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Abstract. In this paper, fixed point problems of nonexpansive mappings and solution problems of

generalized variational inequalities are investigated based on a viscosity approximate iterative algorithm.

Strong convergence theorems for common elements which lie in the fixed point set and in the solution set

are established in the framework of Hilbert spaces.
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1. Introduction

Variational inequalities introduced in the early seventies have witnessed an explosive

growth in theoretical advances, algorithmic development and applications across all the

discipline of pure and applied sciences; see [1-24] and the references therein. It combines

novel theoretical and algorithmic advances with new domain of applications. Analysis of

these problems requires a blend of techniques from convex analysis, functional analysis

and numerical analysis. Now, we have a variety of techniques to suggest and analyze

various numerical methods including projection technique and its variant forms, auxiliary
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principle, Wiener-Hopf equations and so on. Recently, some classes of generalized varia-

tional inequalities involving two or three three nonlinear operators has been studied by

many authors; see [1-6] and the references therein. The generalized variational inequali-

ties are useful and important extension and generalizations of the variational inequalities

with a wide range of applications in industry, mathematical finance, economics, decision

sciences, ecology, mathematical and engineering sciences. For solution problems of the

generalized variational inequalities, projection methods which link solution problem of

variational inequalities and fixed point problems of nonlinear operators are efficient and

popular. Viscosity approximation method which was first introduced by Moudafi [18] has

been studied iterative solutions of variational inequalities and fixed points of nonexpansive

mappings. In this paper, fixed point problems of a nonexpansive mapping and solution

problems of a generalized variational inequality are investigated based on a composite ap-

proximate iterative algorithm. Strong convergence theorems for common elements which

lie in the fixed point set and in the solution set are established in the framework of Hilbert

spaces.

2. Preliminaries

Throughout this paper, we assume that H is a real Hilbert space, whose inner product

and norm are denoted by 〈·, ·〉 and ‖ · ‖. Let C be a nonempty closed and convex subset

of H and A : C → H a nonlinear mapping. Recall the following definitions:

(a) A is said to be monotone if

〈Ax− Ay, x− y〉 ≥ 0, ∀x, y ∈ C.

(b) A is said to be ν-strongly monotone if there exists a positive real number ν > 0

such that

〈Ax− Ay, x− y〉 ≥ ν‖x− y‖2, ∀x, y ∈ C.
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(c) A is said to be relaxed µ-cocoercive if there exists a positive real number µ > 0

such that

〈Ax− Ay, x− y〉 ≥ (−µ)‖Ax− Ay‖2, ∀x, y ∈ C.

(d) A is said to be relaxed (µ, ν)-cocoercive if there exist positive real numbers µ, ν > 0

such that

〈Ax− Ay, x− y〉 ≥ (−µ)‖Ax− Ay‖2 + ν‖x− y‖2, ∀x, y ∈ C.

Next, we consider the following generalized variational inequality problem. Give non-

linear mappings T1 : C → H and T2 : C → H, find an u ∈ C such that

〈u− λ1T1u+ λT2u, v − u〉 ≥ 0, ∀v ∈ C, (2.1)

where λ1, and λ2 are constants. In this paper, we use V I(C, T1, T2) to denote the solution

set of the variational inequality problem (2.1).

It is easy to see that an element u ∈ C is a solution to the problem (2.1) if and only

if u ∈ C is a fixed point of the mapping PC(λ1T1 − λT2), where PC denotes the metric

projection from H onto C.

If T1 = I, the identity mapping, and λ1 = 1, then the problem (2.1) is reduced to the

following. Find u ∈ C such that

〈T2u, v − u〉 ≥ 0, ∀v ∈ C. (2.2)

The variational inequality (2.2) was introduced by Stampacchia [23] in 1964. The problem

(2.2) has emerged as a fascinating and interesting branch of mathematical and engineering

sciences with a wide range of applications in industry, finance, economics, social, ecology,

regional, pure and applied sciences. In this paper, we use V I(C, T2) to denote the solution

set of the variational inequality problem (2.2).

Let S : C → C be a mapping. Recall that S is said to be nonexpansive if

‖Sx− Sy‖ ≤ ‖x− y‖, ∀x, y ∈ C.

In this paper, we use F (S) to denote the fixed point set of the mapping S.
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Recently, many authors studied the problem of approximating a common element in

the solution set of variational inequalities (2.1), (2.2), and in the fixed point set of nonex-

pansive mappings. Motivated by the research work going on in this direction, fixed point

problems of nonexpansive mappings and solution problems of generalized variational in-

equalities are investigated based on a composite approximate iterative algorithm in this

paper. Strong convergence theorems for common elements which lie in the fixed point set

and in the solution set are established in the framework of Hilbert spaces.

In order to prove our main results, we also need the following lemmas.

Lemma 2.1 ([25]). Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let S1 : C → C and S2 : C → C be nonexpansive mappings. Suppose that

F (S1) ∩ F (S2) is nonempty. Define a mapping S : C → C by

Sx = aS1x+ (1− a)S2x, ∀x ∈ C.

Then S is nonexpansive with F (S) = F (S1) ∩ F (S2).

Lemma 2.2 ([26]). Let C be a nonempty closed and convex subset of a real Hilbert space

H and S : C → C a nonexpansive mapping. Then I − S is demi-closed at zero.

Lemma 2.3 ([27]). Let {xn} and {yn} be bounded sequences in a Hilbert space H and let

{βn} be a sequence in (0, 1) with

0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Suppose that xn+1 = (1− βn)yn + βnxn for all integers n ≥ 0 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.4 ([28]). Assume that {αn} is a sequence of nonnegative real numbers such

that

αn+1 ≤ (1− γn)αn + δn,

where {γn} is a sequence in (0, 1) and {δn} is a sequence such that

(a) limn→∞ γn = 0,
∑∞

n=1 γn =∞;
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(b) lim supn→∞ δn/γn ≤ 0 or
∑∞

n=1 |δn| <∞.

Then limn→∞ αn = 0.

3. Main results

Theorem 3.1. Let C be a nonempty closed and convex subset of a real Hilbert space

H. Let f : C → C be a contractive mapping with the contractive constant κ, and S :

C → C a nonexpansive mapping with fixed points. Let T(m,1) : C → H be a relaxed

(µ(m,1), ν(m,1))-cocoercive and L(m,1)-Lipschitz continuous mapping and T(m,2) : C → H

be a relaxed (µ(m,2), ν(m,2))-cocoercive and L(m,2)-Lipschitz continuous mapping for each

positive integer m ∈ [1, N ], where N ≥ m is some positive integer. Assume that F =

∩Nm=1GV I(C, T(m,1), T(m,2))
⋂
F (S) 6= ∅. Let {xn} be a sequence generated by the following

algorithm


x1 ∈ C,

yn = δnSxn + (1− δn)
∑N

m=1 η(m,n)PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn),

xn+1 = αnf(xn) + βnxn + γnyn, n ≥ 1,

where {αn}, {βn}, {γn}, {δn}, and {η(m,n)} are sequences in (0, 1) satisfying the following

restrictions:

(a) αn + βn + γn = 1, ∀n ≥ 1;

(b) limn→∞ αn = 0, and
∑∞

n=1 α =∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(d)
∑N

m=1 η(m,n) = 1, and limn→∞ η(m,n) = ηm ∈ (0, 1);

(e) limn→∞ δn = δ ∈ (0, 1),

and {λ(m,1)} and {λ(m,2)} are sequences such that

(f)
√

1− 2λ(m,1)ν(m,1) + 2λ(m,1)µ(m,1)L
2
(m,1) + λ2(m,1)L

2
(m,1)

+
√

1− 2λ(m,2)ν(m,2) + 2λ(m,2)µ(m,2)L
2
(m,2) + λ2(m,2)L

2
(m,2) ≤ 1.
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Then the sequence {xn} generated by the algorithm converges strongly to x̄, where x̄ ∈ F ,

and solves the following variational inequality: find some point y such that

〈f(y)− y, y − x〉 ≥ 0, ∀x ∈ F .

Proof. First, we prove that the mapping PC(λ(m,1)T(m,1) − λ(m,2)T(m,2)) is nonexpansive

for each m ∈ {1, 2, . . . , N}. For each x, y ∈ C, we have

‖PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))x− PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))y‖

≤ ‖(λ(m,1)T(m,1) − λ(m,2)T(m,2))x− (λ(m,1)T(m,1) − λ(m,2)T(m,2))y‖

≤ ‖(x− y)− λ(m,1)(T(m,1)x− T(m,1)y)‖+ ‖(x− y)− λ(m,2)(T(m,2)x− T(m,2)y)‖.

(3.1)

It follows from the assumption that T(m,1) : C → H is relaxed (µ(m,1), ν(m,1))-cocoercive

and L(m,1)-Lipschitz that

‖(x− y)− λ(m,1)(T(m,1)x− T(m,1)y)‖2

= ‖x− y‖2 − 2λ(m,1)〈T(m,1)x− T(m,1)y, x− y〉+ λ2(m,1)‖T(m,1)x− T(m,1)y‖2

≤ ‖x− y‖2 − 2λ(m,1)(−µ(m,1)‖T1x− T1y‖2 + ν(m,1)‖x− y‖2) + λ2(m,1)L
2
(m,1)‖x− y‖2

≤ θ2(m,1)‖x− y‖2,

where θ(m,1) =
√

1− 2λ(m,1)ν(m,1) + 2λ(m,1)µ(m,1)L
2
(m,1) + λ2(m,1)L

2
(m,1). That is,

‖(x− y)− λ(m,1)(T(m,1)x− T(m,1)y)‖ ≤ θ(m,1)‖x− y‖. (3.2)

On the other hand, by the the assumption that T(m,2) : C → H is relaxed (µ(m,2), ν(m,2))-

cocoercive and L(m,2)-Lipschitz, we arrive at

‖(x− y)− λ(m,2)(T(m,2)x− T(m,2)y)‖2

= ‖x− y‖2 − 2λ(m,2)〈T(m,2)x− T(m,2)y, x− y〉+ λ2(m,2)‖T(m,2)x− T(m,2)y‖2

≤ ‖x− y‖2 − 2λ(m,2)(−µ(m,2)‖T2x− T2y‖2 + ν(m,2)‖x− y‖2) + λ2(m,2)L
2
(m,2)‖x− y‖2

≤ θ2(m,2)‖x− y‖2,
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where θ(m,2) =
√

1− 2λ(m,2)ν(m,2) + 2λ(m,2)µ(m,2)L
2
(m,2) + λ2(m,2)L

2
(m,2). This implies that

‖(x− y)− λ(m,2)(T(m,2)x− T(m,2)y)‖ ≤ θ(m,2)‖x− y‖. (3.3)

Substituting (3.2) and (3.3) into (3.1), we see from the restriction (f) that

‖PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))x− PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))‖ ≤ ‖x− y‖.

This shows that PC(λ(m,1)T(m,1)−λ(m,2)T(m,2)) is nonexpansive for each m ∈ {1, 2, . . . , N}.

Fix p ∈ F and Put

zn =
N∑
m=1

η(m,n)PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn).

It follows that ‖zn − p‖ ≤ ‖xn − p‖. This in turn implies that

‖yn − p‖ = ‖δnSxn + (1− δn)zn − p‖

≤ δn‖Sxn − Sp‖+ (1− δn)‖zn − p‖

≤ ‖xn − p‖.

It follows that

‖xn+1 − p‖ ≤ αn‖f(xn)− p‖+ βn‖xn − p‖+ γn‖yn − p‖

≤ αnκ‖xn − p‖+ αn‖f(p)− p‖+ βn‖xn − p‖+ γn‖xn − p‖

=
(
1− αn(1− κ)

)
‖xn − p‖+ αn‖f(p)− p‖.

By mathematical inductions, we arrive at

‖xn − p‖ ≤ max{‖f(p)− p‖
1− κ

, ‖x1 − p‖}, ∀n ≥ 1.

This completes the proof that the sequence {xn} is bounded. Since the mapping PC(λ(m,1)T(m,1)−

λ(m,2)T(m,2)) is nonexpansive for each m ∈ {1, 2, . . . , N}, we see that that

‖zn+1 − zn‖ = ‖
N∑
m=1

η(m,n+1)PC(λ(m,1)T(m,1)xn+1 − λ(m,2)T(m,2)xn+1)

−
N∑
m=1

η(m,n)PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn)‖

≤ ‖xn+1 − xn‖+M1

N∑
m=1

|η(m,n+1) − η(m,n)|,

(3.4)
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where

M1 = max{sup
n≥1
‖PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn)‖, ∀1 ≤ m ≤ N}.

This in turn implies that

‖yn+1 − yn‖ = ‖δn+1Sxn+1 + (1− δn+1)zn+1 − δnSxn − (1− δn)zn‖

≤ δn+1‖Sxn+1 − Sxn‖+ (1− δn+1)‖zn+1 − zn‖+ |δn+1 − δn|‖Sxn − zn‖

≤ ‖xn+1 − xn‖+M1

N∑
m=1

|η(m,n+1) − η(m,n)|+ |δn+1 − δn|‖Sxn − zn‖.

(3.5)

Put ln = xn+1−βnxn
1−βn . It follows that

xn+1 = (1− βn)ln + βnxn, ∀n ≥ 1. (3.6)

Now, we estimate ‖ln+1 − ln‖. In view of

ln+1 − ln

=
αn+1

1− βn+1

f(xn+1) +
1− βn+1 − αn+1

1− βn+1

yn+1 −
αn

1− βn
f(xn)− 1− βn − αn

1− βn
yn

=
αn+1

1− βn+1

(f(xn+1)− yn+1) +
αn

1− βn
(yn − f(xn)) + yn+1 − yn,

we obtain that

‖ln+1 − ln‖ ≤
αn+1

1− βn+1

‖f(xn+1)− yn+1‖+
αn

1− βn
‖yn − f(xn)‖+ ‖yn+1 − yn‖. (3.7)

Substituting (3.5) into (3.7), we obtain that

‖ln+1 − ln‖ − ‖xn+1 − xn‖ ≤
αn+1

1− βn+1

‖f(xn+1)− yn+1‖+
αn

1− βn
‖yn − f(xn)‖

+M1

N∑
m=1

|η(m,n+1) − η(m,n)|+ |δn+1 − δn|‖Sxn − zn‖

It follows from the restrictions (b), (c), (d) and (e) that

lim sup
n→∞

(‖ln+1 − ln‖ − ‖xn+1 − xn+1‖) < 0.

In view of Lemma 2.3, we see that

lim
n→∞

‖ln − xn‖ = 0. (3.8)
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Thanks to (3.6), we obtain that

xn+1 − xn = (1− βn)(ln − xn).

It follows from (3.8) that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.9)

On the other hand, we have

‖yn − xn‖ ≤
1

γn
‖xn+1 − xn‖+

αn
γn
‖xn − f(xn)‖.

From the conditions (b) and (c), we obtain that

lim
n→∞

‖yn − xn‖ = 0. (3.10)

Define a mapping R : C → C by

Rx = δSx+ (1− δ)
N∑
m=1

η(m,n)PC(λ(m,1)T(m,1)x− λ(m,2)T(m,2)x), ∀x ∈ C,

where δ = limn→∞ δn. From Lemma 2.1, we see that R is nonexpansive with F (R) =

F
(
∩Nm=1 PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))

⋂
F (S)

)
= F .

Next, we show that Rxn − xn → 0 as n→∞. Note that

‖Rxn − xn‖ ≤ ‖δSxn + (1− δ)
N∑
m=1

η(m,n)PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn)− yn‖+ ‖yn − xn‖

≤ |δ − δn|M2 + ‖yn − xn‖,

where

M2 = max{sup
n≥1
‖Sxn −

N∑
m=1

η(m,n)PC(λ(m,1)T(m,1)xn − λ(m,2)T(m,2)xn)‖,∀1 ≤ m ≤ N}.

In view of the restriction (e), we see from (3.10) that

lim
n→∞

‖Rxn − xn‖ = 0. (3.11)

Since Pf is a contraction with the coefficient κ, we have that there exists a unique fixed

point. We use x̄ to denote the unique fixed point of the mapping Pf . That is, Pf(x̄) = x̄.
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Next, we show that lim supn→∞〈f(x̄) − x̄, xn − x̄〉 ≤ 0. To show it, we can choose a

sequence {xni
} of {xn} such that

lim sup
n→∞

〈f(x̄)− x̄, xn − x̄〉 = lim
i→∞
〈f(x̄)− x̄, xxni

− x̄〉. (3.12)

Since {xni
} is bounded, there exists a subsequence {xnij

} of {xni
} which converges weakly

to b. Without loss of generality, we may assume that xni
⇀ ρ. From Lemma 2.1 and

Lemma 2.2, we see that

ρ ∈ F (R) = F
(
∩Nm=1 PC(λ(m,1)T(m,1) − λ(m,2)T(m,2))

⋂
F (S)

)
= F .

This completes the proof of (3.12).

Finally, we show that xn → x̄ as n→∞. Note that

‖xn+1 − x̄‖2

= αn〈f(xn)− f(x̄), xn+1 − x̄〉+ αn〈f(x̄)− x̄, xn+1 − x̄〉+ βn〈xn − x̄, xn+1 − x̄〉

+ γn〈yn − x̄, xn+1 − x̄〉

≤ αnκ‖xn − x̄‖‖xn+1 − x̄‖+ αn〈f(x̄)− x̄, xn+1 − x̄〉+ βn‖xn − x̄‖‖xn+1 − x̄‖

+ γn‖yn − x̄‖‖xn+1 − x̄‖

≤ 1− αn(1− κ)

2
(‖xn − x̄‖2 + ‖xn+1 − x̄‖2) + αn〈f(x̄)− x̄, xn+1 − x̄〉.

This in turn implies that

‖xn+1 − x̄‖2 ≤
(
1− αn(1− κ)

)
‖xn − x̄‖2 + 2αn〈f(x̄)− x̄, xn+1 − x̄〉.

In view of the restriction (b), and (3.12), we find from Lemma 2.4 that This completes

the proof.

If T(m,1) = I, where I denotes the identity mapping, and λ(m,1) = 1, then we find from

Theorem 2.1 the following.

Corollary 2.2. Let C be a nonempty closed and convex subset of a real Hilbert space H.

Let f : C → C be a contractive mapping with the contractive constant κ, and S : C → C a

nonexpansive mapping with fixed points. Let Tm : C → H be a relaxed (µm, νm)-cocoercive

and Lm-Lipschitz continuous mapping for each positive integer m ∈ [1, N ], where N ≥ m
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is some positive integer. Assume that F = ∩Nm=1V I(C, Tm)
⋂
F (S) 6= ∅. Let {xn} be a

sequence generated by the following algorithm


x1 ∈ C,

yn = δnSxn + (1− δn)
∑N

m=1 η(m,n)PC(xn − λmTmxn),

xn+1 = αnf(xn) + βnxn + γnyn, n ≥ 1,

where {αn}, {βn}, {γn}, {δn}, and {η(m,n)} are sequences in (0, 1) satisfying the following

restrictions:

(a) αn + βn + γn = 1, ∀n ≥ 1;

(b) limn→∞ αn = 0, and
∑∞

n=1 α =∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(d)
∑N

m=1 η(m,n) = 1, and limn→∞ η(m,n) = ηm ∈ (0, 1);

(e) limn→∞ δn = δ ∈ (0, 1),

and {λm} is a sequence such that

(f) λm ≤ 2νm−2µmL2
m

L2
m

.

Then the sequence {xn} generated by the algorithm converges strongly to x̄, where x̄ ∈ F ,

and solves the following variational inequality: find some point y such that

〈f(y)− y, y − x〉 ≥ 0, ∀x ∈ F .

If N = 1, and f(x) = u, where u is a fixed element in C, for all x ∈ C, then we have

the following.

Corollary 2.3. Let C be a nonempty closed and convex subset of a real Hilbert space

H. Let S : C → C be a nonexpansive mapping with fixed points. Let T1 : C → H

be a relaxed (µ1, ν1)-cocoercive and L1-Lipschitz continuous mapping and T2 : C → H

be a relaxed (µ2, ν2)-cocoercive and L2-Lipschitz continuous mapping. Assume that F =
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GV I(C, T1, T1)
⋂
F (S) 6= ∅. Let {xn} be a sequence generated by the following algorithm

x1 ∈ C,

yn = δnSxn + (1− δn)PC(λ1T1xn − λ2T2xn),

xn+1 = αnu+ βnxn + γnyn, n ≥ 1,

where {αn}, {βn}, {γn}, {δn}, and {η(m,n)} are sequences in (0, 1) satisfying the following

restrictions:

(a) αn + βn + γn = 1, ∀n ≥ 1;

(b) limn→∞ αn = 0, and
∑∞

n=1 α =∞;

(c) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(d) limn→∞ δn = δ ∈ (0, 1),

and λ1 and λ2 are two constants such that

(e)
√

1− 2λ1ν1 + 2λ1µ1L2
1 + λ21L

2
1 +

√
1− 2λ2ν2 + 2λ2µ2L2

2 + λ22L
2
2 ≤ 1.

Then the sequence {xn} generated by the algorithm converges strongly to x̄, where x̄ ∈ F ,

and solves the following variational inequality: find some point y such that

〈f(y)− y, y − x〉 ≥ 0, ∀x ∈ F .
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