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Abstract. This paper investigates a holonomic constrained system of a particle moving on a horizontal smooth

plane. The equilibrium points, bifurcations and chaotic attractors of the system are analyzed. It shows that the

rich dynamic behaviors of the particle motion system, including the degenerate Hopf bifurcations at multiple

equilibrium points, the chaotic behaviors of the particle motion. The numerical simulations are carried out to

verify theoretical analyses and to exhibit the rich chaotic behaviors.
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1. INTRODUCTION

Some research shows that the the particle motion becomes complex because of the existence

of external force, such as shear force [1] and creep force [2]. Junhong and his cooperators

studied a particle motion under external force and investigated the influences of two nonlinear
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nonholonomic constraints on the particle motion [3]. In this paper, we will discuss the particle

motion system of Ref. [3] with holonomic constraint

x2 + y2 = M2 (M > 0).

By applying Lagrange’s method, the equations of holonomic system can be obtained as fol-

lows

(1)

 ẍ = ax−bx2− cx1y+2λx,

ÿ = ay−by2− cxy1 +2λy,

Here λ is Lagrange’s multiplier. Differentiate the holonomic constraint equation twice with

respect to time and obtain ẋ2+xẍ+ ẏ2+yÿ= 0, then λ =−x2
1+y2

1+aM2−bx3−by3−cx1xy−cxyy1
2M2 . Thus,

the equations of motion of the constrained system become

(2)



ẋ = x1,

ẋ1 =−bx1
2− cx2x3 +ax1−P1(x,x1,y,y1),

ẏ = y1,

ẏ1 =−bx3
2− cx1x4 +ax3−P2(x,x1,y,y1).

where

P1(x,x1,y,y1) =
x1((−bx1

2−cx2x3+ax1)x1+(−bx3
2−cx1x4+ax3)x3+x2

2+x4
2)

M2 ,

P2(x,x1,y,y1) =
x3((−bx1

2−cx2x3+ax1)x1+(−bx3
2−cx1x4+ax3)x3+x2

2+x4
2)

M2 .

The stability of equilibrium points, Hopf bifurcation and chaos of the constrained system are

investigated as follows.

2. DYNAMIC ANALYSIS

By computations, we can obtain the equilibrium points as follows

E0 = (0,0,0,0), E1 = (0,0,M,0), E2 = (0,0,−M,0), E3 = (0,0, a
b ,0),

E4 = (M,0,0,0), E5 = (−M,0,0,0), E6 = (a
b ,0,0,0), E7 = (a

b ,0,
a
b ,0),

E8 = (− M√
2
,0,− M√

2
,0), E9 = ( M√

2
,0, M√

2
,0).

The characteristic equations at equilibrium points are obtained as follows

fE0(λ ) = λ 4−aλ 2−λ 3 +aλ ,

fE1(λ ) = λ 4 +(cM−1)λ 3 +(−bM− cM)λ 2 +bMλ ,

fE2(λ ) = λ 4 +(−cM−1)λ 3 +(bM+ cM)λ 2−bMλ ,
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fE3(λ ) = λ 4 + (ca−b)λ 3

b − a(b+c)λ 2

b +aλ ,

fE4(λ ) = λ 4 +(cM−1)λ 3 +(−2bM− cM+2a)λ 2 +
(
−2M2bc+2Mac+2bM−2a

)
λ

+2cM (bM−a),

fE5(λ ) = λ 4 +(−cM−1)λ 3 +(2bM+ cM+2a)λ 2 +
(
−2M2bc−2Mac−2bM−2a

)
λ

+2cM (bM+a),

fE6(λ ) = λ 4 + (ca−b)λ 3

b +
a(b2M2−M2bc−a2)λ 2

b2M2 +
a(b2M2−a2)(ca−b)λ

b3M2 − ca2(b2M2−a2)
b3M2 ,

fE7(λ ) = λ 4− (ca+b)λ 3

b − a(3b2M2−M2bc−7a2)λ 2

b2M2 + a(3b2M2−7a2)(ca+b)λ
b3M2 − ca2(3b2M2−7a2)

b3M2 .

fE8(λ ) = λ 4 +(cM
√

2/2−1)λ 3 +(−cM
√

2/2− bM
√

2/4+a)λ 2 +(−M2bc/2

+M
√

2ac/2+ bM
√

2/4−a)λ + M2bc/2−1/2M
√

2ac,

fE9(λ ) = λ 4 +(−cM
√

2/2−1)λ 3 +(cM
√

2/2+ bM
√

2/4+a)λ 2 +(−M2bc/2

−M
√

2ac/2− bM
√

2/4−a)λ + M2bc/2+ M
√

2ac/2.

From the expression of fE6(λ ) , we can obtain the eigenvalues are±
√

ab2M2−a3

bM i, 1, ac
b , where

a
Mb < 1. In this case, the system occurs Hopf bifurcation at the equilibrium E6. For E6, let


x− a

b

x1

y

y1

=



0 bM√
ab2M2−a3 0 0

1 0 0 0

0 0 0 ca+b
ba

0 0 1 1




u1

u2

u3

u4

.

Then, the system (2) becomes

(3)



u̇1 =−
√

ab2M2−a3

bM u2 +G1(u1,u2,u3,u4),

u̇2 =
√

ab2M2−a3

bM u1 +G2(u1,u2,u3,u4),

u̇3 =−cMu3 +G3(u1,u2,u3,u4),

u̇4 = u4 +U4(u1,u2,u3,u4),

where

G1(u1,u2,u3,u4) =− b3M2u2
2

M2ab2−a3 −
cu1(ac+b)u4

ba + abMu2√
M2ab2−a3 −

bu2
M
√

M2ab2−a3 (
bMu2√

M2ab2−a3

×(− b3M2u2
2

M2ab2−a3 −
cu1(ac+b)u4

ba + abMu2√
M2ab2−a3 )+

(ac+b)u4
ba (− (ac+b)2u4

2

ba2 − cbMu2(u3+u4)√
M2ab2−a3

+ (ac+b)u4
b +u2

1 +(u3 +u4)
2)+

√
M2ab2−a3u2

bM ,
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G2(u1,u2,u3,u4) = 0,

G3(u1,u2,u3,u4) = cMu3− (ac+b)2u4
2

ba2 − cbMu2(u3+u4)√
M2ab2−a3 + (ac+b)u4

b − (ac+b)u4
abM2 ( bMu2√

M2ab2−a3

×(− b3M2u2
2

M2ab2−a3 −
cu1(ac+b)u4

ba + abMu2√
M2ab2−a3 )+

(ac+b)u4
ba (− (ac+b)2u4

2

ba2 − cbMu2(u3+u4)√
M2ab2−a3

+ (ac+b)u4
b )+u2

1 +(u3 +u4)
2),

G4(u1,u2,u3,u4) = 0.

Furthermore,

g11 =
1
4(−

2b3M2

M2ab2−a3 ), g02 =
1
4(

2b3M2

M2ab2−a3 ),

g20 =
1
4(

2b3M2

M2ab2−a3 ), g21 =
1
8(

6b3Ma

(M2ab2−a3)
3/2 +

2b
M
√

M2ab2−a3 i),

thus

Rec1(0) =Re( Mbi√
M2ab2−a3 (g20g11−2|g11|2− 1

3 |g02|2)+ 1
2g21) =

1
8

b2

M2ab2−a3 > 0.

Based on the above analysis and the theorem in [4], we can obtain the the conclusion as

follows.

Theorem 1. The system (2) undergoes degenerate Hopf bifurcations at E6 and the bifurcating

periodic solution is unstable.

According to Routh-Hurwitz criteria, E0, E1, E5, E7 and E9 are unstable points. For the

other equilibria, we can obtain the same conclusions using the method in [4] when the Hopf

bifurcations occur.

3. CHAOS AND SIMULATIONS

The above results show that the particle motion system has complex dynamic behaviors. In

this section, we give some simulations to study the particle motion and select the parameters

a = 5, c = 0.001, b = 1, and initial values (x0,x10,y0,y10) = (0.1,0.001,0.1,0.1). In this case,

the system (2) has ten equilibrium points. Table.1 indicates the eigenvalues of corresponding

Jacobian matrix and the equilibria type and shows the unstable manifold and stable manifold at

the equilibrium points of the particle motion system when M = 0.2.

In chaos theory, the equilibrium points of the system are of great importance to understand

its nonlinear dynamics [5]. It has been long supposed that the existence of chaotic behaviour

in the microscopic motions is responsible for their equilibrium and nonequilibrium properties
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[6] and the interconversion of the stable manifolds and the unstable manifolds which can cause

complicated dynamics in the system (2)[7-8]. The Lyapunov exponents are 0, -0.2 -0.3 and

0.6 using the method in [7], thus the system (2) is chaotic. Fig 1. shows the particle motion

trajectory and the chaotic attractor of the system. The poincare maps and chaotic attractors in

x− y plane and x1− y1 plane are given in Fig. 1-6. If the constrained parameter M = 1, the

particlemotion system also occur chaotic phenomena. Fig. 7-8 show the chaotic ayyractor in

x− y plane and x− x1 plane.

TABLE 1. The eigenvalues of corresponding Jacobian matrix and the equilibria type.

equilibrium points eigenvalues of Jacobian matrix equilibria type

(0,0,0,0) 0, 1,2.2361, -2.2361 unstable equilibrium point

(0,0,0.2,0) 0, 1, 0.44731, -0.44731 unstable equilibrium point

(0,0,-0.2,0) 0, 1, ±0.44721i Hopf bifurcation

(0,0,5,0) 0, 1, -2.23857, 2.23357 unstable equilibrium point

(0.2,0,0,0) 1, 0.0024, 0.0612±3.9763i unstable equilibrium point

(-0.2,0,0,0) 1, 0.0026, -0.0637±3.22442i unstable equilibrium point

(5,0,0,0) 1, -0.005, 55.8569, -55.8569 unstable equilibrium point

(5,0, 5,0) 1, 59.069, -0.01, -52.819 unstable equilibrium point

(− 0.2√
2
,0,- 0.2√

2
,0) 1, 0.0001,±2.25182i Hopf bifurcation

( 0.2√
2
,0, 0.2√

2
,0) 1, -0.000139, 0.0000001±2.2201i unstable equilibrium point
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Fig. 1. The chaotic attractor in x− y plane. Fig. 2. The poincare map in x− y plane.

Fig. 3. The chaotic attractor in x1− y1 plane. Fig. 4. The poincare map in x1− y1 plane.

4. CONCLUSION
The results show that the rich dynamic behaviors of the particle motion system, including

Hopf bifurcations, interconversion of the stable manifolds and the unstable manifolds at multi-

ple equilibrium points and chaotic attractors. Thus, the particle motion trajectory has complex

dynamic behaviors under the holonomic constraint.
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Fig. 5. The chaotic attractor in x− x1 plane. Fig. 6. The chaotic attractor in x1− y plane.

Fig. 7. The chaotic attractor in x− y plane. Fig. 8. The chaotic attractor in x− x1 plane.
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