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1. Introduction 

           Let  A  be the class of  analytic  functions of the form 
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in the unit disc  : 1E z z  . 

           Let  S  be the class of functions   Azf   and univalent in E. 
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           In 1959, Sakaguchi [16] introduced the class  

sS  consisting of functions of the form (1.1) 

and satisfying the condition 
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           The functions of the class 

sS  are called starlike functions with respect to symmetric 

points. 

           In 1977, Das and Singh [2] defined the class  sK  consisting of functions of the form (1.1) 

and satisfying  the condition 
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          The functions of the class sK  are known as convex functions with respect to symmetric 

points. 

       Motivated from the work of Sakaguchi and Das and Singh, El-Ashwah and Thomas [4]  

defined the following classes:                                                 
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AzfS sc                     (1.3) 

       Functions in the classes 

cS  are called starlike functions with respect to conjugate points and 

that in the class 

scS  are known as starlike functions with respect to symmetric conjugate points. 

       Again Janteng et al. [7] introduced the following classes: 
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       Functions of the class cK  are convex functions with respect to conjugate points and that in 

the class scK  are called convex functions with respect to symmetric conjugate points. 

       Obviously the functions in these classes are univalent. Various subclasses of analytic 

functions with respect to conjugate points and with respect to symmetric conjugate points were 

widely investigated by various authors including Dahar and Janteng [1], Selvaraj and Vasanthi 

[17], Ravichandran [15] and Tang and Deng [19]. 

       In 1976, Noonan and Thomas [12] stated  the qth  Hankel determinant for 1q  and 1n  as 
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        This determinant   has   also   been    considered   by   several   authors.  For   example, 

Noor [13] determined the rate of growth of  nH q

 

as n  for functions given by Eq. (1.1) 

with bounded boundary. Ehrenborg [3] studied  the  Hankel determinant of exponential 

polynomials. Also Hankel determinant was  studied by various authors including Hayman [6] 

and Pommerenke[14]. Janteng et al. [8,9] studied the Hankel determinant for the classes of 

starlike functions, convex functions, starlike functions with respect to symmetric points, convex 

functions with respect to symmetric points. Recently Singh [18] established the hankel 

determinant for various subclasses of analytic functions with respect to symmetric points.    
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        Easily, one can observe that the Fekete and Szegö functional  is  12H . Fekete and Szegö [5] 

then further generalised the estimate 2

23 aa  where   is real and Sf  . For our discussion in 

this paper, we consider the Hankel determinant in the case of  2q and 2n ,  

                                                                                  43
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       In this paper, we established the sharp upper bound of the functional 2

342 aaa 

 

for 

functions belonging classes cscc KSS ,,   and  .scK   

 

2. Preliminary Results 

        Let P  be the family of all functions p analytic in E  for which    0Re zp and  

                                                                            ...1 2
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for .Ez      

 

Lemma 2.1.[14]  If  p P , then  ,...3,2,12  kpk .  

 

Lemma 2.2.[10,11]  If p P , then 
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for some x and z  satisfying 1,1  zx  and   2,01 p . 
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3. Main Result 

Theorem 3.1 If  cSf , then  

                                                                                    

12

342  aaa                                      (3.1)

 

Proof.  As  cSf , so from (1.2) 
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        On equating coefficients of 2, zz  and 3z  in the expansion of (3.2), we obtain  
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        (3.3) yields, 
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        Using Lemma 2.1 and Lemma 2.2 in (3.4) , we obtain 
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 .  

        Assume that pp 1  and  2,0p , using triangular inequality and 1z , we have 
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                                             ,
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1
F  where   1 x  and 

     
         2222224 412842483  ppppppppF 

   

is an increasing function. 

Therefore          .48)1(.  FFMax 
 

Hence                                                                   .12
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       The result is sharp for   
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       On the same lines, we can easily prove the following theorem: 

Theorem 3.2  If ,cKf  then 
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        The result is sharp for 11 p  , 12 p

 

 and .23 p

 

Theorem 3.3 If  scSf , then  
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Proof.  As  scSf , so from (1.3) 
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2  .zp                                                        (3.6) 

        On equating coefficients of 2, zz  and 3z  in the expansion of (3.6), we obtain  
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        (3.7) yields, 
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        Using Lemma 2.1 and Lemma 2.2 in (3.8) , we obtain 
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        Assume that pp 1  and  2,0p , using triangular inequality and 1z , we have 
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is an increasing function. 

    Therefore           .1. FFMax 
 

     Consequently                         ,
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and            .0. GpGMax 

 

       Hence from (3.9), we obtain (3.5). 
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                   The result is sharp for 01 p  , 22 p

 

 and .03 p

 

             Using the above technique, the proof of the following theorem is obvious. 

Theorem 3.4  If ,scKf  then 
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        The result is sharp for 01 p  , 22 p

 

 and .03 p
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