Available online at http://scik.org
J. Math. Comput. Sci. 2 (2012), No. 1, 54-60

ISSN: 1927-5307

SOME REFINEMENTS OF THE HERMITE-HADAMARD INEQUALITY CONCERNING PRODUCTS OF CONVEX FUNCTIONS

WAAD SULAIMAN ${ }^{1 *}$
${ }^{1}$ Department of Computer Engineering, College of Engineering, University of Mosul, Iraq.

Abstract

In this paper, refinements and new results concerning the Hermite-Hadamard's inequality concerning products of convex functions are presented.

Keywords: Hermite-Hadamard inequality, Convex functions.
2000 AMS Subject Classification: 52A40; 52A41

1. Introduction

A real-valued function f is said to be convex on a closed interval I if
$f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)$, for all $x, y \in I, 0 \leq t \leq 1$. If the inequality is reversed, the f is called concave. It is known that f is convex if $f^{\prime \prime}(x) \geq 0$.

The inequality

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

which holds for all convex mapping $f:[a, b] \rightarrow \Re$, is known in the literature as Hadamard's inequality. In [2], Fejér generalized Hadamard's inequality by giving the following :

[^0]Theorem 1.1. If $g:[a, b] \rightarrow \Re$ is non-negative integrable and symmetric to $x=\frac{a+b}{2}$, and if f is convex on $[a, b]$, then

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \int_{a}^{b} g(x) d x \leq \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b} g(x) d x \tag{2}
\end{equation*}
$$

2. Main Results

Lemma 2.1. If $f, g: I \rightarrow \Re$ are positive convex functions such that

$$
\begin{equation*}
(f(a)-f(b))(g(a)-g(b))>0, \quad \forall a, b \in I \tag{3}
\end{equation*}
$$

then $f g: I^{2} \rightarrow \Re$ is convex.
Proof. By the hypothesis, we have for all $a, b \in I$,

$$
\begin{aligned}
f(a) g(b)+f(b) g(a) & \leq f(a) g(a)+f(b) g(b) \\
& \Rightarrow f(a) g(b)+f(b) g(a)+f(a) g(a)+f(b) g(b) \leq 2(f(a) g(a)+f(b) g(b)) \\
& \Rightarrow \frac{(f(a)+f(b))}{2} \frac{g(a)+g(b)}{2} \leq \frac{f(a) g(a)+f(b) g(b)}{2} .
\end{aligned}
$$

Since $f\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2}$, then

$$
\begin{aligned}
(f g)\left(\frac{a+b}{2}\right) & =f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \leq \frac{f(a)+f(b)}{2} \frac{g(a)+g(b)}{2} \\
& \leq \frac{(f g)(a)+(f g)(b)}{2}
\end{aligned}
$$

Theorem 2.2. Let $f, g, h: I \supset[x, y] \rightarrow \Re$ be positive convex functions such that (3) is satisfied, his integrable and symmetric to $t=(x+y) / 2$. Then the following inequalities hold

$$
\begin{gather*}
(f g)\left(\frac{x+y}{2}\right) \leq \frac{1}{y-x} \int_{x}^{y}(f g)(u) d u \leq \frac{(f g)(x)+(f g)(y)}{2}, \tag{4}\\
(f g)\left(\frac{x+y}{2}\right) \int_{x}^{y} h(u) d u \leq \int_{x}^{y}(f g h)(u) d x \leq \frac{(f g)(x)+(f g)(y)}{2} \int_{a}^{b} h(u) d u .
\end{gather*}
$$

Proof. The proof follows from (1) and (2).
Theorem 2.3. Assume that $f: I \rightarrow \Re$ is a convex function on $I=[a, b]$. Then for all $c \in[a, b], \quad c=(1-\lambda) a+\lambda b, \quad \lambda \in[0,1]$, we have

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq l(c) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L(c) \leq \frac{f(a)+f(b)}{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& l(c)=\lambda f\left(\frac{a+c}{2}\right)+(1-\lambda) f\left(\frac{b+c}{2}\right), \\
& L(c)=\frac{1}{2}(\lambda f(a)+f(c)+(1-\lambda) f(b)) .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& c-a=\lambda(b-a), \quad b-c=(1-\lambda)(b-a) \\
& f\left(\frac{a+b}{2}\right) \\
&= f\left(\frac{\lambda(a+c)+(1-\lambda)(c+b)}{2}\right) \\
& \leq \lambda f\left(\frac{a+c}{2}\right)+(1-\lambda) f\left(\frac{c+b}{2}\right) \quad(=l(c)) \\
& \leq \frac{\lambda}{c-a} \int_{a}^{c} f(t) d t+\frac{1-\lambda}{b-c} \int_{c}^{b} f(t) d t \\
&= \frac{1}{b-a} \int_{a}^{c} f(t) d t+\frac{1}{b-a} \int_{c}^{b} f(t) d t \quad\left(=\frac{1}{b-a} \int_{a}^{b} f(t) d t\right) \\
& \leq \lambda \frac{f(a)+f(c)}{2}+(1-\lambda) \frac{f(c)+f(b)}{2} \\
&= \frac{1}{2}(\lambda f(a)+f(c)+(1-\lambda) f(b)) \quad(=L(c)) \\
& \leq \frac{1}{2}(\lambda f(a)+(1-\lambda) f(a)+\lambda f(b)+(1-\lambda) f(b)) \\
&= \frac{f(a)+f(b)}{2} .
\end{aligned}
$$

Theorem 2.4. Assume that $f, g: I \rightarrow \Re$ be positive convex functions on $I=[a, b]$. Then for all $c \in[a, b], c=(1-\lambda) a+\lambda b, \lambda \in[0,1]$, we have

$$
\begin{align*}
(f g)\left(\frac{a+b}{2}\right) & \leq l_{f}(c) l_{g}(c) \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq L_{f}(c) L_{g}(c) \\
& \leq \frac{f(a)+f(b)}{2} \frac{g(a)+g(b)}{2} \tag{7}
\end{align*}
$$

where

$$
\begin{gathered}
l_{f}(c)=\lambda f\left(\frac{a+c}{2}\right)+(1-\lambda) f\left(\frac{b+c}{2}\right), \quad l_{g}(c)=\lambda g\left(\frac{a+c}{2}\right)+(1-\lambda) g\left(\frac{b+c}{2}\right) \\
L_{f}(c)=\frac{1}{2}(\lambda f(a)+f(c)+(1-\lambda) f(b)), \quad L_{g}(c)=\frac{1}{2}(\lambda g(a)+f(c)+(1-\lambda) g(b)) .
\end{gathered}
$$

Proof. Applying Theorem 2.3 twice, we have

$$
\begin{align*}
& f\left(\frac{a+b}{2}\right) \leq l_{f}(c) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq L_{f}(c) \leq \frac{f(a)+f(b)}{2} \tag{8}\\
& g\left(\frac{a+b}{2}\right) \leq l_{g}(c) \leq \frac{1}{b-a} \int_{a}^{b} g(x) d x \leq L_{g}(c) \leq \frac{g(a)+g(b)}{2}
\end{align*}
$$

The proof follows by multiplying (8) and (9).
Theorem 2.5. Assume that $f, g: I \rightarrow \Re$ be positive convex functions on $I=[a, b]$ such that f and g are both non-increasing or non-decreasing. Then for all $c \in[a, b], c=$ $(1-\lambda) a+\lambda b, \quad \lambda \in[0,1]$, we have

$$
\begin{align*}
(f g)\left(\frac{a+b}{2}\right) & \leq l_{f}(c) l_{g}(c) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} g(x) d x \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \\
& \leq F(a, b) \tag{10}
\end{align*}
$$

where $l_{f}(c), l_{g}(c)$ are as defined in Theorem 2.4 and
$F(a, b)=\min \left\{\left(\frac{f^{p}(a)+f^{p}(b)}{2}\right)^{1 / p}\left(\frac{g^{q}(a)+g^{g}(b)}{2}\right)^{1 / q}, \frac{1}{3}(f(a)+f(b))(g(a)+g(b))\right\}$.

Proof. As $p, q>1$, then f^{p}, g^{q} are both convex. Hence via Chebyshev inequality and Theorem 2.4, we have

$$
(f g)\left(\frac{a+b}{2}\right) \leq l_{f}(c) l_{g}(c) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} g(x) d x \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x
$$

Also,

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x & \leq\left(\frac{1}{b-a} \int_{a}^{b} f^{p}(x) d x\right)^{1 / p}\left(\frac{1}{b-a} \int_{a}^{b} g^{q}(x) d x\right)^{1 / q} \\
& \leq\left(\frac{f^{p}(a)+f^{p}(b)}{2}\right)^{1 / p}\left(\frac{g^{q}(a)+g^{g}(b)}{2}\right)^{1 / q}
\end{aligned}
$$

and,

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x & =\int_{0}^{1} f((1-\lambda) a+\lambda b) g((1-\lambda) a+\lambda b) d \lambda \\
& \leq \int_{0}^{1}((1-\lambda) f(a)+\lambda f(b))((1-\lambda) g(a)+\lambda g(b)) d \lambda \\
& =\frac{1}{3}(f(a) g(a)+f(b) g(b)+f(a) g(b)+f(b) g(a)) \\
& =\frac{1}{3}(f(a)+f(b))(g(a)+g(b))
\end{aligned}
$$

The Theorem follows.
A positive function f is said to be \log-convex if $\log f$ is convex function. Concerning such function, we have

Theorem 2.6. Let $f, g:[a, b] \rightarrow \Re$ such that f is convex and g is log-convex, both f and $\log g$ are positive, and that one of these functions are increasing and the other decreasing. Then the following inequality holds

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} g^{f(x)}(x) d x \leq(g(a) g(b))^{\frac{f(a)+f(b)}{4}} . \tag{11}
\end{equation*}
$$

Proof. Applying Chebyshev inequality, we have

$$
\begin{aligned}
\frac{1}{b-a} \int_{a}^{b} g^{f(x)}(x) d x & =\exp \left(\ln \left(\frac{1}{b-a} \int_{a}^{b} g^{f(x)}(x) d x\right)\right) \\
& \leq \exp \left(\frac{1}{b-a} \int_{a}^{b} \ln \left(g^{f(x)}(x)\right) d x\right) \\
& =\exp \left(\frac{1}{b-a} \int_{a}^{b} f(x) \ln g(x) d x\right) \\
& \leq \exp \left(\frac{1}{b-a} \int_{a}^{b} f(x) d x \cdot \frac{1}{b-a} \int_{a}^{b} \ln g(x) d x\right) \\
& \leq \exp \left(\frac{f(a)+f(b)}{2}\right)\left(\frac{\ln g(a)+\ln g(b)}{2}\right) \\
& =(g(a) g(b))^{\frac{f(a)+f(b)}{4}} .
\end{aligned}
$$

Theorem 2.7. Let $f, g: I \supset[a, b] \rightarrow \Re$ be convex functions such that (3) is satisfied, $a \geq 0$. Let $c \in[a, b], c \neq(b-a) / 2$. Then

$$
\begin{equation*}
\frac{b-a-3 c}{b-a-2 c} \int_{a+c}^{b-c}(f g)(t) d t \leq \int_{a}^{b}(f g)(t) d t-3 c(f g)\left(\frac{a+b}{2}\right) \tag{12}
\end{equation*}
$$

Proof. As $f g$ is convex, then

$$
\begin{aligned}
(f g)\left(\frac{a+b}{2}\right) & =(f g)\left(\frac{a+a+c+a+c+b-c+b-c+c}{6}\right) \\
& \leq \frac{1}{3}\left((f g)\left(\frac{a+a+c}{2}\right)+(f g)\left(\frac{a+c+b-c}{2}\right)+(f g)\left(\frac{b-c+b}{2}\right)\right) \\
& \leq \frac{1}{3}\left(\frac{1}{c} \int_{a}^{a+c}(f g)(t) d t+\frac{1}{b-a-2 c} \int_{a+c}^{b-c}(f g)(t) d t+\frac{1}{c} \int_{b-c}^{b}(f g)(t) d t\right) \\
& =\frac{1}{3 c}\left(\int_{a}^{b}(f g)(t) d t+\frac{3 c+a-b}{b-a-2 c} \int_{a+c}^{b-c}(f g)(t) d t\right),
\end{aligned}
$$

which implies

$$
\frac{b-a-3 c}{b-a-2 c} \int_{a+c}^{b-c}(f g)(t) d t \leq \int_{a}^{b}(f g)(t) d t-3 c(f g)\left(\frac{a+b}{2}\right)
$$

Corollary 2.8. Let $f_{1}, f_{2}, g_{1}, g_{2}:[a, b] \rightarrow \Re$ be positive convex functions such that (3) is satisfied for f_{1}, g_{1} and f_{2}, g_{2}, and $h:[a, b] \rightarrow \Re$ is positive, integrable and symmetric to $x=(a+b) / 2$. Then the following inequalities hold

$$
\frac{1}{\left(f_{1} g_{1}\right)(a)+\left(f_{1} g_{1}\right)(b)} \int_{a}^{b}\left(f_{1} g_{1}\right)(x)+\frac{1}{\left(f_{2} g_{2}\right)(a)+\left(f_{2} g_{2}\right)(b)} \int_{a}^{b}\left(f_{2} g_{2}\right)(x)
$$

$$
\begin{equation*}
\leq \int_{a}^{b} h(x) d x \tag{13}
\end{equation*}
$$

Proof. The proof follows from Theorem 1.1(the right inequality) by replacing $f(x)$ by $\frac{\left(f_{1} g_{1}\right)(x)}{\left(f_{1} g_{1}\right)(a)+\left(f_{1} g_{1}\right)(b)}+\frac{\left(f_{2} g_{2}\right)(x)}{\left(f_{2} g_{2}\right)(a)+\left(f_{2} g_{2}\right)(b)}$ and $g(x)$ by $h(x)$.

References

[1] P. L. Chebyshev, Sur les expressions approximatives des integrals definies par lesautres prises entre les memes limites, Proc. Math. Soc. Charkov, 2 (1882), 93-98.
[2] L. Fejér, Uber die Fourierreihen, II, Math. Naturwiss. Anz. Ungar. Akad. Wiss.2(1906), 369-390. (In Hungarian).

[^0]: *Corresponding author
 E-mail address: waadsulaiman@hotmail.com
 Received November 27, 2011

