally stable about the

endemic equilibrium point E1 for the set of parameters in table 1.

5. Sensitivity analysis of model parameters

In the determination of the best strategy for controlling an infection, it is important to identify

what factors among all are the most crucial in its transmission. Determining how sensitive R0

is to parameters, as mostly used in mathematical modeling of biological systems, has been an

insightful tool. A sensitivity analysis is conducted to determine the impact of several parameters

in our model on various output measures. Therefore, we will calculate sensitivity indices of all

the parameters used in this model. For the sensitivity analysis, we employ the normalised

forward sensitivity index of a variable to be the ratio of the relative change in a variable to a

change in a parameter [2].
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FIGURE 4. Phase portrait: Proportion of chronic infected group agaist propor-

tion of susceptible group

Definition 5.1. The normalised forward sensitivity index of a variable, u, that depends differ-

entiably on a parameter, p, is defined as:

(12) ϒ
u
p =

∂u
∂ p
× p

u
.

As we have an explicit formula for R0 in equation (12), we derive an analytical expression for

the sensitivity of R0 as ϒ
R0
p = ∂R0

∂ p ×
p

R0
, to each of parameters involved in R0. For example

the sensitivity index of R0 with respect to β ,

ϒ
R0
β

=
∂R0

∂β
× β

R0
= 0.7534.

6. Optimal control analysis

We have seen that under some suitable threshold limits of different parameters, the HBV

model (1) is locally asymptotically stable around the endemic equilibrium E1. But during the
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FIGURE 5. Phase portrait: Proportion of vaccinated infected group agaist pro-

portion of susceptible group

TABLE 2. Sensitivity indices of model parameters to R0

Para. Description Sensitivity index

π1 Proportion of acute infected immigrants into population +(ve)

π2 Proportion of chronic infected immigrants into population +(ve)

π3 Proportion of vaccinated immigrants into popu. +(ve)

P Total recruitment into population by birth or immigrant +(ve)

β Contact rate of individual with acute Hepatitis B +(ve)

γ Contact rate of individual with chronic Hepatitis B +(ve)

m Efficacy of treatment rate -(ve)

µ Natural death rate +(ve)

ρ Death due to chronic hepatitis B infection +(ve)

δ Rate of progression from acute to chronic infection +(ve)

σ Rate of progression due to waning immunity +(ve)
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process of applying control measures such as vaccination or treatment, there is an obvious

question of incurring some cost and allied benefit in the whole process. We apply optimal

control method using Pontryagins Maximum Principle to determine the necessary conditions

for the optimal control of the Hepatitis B disease. We incorporate time dependent controls into

the model (1) to determine the optimal strategy for controlling the disease. We rewrite the model

as

dS
dt = (1−π1−π2−π3)P− (β I + γC)S−µS+u1mI +σV −u2S,
dI
dt = π1P+(β I + γC)S− (µ +δ +u1m)I,
dC
dt = π2P+δ I− (µ +ρ)C,

dV
dt = π3P− (µ +σ)V +u2S.

(13)

Thus the objective is to quantify the units to express the net profit during the given time of

treatment. In other words, this is to construct an economic model out of the given dynamic

model of control. In this case the problem reduces to an optimal control problem. Our task is

then to formulate an optimal policy when the control measures in the system are already defined

in a mathematical form and finally to find out the restrictions on the economic parameters of

the model.

The control functions, u1(t) and u2(t) are bounded, Lebesgue integrable functions. The con-

trol u1(t) represents the effort from screening and treatment of acute infected to reduce the

movement of individuals that may be infectious into chronic group. The control u2(t) repre-

sents the effort from vaccination of susceptible group to reduce the movement of individuals

that may be infectious into acute infected group. The objective functional is defined as:

(14) J(u1(t),u2(t)) = max
u1,u2

∫ t f

0

[
k1I + k2V −

(
A1u2

1 +A2u2
2
)]

dt,

where, t f is the final time and the co-efficient k1,k2,A1,A2 are balancing cost factors.

Our target is to maximize the objective functional defined in (14) by minimizing the acute

infected group and maximizing the vaccinated group. In order words, we seek to find the

optimal pair u∗1 and u∗2 such that

J(u∗1,u
∗
2) = max

U
J(u1,u2),
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where U= {(u1(t),u2(t)) : a1 ≤ (u1(t),u2(t))≤ bi, i = 1,2 t = [0, t f ]} is the control set. Here

ai and bi are constant in [0,1]. The necessary conditions that an optimal solution must satisfy

come from the [17] Maximum Principle. This principle converts (13)-(14) into a problem of

maximizing pointwise a Hamiltonian H, with respect to u1 and u2.

H = k1I + k2V − (A1u2
1 +A2u2

2)

+λS {(1−π1−π2−π3)P− (β I + γC)S−µS+u1mI +σV −u2S}

+λI {π1P+(β I + γC)S− (µ +δ +u1m)I}

+λC {π2P+δ I− (µ +ρ)C}

+λV {π3P− (µ +σ)V +u2S} .

(15)

Theorem 6.1. There exist optimal control u∗1,u
∗
2 and solutions S∗, I∗,C∗,V ∗ of the correspond-

ing state system (13) that maximizes J(u1,u2) over U. Furthermore, there exist λS,λI,λC,λV

satisfying:

dλS

dt
=−∂H

∂S
,

dλI

dt
=−∂H

∂ I
,

dλC

dt
=−∂H

∂C
,

dλV

dt
=−∂H

∂V
,

with transversality conditions λi(t f ) = 0, i = S, I,C,V . Moreover, the optimal control is given

by:

(16) u∗1(t) = min
{

b1,max
(

a1,
mI(λS−λI)

2A1

)}
and

(17) u∗2(t) = min
{

b2,max
(

a2,
S(λV −λS)

2A2

)}
.

Proof. Corollary 4.1 of [6] gives the existence of an optimal control pair due to the convexity

of the integrand of (14) with respect to the control u1 and u2, a priori boundedness of the state

solutions and the Lipschitz property of the state system with respect to the state variables.
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The differential equations governing the adjoint variables are obtained by differentiation of

the Hamiltonian function, evaluated at the control pair.

The adjoint system can be written as:

−dλS

dt
=

∂H
∂S

,λS(t f ) = 0,

−dλI

dt
=

∂H
∂ I

,λI(t f ) = 0,

−dλC

dt
=

∂H
∂C

,λC(t f ) = 0,

−dλV

dt
=

∂H
∂V

,λV (t f ) = 0,

where

∂H
∂S =− [−(β I + γC)−µ−u2]λS +[β I− γC]λI−u2λV ,

∂H
∂ I = k1−u1mλS +[βS− (µ +δ +u1m)]λI−δλC,

∂H
∂C =−γSλS + γSλI− (µ +ρ)λC,

∂H
∂V = k2 +σλS− (µ +σ)λV .

(18)

Solving for u∗1 and u∗2 subject to the constraints, the chracterization (16)-(17) can be derived and

we have

0 = ∂H
∂u =−2A1u1 +mIλS−mIλI,

0 = ∂H
∂u2

=−2A2u2−SλS +SλV .
(19)

Hence, we obtain [20].

u∗1(t) =
mI(λS−λI)

2A1
,

u∗2(t) =
S(λV−λS)

2A2
.

By standard control arguments involving the bounds on the controls, we conclude

u∗1 =


a1 i f mI∗

2A1
(λS−λI)≤ a1,

mI∗
2A1

(λS−λI) i f a1 <
mI∗
2A1

(λS−λI)≤ b1,

b1, i f mI∗
2A1

(λS−λI)≥ b1.

u∗2 =


a2 i f S∗

2A2
(λV −λS)≤ a2,

S∗
2A2

(λV −λS) i f a2 <
S∗

2A2
(λV −λS)≤ b2,

b2, i f S∗
2A2

(λV −λS)≥ b2.
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Due to the a priori boundedness of the state system, the adjoint system and the resulting Lips-

chitz structure of the ODEs, we obtain the uniqueness of the optimal control for small t f . The

uniqueness of the optimal control follows from the uniqueness of the optimality system that

consists in (18) and transversality condition with characterization (16)-(17). Next, we discuss

the numerical solutions of the optimality system and the corresponding results of varying the

optimal controls u1 and u2 , the parameter choices, and the interpretations from various cases.

7. Numerical simulation

The solution of the optimal control prob- lem is obtained by solving the optimality system

which consists of the state and adjoint systems (13) and (18), respectively. For computational

illustration, the values of parameters in Table 2 were employed and the solution is obtained by

using the following iterative scheme.

Step 1. Make a guess of the controls.

Step 2. Use the values of the controls together with the initial conditions to solve the state

equations, using a forward numerical scheme.

Step 3. Using the current solution of the state system together with the transversality con-

ditions, solve the adjoint equations using a backward numerical scheme. We use a backward

scheme for the costate system because the transversality conditions are final time conditions.

Step 4. Update the controls using the characterizations in (16)-(17).

Step 5. Repeat Steps 2 to 4 until the values of the unknowns at the current iteration are very

close to those of the previous iteration [14].

8. Cost effectiveness analysis

A cost-effectiveness analysis was performed using a decision-analysis model involving a

Markov process to model HBV to evaluate the cost-effectiveness of three vaccination strategies

in a cohort of newly-arriving immigrants who were all assumed to be unaware of their HBV

infection status and asymptomatic, if chronically infected. These strategies were compared to
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(a)

(b)

FIGURE 6. The susceptible group (S) indicates significant increase with optimal

control compared to the case without control in (a) the vaccinated group (V) with

optimal control compared to the case without control in (b).
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(a)

(b)

FIGURE 7. Acute infected (I) with optimal control compared to the case with-

out control in (a) and the chronic (C) infected individuals indicates significant

decrease in time in (b).
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(a)

(b)

FIGURE 8. The effect of control strategy on HBV transmission in (a), and the

control profile suggests control u2 to be at the upper bound for 99 days before

dropping gradually to the lower bound, while control u1 to be maintained at the

lower bound throughout the intervention period in (b)



24 E. N. WIAH, O. D. MAKINDE, I. A. ADETUNDE

the status quo of no targeted vaccination for new immigrants by computing their incremen-

tal cost-effectiveness ratios (ICER), defined as the additional health benefit of an intervention,

measured in QALYs gained, with the next least costly undominated strategy [4]. The incremen-

tal cost effectiveness ratio (ICER) is calculated as the marginal cost of an intervention divided

by the marginal effectiveness. It measures how much additional bang for the buck could be

achieved by switching from one intervention to another. This can be written as

ICER =
Costsnew strategy−Costscurrent practice

E f f ectnew strategy−E f f ectcurrent practice
.

TABLE 3. Direct Costs and Health Outcomes of Treatment and Vaccination in a

Cohort of 10,000 Immigrants

Strategy Average Hepatitis Deaths Average Incremental

Cost per B related Prevented Effectiveness Cost per

person deaths (QALY) QALY gained,

compared to

Status Quo

Status Quo $148,799 3,029.126 ... 24.686 ...

Vaccination $152,401 3,028.509 0.617 24.781 $38,157

Treatment $152,527 2,697.034 332.092 24.785 $37,675

Both Treatment $152,566 2,695.881 333.245 24.785 $38,051

and Vaccination

9. Conclusions

We present the mathematical model of the transmission dynamics of HBV infection with in-

fected immigrants. We calculated the basic reproduction number, investigated the existence and

stability of equilibria. The disease-free equilibrium is locally as well as globally asymptotical-

ly stable for R0 ≤ 1. We obtained the local and global asymptotical stability for the endemic

equilibrium. For the reproduction number R0 > 1, the endemic equilibrium is, locally as well
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as globally, asymptotically stable. Furthermore, we have solved the compartment model nu-

merically, and performed optimal control analysis of the model. Applying optimal control, we

derived and analyzed the conditions for optimal control of the disease with effective treatmen-

t regime and vaccination measures using the Pontryagins Maximum Principle [17]. Finally,

numerical simulations of the resulting control problem are carried out to determine the effec-

tiveness of various controls. The control profile suggests control u2 to be at the upper bound for

99 days before dropping gradually to the lower bound, while control u1 to be maintained at the

lower bound throughout the intervention period. In all cases, the status quo remained the least

costly and least effective strategy. Furthermore, the ranking of interventions, in terms of their

cost-effectiveness ratios, remained unchanged. The treatment strategy was always the most

cost-effective and the vaccination strategies were always dominated prohibitively expensive.

Vaccination would not be cost-effective in this population because the cost associated with pre-

venting a small number of new infections in adults was outweighed by the cost of immunizing

a large population and the cost of existing untreated chronic HBV infections.
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