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1. Introduction

The primary interest of this paper is to investigate a Crank-Nicloson H1-Galerkin mixed

finite element scheme for the following heat transport problems
(a) 1

δ
ut + utt = auxx + buxxt + f(x, t), (x, t) ∈ I × (0, T ],

(b) u(0, t) = 0, u(L, t) = 0, 0 ≤ t ≤ T,

(c) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ I.

(1)
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where I = [0, L], u denotes temperature, f is a heat source, δ, a and b are positive

constants.

The above equations are widely used to describe the thermal behavior of thin films and

other microstructures, see, for example, [1], [2], etc..

In recent years, a variety of numerical methods are proposed to resolve this problem,

such as finite difference methods, finite element methods and mixed finite element meth-

ods. One can refer to [3], [5], [6], [7], [8], etc.. Recently, an H1 Galerkin mixed finite

element method was discussed for problem (1) in [15]. Comparing to standard mixed

finite element methods the finite element spaces are free of the LBB stability condition in

this formulation, which makes the choice of finite element spaces more flexible.

To improve the convergence order for time discretization a Crank-Nicloson H1 mixed

finite element scheme is proposed in this paper. An optimal a priori error estimates for

the scalar unknown u and its flux q in L2-norm are achieved. Moreover, a numerical

example is presented to illustrate our theoretical analysis.

Throughout the paper, we use the standard notation Wm,q(Ω) for Sobolev space on Ω

with a norm ‖ · ‖m,q and a semi-norm | · |m,q. For q = 2, we denote Hm(Ω) = Wm,2(Ω),

‖ · ‖m=‖ · ‖m,2 and for m = 0, we denote ‖ · ‖=‖ · ‖0. Moreover, the inner products in

L2(Ω) are indicated by (·, ·). Let X be a Banach space and ϕ(t) : [0, T ] 7−→ X, we set

‖ϕ‖2L2(X) =

∫ T

0

‖ϕ(s)‖2Xds, ‖ϕ‖L∞(X) = ess sup
0≤t≤T

‖ϕ‖X .

In addition, C denotes a generic constant independent of the spatial mesh parameter h

and time discretization parameter τ , and ε denotes an arbitrarily small positive constant.

The outline of this article is organized as follows: In Section 2 a Crank-Nicloson H1

mixed finite element scheme is described. Optimal a priori error bounds are derived for

in Section 3. A numerical example is given to verify the theoretical results in Section 4.

2. The Fully discrete Scheme

2.1 Weak Formulation
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For the H1-Galerkin mixed finite element procedure, we split (1a) into a system of two

equations. Let p = aux + buxt, then (1a) can be rewritten as follows: (a) aux + buxt = p,

(b) 1
δ
ut + utt − qx = f(x, t).

(2)

To consider the H1-Galerkin mixed finite element approximation scheme for (2a), (2b),

we first derive the weak formulation.

Let H1
0 = {v ∈ H1(I), v(0) = v(L) = 0}. Multiplying (2a) by vx, v ∈ H1

0 , and

integrating on interval I we obtain

(aux, vx) + (buxt, vx) = (q, vx), v ∈ H1
0 . (3)

Multiplying (2b) by wx, w ∈ H1, and integrating on interval I yields

(
1

δ
ut + utt, wx)− (qx, wx) = (f, wx), w ∈ H1.

Since ut(0, t) = ut(L, t) = 0, utt(0, t) = utt(L, t) = 0, then integrating on interval I we

derive that

(
1

δ
uxt + uxtt, w) + (qx, wx) + (f, wx) = 0, w ∈ H1. (4)

For q = aux + buxt, then

uxt =
1

b
q − a

b
ux, (5)

uxtt =
1

b
qt +

a2

b2
ux −

a

b2
q. (6)

Setting α = 1
b
, β = a2

b2
− a

bδ
, γ = 1

bδ
− a

b2
, it is easy to see that α > 0. Using (5) and (6),

(4) can be rewritten as follows:

(αqt, w) + γ(q, w) + (qx, wx) + (βux, w) + (f, wx) = 0, w ∈ H1. (7)

Therefore, the weak formulation of (2a), (2b) is to find {u, q} : [0, T ] 7→ H1
0 × H1 such

that  (a) (aux, vx) + (buxt, vx) = (q, vx), v ∈ H1
0 ,

(b) (αqt, w) + γ(q, w) + (qx, wx) + (βux, w) + (f, wx) = 0, w ∈ H1.
(8)

2.2 The Fully Discrete Scheme
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In this Section, we briefly describe a fully discrete scheme for (8a),(8b). For the temporal

discretization, we consider the Crank-Nicolson method, which is second-order in time.

Let Vh,Wh be finite dimensional subspaces of H1
0 and H1, respectively, with the follow-

ing approximation properties:

inf
vh∈Vh

{‖v − vh‖0,p + h‖v − vh‖1,p} ≤ Chk+1‖v‖k+1,p, v ∈ H1
0 ∩W k+1,p(I),

and

inf
wh∈Wh

{‖w − wh‖0,p + h‖w − wh‖1,p} ≤ Chr+1‖w‖r+1,p, w ∈ W r+1,p(I),

where 1 ≤ p ≤ ∞, k, r are integers.

Let 0 = t0 < t1 < · · · < tN = T be a given partition of the time interval [0, T ]

with step length τ = T
N

, for some positive integer N. Define tn = nτ , tn−
1
2 = tn − 1

2
τ ,

φn = φ(tn), ∂̄tφ
n = (φn − φn−1)/τ for a smooth function φ. Let Un and Qn be the

approximation of u and q at t = tn which are defined through the following explicit

scheme.
(a)

(
aU

n
x +Un−1

x

2
, vhx

)
+
(
bU

n
x−U

n−1
x

τ
, vhx

)
=
(
Qn+Qn−1

2
, vhx

)
, vh ∈ Vh,

(b)
(
αQ

n−Qn−1

τ
, wh

)
+
(
γQ

n+Qn−1

2
, wh

)
+
(
Qn

x+Q
n−1
x

2
, whx

)
+
(
β U

n
x +Un−1

x

2
, wh

)
+ (fn−

1
2 , whx) = 0, wh ∈ Wh,

(9)

with U0 and Q0 to be defined latter.

3. Convergence Analysis

3.1 Preliminaries

We begin by reviewing some preliminary knowledge that will be used in the following

convergence analysis. From [12] we define the Ritz-Volterra projection ũh(t) ∈ Vh, which

satisfies:

(

∫ t

0

a(u(s)− ũh(s))xds+ b(u(t)− ũh(t))x, vhx) = 0, vh ∈ Vh.
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It is easy to see that ũh(t) is reduced to Ritz projection of u(0) when t = 0 and ũh(t) also

satisfies the following equation:

(a(u− ũh(t))x + b(ut − ũht(t))x, vhx) = 0, vh ∈ Vh. (10)

Following [13], we define an elliptic projection q̃h ∈ Wh, such that:

A(q − q̃h, wh) = 0, ∀wh ∈ Wh, (11)

where A(u, v) = (ux, vx)+λ(u, v). Here λ is chosen appropriately so that A is H1-coercive,

i.e.,

A(v, v) ≥ α0 ‖ v ‖21,

where α0 is a positive constant. Moreover, it is easy to see that A(·, ·) is bounded.

Let η = u− ũh, ρ = q − q̃h, then η and ρ satisfy the following estimates from [12] and

[13]:

‖ η(t) ‖j≤ Chk+1−j ‖| u |‖k+1,0, j = 0, 1, (12)

‖ ηt(t) ‖j≤ Chk+1−j ‖| u |‖k+1,1, j = 0, 1, (13)

‖ ηtt(t) ‖j≤ Chk+1−j ‖| u |‖k+1,2, j = 0, 1, (14)

‖ ηttt(t) ‖j≤ Chk+1−j ‖| u |‖k+1,3, j = 0, 1, (15)

and

‖ ρ(t) ‖j + ‖ ρt(t) ‖j≤ Chr+1−j(‖ q ‖r+1 + ‖ qt ‖r+1), j = 0, 1, (16)

where

‖| u |‖k+1,m=
m∑
i=0

{‖ ∂
iu

∂ti
‖k+1 +

∫ t

0

‖ ∂
iu

∂ti
‖k+1 ds}.

3.2 Error Analysis

For the fully discrete error estimates, we split the errors into

u(tn)− Un = u(tn)− ũh(tn) + ũh(t
n)− Un = ηn + ζn,

q(tn)−Qn = q(tn)− q̃h(tn) + q̃h(t
n)−Qn = ρn + ξn.

Since the estimates of ηn and ρn can be found out easily from (12) and (16) at t = tn, it

is enough to estimate ζn and ξn.
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Setting t = tn−
1
2 in (8a), (8b) and combining (9a), (9b) with auxiliary projections we

obtain the error equations in ζn and ξn



(a)
(
a ζ

n
x+ζ

n−1
x

2
, vhx

)
+
(
b∂̄tζ

n
x , vhx

)
= a

(
ũnhx+ũ

n−1
hx

2
− ũn−

1
2

hx , vhx

)
+b
(
∂̄tũ

n
hx − ũ

n− 1
2

hxt , vhx

)
+
(
qn−

1
2 − qn+qn−1

2
, vhx

)
+
(
ρn+ρn−1

2
, vhx

)
+
(
ξn+ξn−1

2
, vhx

)
, vh ∈ Vh,

(b) (α∂̄tξ
n, wh) + A

(
ξn+ξn−1

2
, wh

)
= −(α∂̄tρ

n, wh)

+
(

(λ− γ)(ρ
n+ρn−1

2
+ ξn+ξn−1

2
), wh

)
+ β

(
ηn+ηn−1

2
, whx

)
+β
(
unx+u

n−1
x

2
− un−

1
2

x , wh

)
+ γ

(
qn+qn−1

2
− qn− 1

2 , wh

)
+
(
qnx+q

n−1
x

2
− qn−

1
2

x , whx

)
+ α(∂̄tq

n − qn−
1
2

t , wh)− β
(
ζnx+ζ

n−1
x

2
, wh

)
, wh ∈ Wh.

(17)

Theorem 3.1. Assume that U0 = ũh(0), Q0 = q̃h(0) and 0 ≤ m ≤ N. Then there exists

a positive constant C independent of h and τ such that for sufficiently small τ

‖ um − Um ‖ + ‖ qm −Qm ‖

≤ Chmin{k+1, r+1}(‖ u ‖L∞(Hk+1) + ‖ q ‖L∞(Hr+1) + ‖ qt ‖L∞(Hr+1))+

Cτ 2(‖ u ‖L2(H1) + ‖ ut ‖L2(H1) + ‖ utt ‖L2(H1) + ‖ uttt ‖L2(H1) + ‖ qtt ‖L2(H1) + ‖ qttt ‖L2(L2)).

Proof. Choose vh = ζn+ζn−1

2
in (17a) to obtain for n = 0, 1, · · · , N

(
a
ζnx + ζn−1x

2
,
ζnx + ζn−1x

2

)
+

(
b∂̄tζ

n
x ,
ζnx + ζn−1x

2

)
= a

(
ũnhx + ũn−1hx

2
− ũn−

1
2

hx ,
ζnx + ζn−1x

2

)
+ b

(
∂̄tũ

n
hx − ũ

n− 1
2

hxt ,
ζnx + ζn−1x

2

)
+

(
qn−

1
2 − qn + qn−1

2
,
ζnx + ζn−1x

2

)
+

(
ρn + ρn−1

2
,
ζnx + ζn−1x

2

)
+

(
ξn + ξn−1

2
,
ζnx + ζn−1x

2

)

Note that a and b are positive constants. Using Cauchy inequality we conclude that

1
2
b‖ζ

n
x ‖2−‖ζ

n−1
x ‖2

τ

≤ C
(
‖ ũnhx+ũ

n−1
hx

2
− ũn−

1
2

hx ‖2 + ‖ ∂̄tũnhx − ũ
n− 1

2
hxt ‖2

+ ‖ qn− 1
2 − qn+qn−1

2
‖2 + ‖ ρn+ρn−1

2
‖2 + ‖ ξn+ξn−1

2
‖2
)
.

(18)
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Multiplying (17) by 2τ and summing from n = 1 to m, we can get the following estimate

easily by choosing U0 = ũ0h.

b ‖ ζmx ‖2≤ Cτ
m∑
n=1

(
‖ ũnhx+ũ

n−1
hx

2
− ũn−

1
2

hx ‖2 + ‖ ∂̄tũnhx − ũ
n− 1

2
hxt ‖2

+ ‖ qn− 1
2 − qn+qn−1

2
‖2 + ‖ ρn+ρn−1

2
‖2 + ‖ ξn+ξn−1

2
‖2
)
.

(19)

By the Taylor formula with integral reminder we have that

‖ ũ
n
hx + ũn−1hx

2
− ũn−

1
2

hx ‖2≤ C(τ)3
∫ tn

tn−1

‖ ũhxtt ‖2 ds.

Similarly, we have

‖ ∂̄tũnhx − ũ
n− 1

2
hxt ‖

2≤ C(τ)3
∫ tn

tn−1

‖ ũhxttt ‖2 ds.

and

‖ qn−
1
2 − qn + qn−1

2
‖2≤ C(τ)3

∫ tn

tn−1

‖ qtt ‖2 ds.

Thus

‖ ζmx ‖2≤ C(τ)4
( ∫ tm

0
‖ ũhxtt ‖2 ds+

∫ tm
0
‖ ũhxttt ‖2 ds+

∫ tm
0
‖ qtt ‖2 ds

)
+Cτ

m∑
n=1

(
‖ ρn+ρn−1

2
‖2 + ‖ ξn+ξn−1

2
‖2
)
.

(20)

Setting wh = ξn+ξn−1

2
in (17b) yields(

α∂̄tξ
n, ξ

n+ξn−1

2

)
+ A

(
ξn+ξn−1

2
, ξ

n+ξn−1

2

)
=
(
α∂̄tρ

n, ξ
n+ξn−1

2

)
+
(

(λ− γ)(ρ
n+ρn−1

2
+ ξn+ξn−1

2
), ξ

n+ξn−1

2

)
+β
(
ηn+ηn−1

2
, ξ

n
x+ξ

n−1
x

2

)
+ β

(
unx+u

n−1
x

2
− un−

1
2

x , ξ
n+ξn−1

2

)
+γ
(
qn+qn−1

2
− qn− 1

2 , ξ
n+ξn−1

2

)
+
(
qnx+q

n−1
x

2
− qn−

1
2

x , ξ
n
x+ξ

n−1
x

2

)
+α
(
∂̄tq

n − qn−
1
2

t , ξ
n+ξn−1

2

)
− β

(
ζnx+ζ

n−1
x

2
, ξ

n+ξn−1

2

)
(21)

Using ε inequality and the coercive property of A(·, ·) we derive that

α

2τ
(‖ ξn ‖2 − ‖ ξn−1 ‖2) + (α0 − ε) ‖

ξn + ξn−1

2
‖21

≤ C
(
‖ ∂̄tρn ‖2 + ‖ ρ

n + ρn−1

2
‖2 + ‖ ξ

n + ξn−1

2
‖2 + ‖ η

n + ηn−1

2
‖2

+ ‖ u
n
x + un−1x

2
− un−

1
2

x ‖2 + ‖ q
n + qn−1

2
− qn−

1
2 ‖2 + ‖ q

n
x + qn−1x

2
− qn−

1
2

x ‖2

+ ‖ ∂̄tqn − q
n− 1

2
t ‖2 + ‖ ζ

n
x + ζn−1x

2
‖2
)
.
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Since

‖ ∂̄tρn ‖2≤ C
1

τ

∫ tn

tn−1

‖ ρt ‖2 ds,

‖ ζJx ‖2≤ C(τ)4
(∫ tm

0

‖ ũhxtt ‖2 ds+

∫ tm

0

‖ ũhxttt ‖2 ds+

∫ tm

0

‖ qtt ‖2 ds
)

+Cτ
m∑
n=1

(
‖ ρ

n + ρn−1

2
‖2 + ‖ ξ

n + ξn−1

2
‖2
)
,

and

‖ ξ
n + ξn−1

2
‖2≤ ‖ ξ

n ‖2 + ‖ ξn−1 ‖2

2
,

‖ u
n
x + un−1x

2
− un−

1
2

x ‖2≤ C(τ)3
∫ tn

tn−1

‖ uxtt ‖2 ds,

‖ q
n + qn−1

2
− qn−

1
2 ‖2≤ C(τ)3

∫ tn

tn−1

‖ qtt ‖2 ds,

‖ q
n
x + qn−1x

2
− qn−

1
2

x ‖2≤ C(τ)3
∫ tn

tn−1

‖ qxtt ‖2 ds,

‖ ∂̄tqn − q
n− 1

2
t ‖2≤ C(τ)3

∫ tn

tn−1

‖ qttt ‖2 ds,

then, multiplying by 2τ and summing from 1 to m we conclude that

(α− Cτ) ‖ ξJ ‖2 +2(α0 − ε)τ
m∑
n=1

‖ ξ
n + ξn−1

2
‖21

≤ C

∫ tm

0

‖ ρt ‖2 ds+ Cτ
m∑
n=0

(
‖ ρn ‖2 + ‖ ηn ‖2

)

+ Cτ

J−1∑
n=0

‖ ξn ‖2 +C(τ)4
(∫ tm

0

‖ qtt ‖2 ds+

∫ tm

0

‖ qttt ‖2 ds+

∫ tm

0

‖ qxtt ‖2 ds

+

∫ tm

0

‖ uxtt ‖2 ds+

∫ tm

0

‖ ũhxtt ‖2 ds+

∫ tm

0

‖ ũhxttt ‖2 ds
)
.

Taking τ1, let 0 < τ ≤ τ1, such that α − Cτ > 0, then by discrete Gronwall’s lemma we

obtain that

‖ ξJ ‖2 +α0τ
m∑
n=1

‖ ξn+ξn−1

2
‖21

≤ C
∫ tm
0
‖ ρt ‖2 ds+ Cτ

m∑
n=0

(
‖ ρn ‖2 + ‖ ηn ‖2

)
+ C(τ)4

( ∫ tm
0
‖ qtt ‖2 ds+

∫ tm
0
‖ qttt ‖2 ds+

∫ tm
0
‖ qxtt ‖2 ds

+
∫ tm
0
‖ uxtt ‖2 ds+

∫ tm
0
‖ ũhxtt ‖2 ds+

∫ tm
0
‖ ũhxttt ‖2 ds

)
.

(22)
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Note that

‖ ũhxtt ‖≤‖ ũhxtt − uxtt ‖ + ‖ uxtt ‖≤‖ ηtt ‖1 + ‖ utt ‖1 .

Therefore

‖ ξm ‖2 ≤ C(‖ η ‖2L∞(L2) + ‖ ρ ‖2L∞(L2) + ‖ ρt ‖2L2(L2))

+ Cτ 4(‖ qtt ‖2L2(H1) + ‖ qttt ‖2L2(L2)

+ τ 4(‖ uttt ‖2L2(H1) + ‖ utt ‖2L2(H1) + ‖ ut ‖2L2(H1) + ‖ u ‖2L2(H1)).

(23)

Then, (20) and (23) imply that

‖ ζmx ‖2 ≤ C(‖ η ‖2L∞(L2) + ‖ ρ ‖2L∞(L2) + ‖ ρt ‖2L2(L2))

+ Cτ 4(‖ qtt ‖2L2(H1) + ‖ qttt ‖2L2(L2)

+ τ 4(‖ uttt ‖2L2(H1) + ‖ utt ‖2L2(H1) + ‖ ut ‖2L2(H1) + ‖ u ‖2L2(H1)).

(24)

Combining (23), (24) and the estimates of ηn, ρn, by the triangle inequality we can

complete the proof.

Remark 3.2. In this paper, we only discuss theH1-Galerkin mixed finite element schemes

for the one-dimensional problem. In fact these schemes can be extended to several dimen-

sional problem without introducing rot operator which was used in [4]. We use standard

finite element space to approximate the unknown function u, while the gradient func-

tion q is approximated by the vector function space of the standard mixed finite element

spaces(e.g., Raviart-Thomas spaces). The more details one can see [14].

4. Numerical Example

In this section a numerical example is given to verify the theorems presented in this

paper.

Example 4.1. Let us consider the following initial and boundary problem:
1
δ
ut + utt = auxx + buxxt + f(x, t), (x, t) ∈ [0, 1]× (0, 1],

u(0, t) = u(1, t) = 0, t ∈ (0, 1],

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ [0, 1], t = 0,

(25)

where a = 1
3
, b = 1

6
, δ = 6

6+π2 , and the exact solution is chosen as u(x, t) = e−tsin(πx).

This example is taken from [15]



H1-GALERKIN MIXED ELEMENT APPROXIMATION OF HEAT TRANSPORT EQUATIONS 927

We solve this problem by H1-Galerkin mixed finite element method. Piecewise linear

finite element spaces are used to approximate the unknown function u and its flux q,

respectively.

The errors of u − uh and q − qh in L2 norm for different time are shown in Table 4.1

and 4.2, respectively. The order of convergence for u and q in L2 norm are displayed in

Table 4.3. We observe that the rate of convergence is approximately equal to 2, which

are in agreement with our theoretical results proposed in Section 3.

Table 4.1. The errors of ‖ u− uh ‖ at different time.

Time t=0.2 t=0.4 t=0.8 t=1.0

h = τ Error Order Error Order Error Order Error Order

1/20 2.7559e-004 \ 4.6745e-004 \ 6.5543e-004 \ 6.8058e-004 \

1/40 6.8872e-005 1.9131 1.1682e-004 1.9850 1.6383e-004 1.9809 1.7015e-004 2.0000

1/80 1.7216e-005 1.9913 2.9203e-005 1.9899 4.0957e-005 2.0082 4.2537e-005 1.9069

Table 4.2. The errors of ‖ q − qh ‖ at different time.

Time t=0.2 t=0.4 t=0.8 t=1.0

h = τ Error Order Error Order Error Order Error Order

1
20

2.1945e-004 \ 3.4766e-004 \ 4.4515e-004 \ 4.4834e-004 \

1
40

5.3504e-005 2.0362 8.4796e-005 2.0356 1.0865e-004 2.0346 1.0946e-004 2.0342

1
80

1.3210e-005 2.0180 2.0938e-005 2.0179 2.6833e-005 2.0176 2.7035e-005 2.0175
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