Available online at http://scik.org

HANKEL DETERMINANT FOR ANALYTIC FUNCTIONS WITH RESPECT TO OTHER POINTS

GAGANDEEP SINGH
Department of Mathematics, M. S. K. Girls College, Bharowal (Tarn-Taran), Punjab, India

Abstract

This paper is concerned with the estimate of second Hankel determinant for the classes of analyticunivalent functions with respect to conjugate points and with respect to symmetric conjugate points in the unit disc $E=\{z:|z|<1\}$.

Keywords: Analytic functions; starlike functions; convex functions; conjugate points; Hankel determinant; coefficient bounds.

Mathematics Subject classification: 30C45, 30C50

1. Introduction

Let A be the class of analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

in the unit disc $E=\{z:|z|<1\}$.

Let S be the class of functions $f(z) \in A$ and univalent in E.

In 1959, Sakaguchi [16] introduced the class S_{s}^{*} consisting of functions of the form (1.1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{2 z f^{\prime}(z)}{f(z)-f(-z)}\right\}>0, z \in E .
$$

The functions of the class S_{s}^{*} are called starlike functions with respect to symmetric points.

In 1977, Das and Singh [2] defined the class K_{s} consisting of functions of the form (1.1) and satisfying the condition

$$
\operatorname{Re}\left\{\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{(f(z)-f(-z))^{\prime}}\right\}>0, z \in E .
$$

The functions of the class K_{s} are known as convex functions with respect to symmetric points.

Motivated from the work of Sakaguchi and Das and Singh, El-Ashwah and Thomas [4] defined the following classes:

$$
\begin{gather*}
S_{c}^{*}=\left\{f(z) \in A: \operatorname{Re}\left\{\frac{2 z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}\right\}>0, z \in E\right\} . \tag{1.2}\\
S_{s c}^{*}=\left\{f(z) \in A: \operatorname{Re}\left\{\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{z})}}\right\}>0, z \in E\right\} . \tag{1.3}
\end{gather*}
$$

Functions in the classes S_{c}^{*} are called starlike functions with respect to conjugate points and that in the class $S_{s c}^{*}$ are known as starlike functions with respect to symmetric conjugate points.

Again Janteng et al. [7] introduced the following classes:

$$
\begin{align*}
& K_{c}=\left\{f(z) \in A: \operatorname{Re}\left\{\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{\left(f(z)+\overline{f(\bar{z}))^{\prime}}\right.}\right\}>0, z \in E\right\} . \tag{1.4}\\
& K_{s c}=\left\{f(z) \in A: \operatorname{Re}\left\{\frac{2\left(z f^{\prime}(z)\right)^{\prime}}{\left(f(z)-\overline{f(-\bar{z}))^{\prime}}\right.}\right\}>0, z \in E\right\} . \tag{1.5}
\end{align*}
$$

Functions of the class K_{c} are convex functions with respect to conjugate points and that in the class $K_{s c}$ are called convex functions with respect to symmetric conjugate points.

Obviously the functions in these classes are univalent. Various subclasses of analytic functions with respect to conjugate points and with respect to symmetric conjugate points were widely investigated by various authors including Dahar and Janteng [1], Selvaraj and Vasanthi [17], Ravichandran [15] and Tang and Deng [19].

In 1976, Noonan and Thomas [12] stated the q th Hankel determinant for $q \geq 1$ and $n \geq 1$ as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \ldots & a_{n+q-1} \\
a_{n+1} & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots \\
a_{n+q-1} & \ldots & \ldots & a_{n+2 q-2}
\end{array}\right| .
$$

This determinant has also been considered by several authors. For example, Noor [13] determined the rate of growth of $H_{q}(n)$ as $n \rightarrow \infty$ for functions given by Eq. (1.1) with bounded boundary. Ehrenborg [3] studied the Hankel determinant of exponential polynomials. Also Hankel determinant was studied by various authors including Hayman [6] and Pommerenke[14]. Janteng et al. [8,9] studied the Hankel determinant for the classes of starlike functions, convex functions, starlike functions with respect to symmetric points, convex functions with respect to symmetric points. Recently Singh [18] established the hankel determinant for various subclasses of analytic functions with respect to symmetric points.

Easily, one can observe that the Fekete and Szegö functional is $H_{2}(1)$. Fekete and Szegö [5] then further generalised the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ where μ is real and $f \in S$. For our discussion in this paper, we consider the Hankel determinant in the case of $q=2$ and $n=2$,

$$
\left|\begin{array}{ll}
a_{2} & a_{3} \\
a_{3} & a_{4}
\end{array}\right| .
$$

In this paper, we established the sharp upper bound of the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ for functions belonging classes $S_{c}^{*}, S_{s c}^{*}, K_{c}$ and $K_{s c}$.

2. Preliminary Results

Let P be the family of all functions p analytic in E for which $\operatorname{Re}(p(z))>0$ and

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\ldots \tag{2.1}
\end{equation*}
$$

for $z \in E$.

Lemma 2.1.[14] If $p \in P$, then $\left|p_{k}\right| \leq 2(k=1,2,3, \ldots)$.

Lemma 2.2.[10,11] If $p \in P$, then

$$
\begin{gathered}
2 p_{2}=p_{1}^{2}+\left(4-p_{1}^{2}\right) x \\
4 p_{3}=p_{1}^{3}+2 p_{1}\left(4-p_{1}^{2}\right) x-p_{1}\left(4-p_{1}^{2}\right) x^{2}+2\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z
\end{gathered}
$$

for some x and z satisfying $|x| \leq 1,|z| \leq 1$ and $p_{1} \in[0,2]$.

3. Main Result

Theorem 3.1 If $f \in S_{c}^{*}$, then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1 \tag{3.1}
\end{equation*}
$$

Proof. As $f \in S_{c}^{*}$, so from (1.2)

$$
\begin{equation*}
\frac{2 z f^{\prime}(z)}{f(z)+\overline{f(\bar{z})}}=p(z) . \tag{3.2}
\end{equation*}
$$

On equating coefficients of z, z^{2} and z^{3} in the expansion of (3.2), we obtain

$$
\left.\begin{array}{l}
a_{2}=p_{1} \tag{3.3}\\
a_{3}=\frac{p_{2}}{2}+\frac{p_{1}^{2}}{2}, \\
a_{4}=\frac{p_{3}}{3}+\frac{p_{1} p_{2}}{2}+\frac{p_{1}^{3}}{6}
\end{array}\right\}
$$

(3.3) yields,

$$
\begin{equation*}
a_{2} a_{4}-a_{3}^{2}=\frac{1}{12}\left\{4 p_{1} p_{3}-p_{1}^{4}-3 p_{2}^{2}\right\} . \tag{3.4}
\end{equation*}
$$

Using Lemma 2.1 and Lemma 2.2 in (3.4) , we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{48}\left|-3 p_{1}^{4}+2 p_{1}^{2}\left(4-p_{1}^{2}\right) x-\left[12+p_{1}^{2}\right]\left(4-p_{1}^{2}\right) x^{2}+8 p_{1}\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z\right|
$$

Assume that $p_{1}=p$ and $p \in[0,2]$, using triangular inequality and $|z| \leq 1$, we have

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{48}\left\{3 p^{4}+2 p^{2}\left(4-p^{2}\right)|x|+\left.\left[p^{2}+12\right]\left(4-p^{2}\right) x\right|^{2}+8 p\left(4-p^{2}\right)\left(1-|x|^{2}\right)\right\}
$$

or

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{48}\left\{3 p^{4}+8 p\left(4-p^{2}\right)+2 p^{2}\left(4-p^{2}\right) \delta+\left[p^{2}-8 p+12\right]\left(4-p^{2}\right) \delta^{2}\right\}
$$

$$
=\frac{1}{48} F(\delta) \text {, where } \delta=|x| \leq 1 \text { and }
$$

$F(\delta)=3 p^{4}+8 p\left(4-p^{2}\right)+2 p^{2}\left(4-p^{2}\right) \delta+\left\lfloor p^{2}-8 p+12\right]\left(4-p^{2}\right) \delta^{2}$ is an increasing function.
Therefore $\quad \operatorname{Max} . F(\delta)=F(1)=48$.

Hence

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1 .
$$

The result is sharp for $\frac{2 z f^{\prime}(z)}{f(z)+\overline{f(z)}}=\frac{1+z}{1-z}$ and $\frac{2 z f^{\prime}(z)}{f(z)+\overline{f(z)}}=\frac{1+z^{2}}{1-z^{2}}$.
On the same lines, we can easily prove the following theorem:
Theorem 3.2 If $f \in K_{c}$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{8} .
$$

The result is sharp for $p_{1}=1, p_{2}=-1$ and $p_{3}=-2$.

Theorem 3.3 If $f \in S_{s c}^{*}$, then

$$
\begin{equation*}
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq 1 \tag{3.5}
\end{equation*}
$$

Proof. As $f \in S_{s c}^{*}$, so from (1.3)

$$
\begin{equation*}
\frac{2 z f^{\prime}(z)}{f(z)-\overline{f(-\bar{z})}}=p(z) . \tag{3.6}
\end{equation*}
$$

On equating coefficients of z, z^{2} and z^{3} in the expansion of (3.6), we obtain

$$
\left.\begin{array}{l}
a_{2}=\frac{p_{1}}{2}, \tag{3.7}\\
a_{3}=\frac{p_{2}}{2}, \\
a_{4}=\frac{p_{3}}{4}+\frac{p_{1} p_{2}}{8}
\end{array}\right\} .
$$

(3.7) yields,

$$
\begin{equation*}
a_{2} a_{4}-a_{3}^{2}=\frac{1}{16}\left\{2 p_{1} p_{3}+p_{1}^{2} p_{2}-4 p_{2}^{2}\right\} . \tag{3.8}
\end{equation*}
$$

Using Lemma 2.1 and Lemma 2.2 in (3.8), we obtain

$$
\left|a_{2} a_{4}-a_{3}^{2}\right|=\frac{1}{32}\left|-p_{1}^{2}\left(4-p_{1}^{2}\right) x-\left[8-p_{1}^{2}\right]\left(4-p_{1}^{2}\right) x^{2}+2 p_{1}\left(4-p_{1}^{2}\right)\left(1-|x|^{2}\right) z\right|
$$

Assume that $p_{1}=p$ and $p \in[0,2]$, using triangular inequality and $|z| \leq 1$, we have

$$
\begin{aligned}
\left|a_{2} a_{4}-a_{3}^{2}\right| & \leq \frac{1}{32}\left\{2 p\left(4-p^{2}\right)+p^{2}\left(4-p^{2}\right) \delta+\left[-p^{2}-2 p+8\right]\left(4-p^{2}\right) \delta^{2}\right\} \\
& =\frac{1}{32} F(\delta), \text { where } \delta=|x| \leq 1 \text { and }
\end{aligned}
$$

$F(\delta)=2 p\left(4-p^{2}\right)+p^{2}\left(4-p^{2}\right) \delta+\left\lfloor-p^{2}-2 p+8\right\rfloor\left(4-p^{2}\right) \delta^{2} \quad$ is an increasing function.

Therefore $\quad \operatorname{Max} . F(\delta)=F(1)$.

Consequently $\quad\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{32} G(p)$,
where

$$
G(p)=F(1) .
$$

So

$$
G(p)=-8 p^{2}+32 \quad \text { and } \quad \operatorname{Max} . G(p)=G(0) .
$$

Hence from (3.9), we obtain (3.5).

The result is sharp for $p_{1}=0, p_{2}=2$ and $p_{3}=0$.

Using the above technique, the proof of the following theorem is obvious.

Theorem 3.4 If $f \in K_{s c}$, then

$$
\left|a_{2} a_{4}-a_{3}^{2}\right| \leq \frac{1}{9}
$$

The result is sharp for $p_{1}=0, p_{2}=2$ and $p_{3}=0$.

REFERENCES

[1] Suci Aida Fitri Mad Dahar and Aini Janteng, A subclass of starlike functions with respect to conjugate points, Int. Math. Forum, 4(28) (2009), 1373-1377.
[2] R. N. Das and P. Singh, On subclasses of schlicht mappings, Indian J. Pure Appl. Math., 8(1977), 864-872.
[3] R. Ehrenborg, The Hankel determinant of exponential polynomials, American Mathematical Monthly, 107(2000), 557-560.
[4] R. M. El-Ashwah and D. K. Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1987), 86-100.
[5] M. Fekete and G. Szegö, Eine Bemerkung über ungerade schlichte Funktionen, J. London Math . Soc., 8(1933), 85-89.
[6] W. K. Hayman, Multivalent functions, Cambridge Tracts in Math. and Math. Phys., No.48, Cambridge University Press, Cambridge, 1958.
[7] Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Functions close-to-convex and quasi convex with respect to other points, Int. J. Pure Appl. Math., 30(2)(2006), 225-236.
[8] Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Hankel determinant for functions starlike and convex with respect to symmetric points, J. Quality Measurement and Anal., 2(1)(2006), 37-43.
[9] Aini Janteng, Suzeini Abdul Halim and Maslina Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal., 1(13) (2007), 619-625.
[10] R. J. Libera and E-J. Zlotkiewiez, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(1982), 225-230.
[11] R. J. Libera and E-J. Zlotkiewiez, Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(1983), 251-257.
[12] J.W. Noonan and D. K. Thomas, On the second Hankel determinant of a really mean p-valent functions, Trans. Amer. Math. Soc., 223(2)(1976), 337-346.
[13] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roum. Math. Pures Et Appl., 28(8)(1983), 731-739.
[14] Ch. Pommerenke, Univalent functions, Göttingen: Vandenhoeck and Ruprecht., 1975.
[15] V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta. Math. Acad. Paedagog. Nyhazi, 20(1)(2004), 31-37.
[16] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1959),72-80.
[17] C. Selvaraj and N. Vasanthi, Subclasses of analytic functions with respect to symmetric and conjugate points, Tamkang J. Math., 42(1)(2011), 87-94.
[18] Gagandeep Singh, Hankel determinant for new subclasses of functions with respect to symmetric points, Int. J. Modern Math. Sci., 5(2)(2013), 67-76.
[19] Huo Tang and Guan-Tie Deng, New subclasses of analytic functions with respect to symmetric and conjugate points, Journal of complex analysis, (2013), Article ID 578036, 9 pages.

