SPACELIKE - TIMELIKE INVOLUTE - EVOLUTE CURVE COUPLE ON DUAL LORENTZIAN SPACE

${ }^{1}$ Ege University Faculty of Science, Department of Mathematics, İzmir/ Turkey
${ }^{2}$ Ordu University Faculty of Arts and Science, Department of Mathematics Ordu/ Turkey

Abstract

In this paper, we have defined the involute curves of the dual timelike curve M_{1} in dual Lorentzian space D_{1}^{3}. We have seen that the dual involute curve M_{2} must be a dual spacelike curve with a dual spacelike (or timelike) binormal vector. The relationship between the Frenet frames of the spacelike - timelike involute evolute dual curve couple have been found and some new characterizations related to the couple of the dual curve have been given.

Keywords: Dual Lorentzian space, dual involute - evolute curve couple, dual Frenet frames.
2000 AMS Subject Classifications:53A04, 53B30

1.Introduction

The concept of the involute of a given curve is well-known in 3-dimensional Euclidean space $I R^{3}$, [7,8,9,11,14]. Some basic notions of Lorentzian space are given [3,12,17,19]. M_{1} is a timelike curve then the involute curve M_{2} is a spacelike curve with a spacelike or timelike binormal.On the other hand, it has been investigated that the involute and evolute curves of the spacelike curve M_{1} with a spacelike binormal in Minkowski 3-space and it has been seen that the involute curve M_{2} is timelike, $[4,5]$. The involute curves of the spacelike curve M_{1} with a timelike binormal is defined in Minkowski 3-space $I R_{1}^{3}$, $[2,15,16]$. Lorentzian angle is defined in [13].

2. Preliminaries

*Corresponding author
Received April22, 2013
W. K. Clifford introduced dual numbers as the set
$I D=\left\{\hat{\lambda}=\lambda+\varepsilon \lambda^{*} \mid \lambda, \lambda^{*} \in I R, \varepsilon^{2}=0\right.$ for $\left.\varepsilon \neq 0\right\}$, [6]. Product, addition, division and absolute value operations are defined on ID like below, respectively:

$$
\begin{aligned}
& \left(\lambda+\varepsilon \lambda^{*}\right)+\left(\beta+\varepsilon \beta^{*}\right)=(\lambda+\beta)+\varepsilon\left(\lambda^{*}+\beta^{*}\right) \\
& \left(\lambda+\varepsilon \lambda^{*}\right)\left(\beta+\varepsilon \beta^{*}\right)=\lambda \beta+\varepsilon\left(\lambda \beta^{*}+\lambda^{*} \beta\right) \\
& \frac{\lambda+\varepsilon \lambda^{*}}{\beta+\varepsilon \beta^{*}}=\frac{\lambda}{\beta}+\varepsilon\left(\frac{\lambda^{*}}{\beta}-\frac{\lambda \beta^{*}}{\beta^{2}}\right) \\
& \left|\lambda+\varepsilon \lambda^{*}\right|=|\lambda| .
\end{aligned}
$$

$I D^{3}=\left\{\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \mid \vec{a}, \vec{a}^{*} \in I R^{3}\right\}$.The elements of $I D^{3}$ are called dual vectors. On this set addition and scalar product operations are respectively

$$
\begin{aligned}
\oplus: I D^{3} \times I D^{3} & \rightarrow I D^{3} \\
(\vec{A}, \vec{B}) & \rightarrow \vec{A} \oplus \vec{B}=\vec{a}+\vec{b}+\varepsilon\left(\vec{a}^{*}+\vec{b}^{*}\right) \\
\odot: I D \times I D^{3} & \rightarrow I D^{3} \\
(\tilde{\lambda}, \vec{A}) & \rightarrow \tilde{\lambda} \odot \vec{A}=\left(\lambda+\varepsilon \lambda^{*}\right) \odot\left(\vec{a}+\varepsilon \vec{a}^{*}\right)=\lambda \vec{a}+\varepsilon\left(\lambda \vec{a}^{*}+\lambda^{*} \vec{a}\right)
\end{aligned}
$$

The set $\left(I D^{3}, \oplus, \odot\right)$ is a module over the ring (ID,+,.) and it is denoted by (ID-Modul). The Lorentzian inner product of dual vectors $\vec{A}, \vec{B} \in I D^{3}$ is defined by

$$
\langle\vec{A}, \vec{B}\rangle=\langle\vec{a}, \vec{b}\rangle+\varepsilon\left(\left\langle\vec{a}, \vec{b}^{*}\right\rangle+\left\langle\vec{a}^{*}, \vec{b}\right\rangle\right)
$$

by means of the Lorentzian inner product, where $\vec{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\vec{b}=\left(b_{1}, b_{2}, b_{3}\right) \in I R^{3}$ and the Lorentzian inner product is

$$
\langle\vec{a}, \vec{b}\rangle=-a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} .
$$

Therefore, $I D^{3}$ with the Lorentzian inner product $\langle\vec{A}, \vec{B}\rangle$ is called 3-dimensional dual Lorentzian space and denoted by of $I D_{1}^{3}=\left\{\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \mid \vec{a}, \vec{a}^{*} \in I R_{1}^{3}\right\}$. For $\vec{A} \neq 0$, the norm of $\vec{A}=\vec{a}+\varepsilon \vec{a}^{*} \in I D_{1}^{3}$ is defined by

$$
\|\vec{A}\|=\sqrt{\mid\langle\vec{A}, \vec{A}\rangle}=\|\vec{a}\|+\varepsilon \frac{\left\langle\vec{a}, \vec{a}^{*}\right\rangle}{\|\vec{a}\|},\|\vec{a}\| \neq 0 .
$$

For $\vec{A}, \vec{B} \in I D_{1}^{3}$, the dual Lorentzian cross product is defined by

$$
\vec{A} \wedge \vec{B}=\vec{a} \wedge \vec{b}+\varepsilon\left(\vec{a} \wedge \vec{b}^{*}+\vec{a}^{*} \wedge \vec{b}\right)
$$

by means of the Lorentzian cross-product, such that for every $\vec{a}, \vec{b} \in I R_{1}^{3}$ the Lorentzian cross product is

$$
\vec{a} \wedge \vec{b}=\left(a_{3} b_{2}-a_{2} b_{3}, a_{1} b_{3}-a_{3} b_{1}, a_{1} b_{2}-a_{2} b_{1}\right),[10] .
$$

The dual Frenet trihedron of the differentiable curve M in dual space $I D_{1}^{3}$ and instantaneous dual rotation vector have given in $[1,20]$.The dual angle between \vec{A} and \vec{B} is $\tilde{\varphi}=\varphi+\varepsilon \varphi^{*}$ where φ is the angle between two directed lines that \vec{A} and \vec{B} represent in $I R_{1}^{3}$, respectively and φ^{*} is the shortest distance between these lines. See the Fig.1. In addition, the following equations are true for the dual angle, $\tilde{\varphi}$.

$$
\left\{\begin{array}{l}
\sinh \left(\varphi+\varepsilon \varphi^{*}\right)=\sinh \varphi+\varepsilon \varphi^{*} \cosh \varphi \\
\cosh \left(\varphi+\varepsilon \varphi^{*}\right)=\cosh \varphi+\varepsilon \varphi^{*} \sinh \varphi .
\end{array}\right.
$$

Fig.2. a) The dual hyperbolic angle $\tilde{\varphi}=\varphi+\varepsilon \varphi^{*}$ between dual timelike unit vectors \tilde{u}_{3} and \tilde{f}, and the Lorentzian geometrical interpretation of this angle, $\tilde{\varphi}$.
b) The geometrical representation of $\tilde{\varphi}$.

The dual Lorentzian sphere and the dual hyperbolic sphere of 1 radius in $I R_{1}^{3}$ are defined by

$$
\begin{aligned}
& S_{1}^{2}=\left\{A=a+\varepsilon a_{0} \mid\|A\|=(1,0) ; a, a_{0} \in I R_{1}^{3}, \text { and } a \text { is spacelike }\right\}, \\
& H_{0}^{2}=\left\{A=a+\varepsilon a_{0} \mid\|A\|=(1,0) ; a, a_{0} \in I R_{1}^{3}, \text { and } a \text { is timelike }\right\},
\end{aligned}
$$

respectively [19].

Lemma 2. 1.Let X and Y be nonzero Lorentz orthogonal vectors in $I D_{1}^{3}$ If X is timelike, then Y is spacelike, [13].

Lemma 2. 2.Let X, Y be positive (negative) timelike vectors in $I D_{1}^{3}$. Then $\langle X, Y\rangle \leq\|X\|\|Y\|$ is valid if and only if X and Y are linearly dependent, [13].

Lemma 2.3.i) Let X and Y be positive (negative) timelike vectors in $I D_{1}^{3}$. There is a unique nonnegative dual number $\Phi(X, Y)$, such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cosh \Phi(X, Y)
$$

where $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y.
ii) Let X and Y be spacelike vectors in $I D_{1}^{3}$ that span a spacelike vector subspace. Then wehave $|\langle X, Y\rangle| \leq\|X\|\|Y\|$. Hence, there is a unique dual number $\Phi(X, Y)$ between 0 and π,such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cos \Phi(X, Y)
$$

where $\Phi(X, Y)$ is the Lorentzian spacelike dual angle between X and Y.
iii) Let X and Y be spacelike vectors in $I D_{1}^{3}$ that span a timelike vector subspace. Then we have $|\langle X, Y\rangle| \geq\|X\|\|Y\|$. Hence, there is a unique positive dual number $\Phi(X, Y)$, such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \cosh \Phi(X, Y)
$$

where $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y.
iv) Let X be a spacelike vector and Y a positive timelike vector in $I D_{1}^{3}$. Then there is a unique nonnegative dual number $\Phi(X, Y)$ is the Lorentzian timelike dual angle between X and Y, such that

$$
\langle X, Y\rangle=\|X\|\|Y\| \sinh \Phi(X, Y),[13] .
$$

Let $\{T, N, B\}$ be the dual Frenet trihedron of the differentiable curve M.in the dual space $I D_{1}^{3}$ and $T=t+\varepsilon t^{*}, N=n+\varepsilon n^{*}$ and $B=b+\varepsilon b^{*}$ be the tangent, the principal normal and the binormal vectors of M, respectively. Depending on the causal character of the curve M, we have an instantaneous dual rotation vector :i) Let M be a unit speed timelike dual space curve with the dual curvature $\kappa=k_{1}+\varepsilon k_{1}^{*}$ and the dual torsion $\tau=k_{2}+\varepsilon k_{2}^{*}$.The Frenet vectors T, N, B of M are timelike vector, spacelike vector, spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=-B, N \wedge B=T, B \wedge T=-N . \tag{2.1}
\end{equation*}
$$

From here,

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.2}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],[18] .
$$

(2.2) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & -k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
t^{* \prime} \\
n^{* \prime} \\
b^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}^{*} & 0 \\
k_{1}^{*} & 0 & -k_{2}^{*} \\
0 & k_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & -k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right] .}
\end{array}\right.
$$

The Frenet instantaneous rotation vector W of the timelike curve is given by

$$
\begin{equation*}
W=\tau T-\kappa B,[17] \tag{2.3}
\end{equation*}
$$

(2.3) leaves the real and dual components

$$
\left\{\begin{array}{l}
w=k_{2} t-k_{1} b \\
w^{*}=k_{2}^{*} t+k_{2} t^{*}-k_{1}^{*} b-k_{1} b^{*}
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be a Lorentzian timelike dual angle between the spacelike binormal unit vector B and the Frenet instantaneous dual rotation vector W.Then, $C=c+\varepsilon c^{*}$ is the unit dual vector in direction of W :
a) If $|\kappa|>|\tau|, W$ is a spacelike vector. In this case, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cosh \Phi \tag{2.4}\\
\tau=\|W\| \sinh \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\kappa^{2}-\tau^{2}\right.
$$

and

$$
\begin{equation*}
C=\sinh \Phi T-\cosh \Phi B . \tag{2.5}
\end{equation*}
$$

b) If $|\kappa|<|\tau|, W$ is a timelike vector. In this case, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \sinh \Phi \tag{2.6}\\
\tau=\|W\| \cosh \Phi
\end{array} \quad, \quad\|W\|^{2}=-\langle W, W\rangle=-\left(\kappa^{2}-\tau^{2}\right)\right.
$$

and

$$
\begin{equation*}
C=\cosh \Phi T-\sinh \Phi B \tag{2.7}
\end{equation*}
$$

ii) Let M be a unit speed dual spacelike space curve with the spacelike binormal. The Frenet vevtors T, N, B of M are spacelike vector, timelike vector, spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=-B, N \wedge B=-T, B \wedge T=N . \tag{2.8}
\end{equation*}
$$

From here,

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.9}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
0 & \kappa & 0 \\
\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right],[18] .
$$

(2.9) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
t^{* \prime} \\
n^{* \prime} \\
b^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}^{*} & 0 \\
k_{1}^{*} & 0 & k_{2}^{*} \\
0 & k_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

and the Frenet instantaneous rotation vector for the spacelike curve is given by

$$
\begin{equation*}
W=-\tau T+\kappa B,[17] \tag{2.10}
\end{equation*}
$$

(2.10) leaves the real and dual components

$$
\left\{\begin{array}{l}
w=-k_{2} t+k_{1} b \\
w^{*}=-k_{2}^{*} t-k_{2} t^{*}+k_{1}^{*} b+k_{1} b^{*}
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be the dual angle between B and W. If B and W spacelike vectors that span a spacelike vector subspace, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cos \Phi \tag{2.11}\\
\tau=\|W\| \sin \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\kappa^{2}+\tau^{2}\right.
$$

and

$$
\begin{equation*}
C=-\sin \Phi T+\cos \Phi B \tag{2.12}
\end{equation*}
$$

iii) Let M be a unit speed dual spacelike space curve. The Frenet vectors T, N, B of M are spacelike vector, timelike vector, spacelike vector, respectively, such that

$$
\begin{equation*}
T \wedge N=B, N \wedge B=-T, B \wedge T=-N . \tag{2.13}
\end{equation*}
$$

From here,

$$
\left[\begin{array}{c}
T^{\prime} \tag{2.14}\\
N^{\prime} \\
B^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \tau \\
0 & \tau & 0
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right], \text { [18]. }
$$

The equation, (2.14) leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
t^{\prime} \\
n^{\prime} \\
b^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
-k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
t^{* \prime} \\
n^{* \prime} \\
b^{* \prime}
\end{array}\right]=\left[\begin{array}{ccc}
0 & k_{1}^{*} & 0 \\
-k_{1}^{*} & 0 & k_{2}^{*} \\
0 & k_{2}^{*} & 0
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & k_{1} & 0 \\
-k_{1} & 0 & k_{2} \\
0 & k_{2} & 0
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

and the Frenet instantaneous dual rotation vector W of the spacelike curve is given by

$$
\begin{equation*}
W=-\tau T+\kappa B,[17] \tag{2.15}
\end{equation*}
$$

The equation (2.15) leaves the real and dual components

$$
\left\{\begin{array}{l}
w=k_{2} t-k_{1} b \\
w^{*}=k_{2}^{*} t+k_{2} t^{*}-k_{1}^{*} b-k_{1} b^{*}
\end{array}\right.
$$

Let $\Phi=\varphi+\varepsilon \varphi^{*}$ be the Lorentzian timelike dual angle between B and W :
a)If $|\kappa|<|\tau|, W$ is a spacelike vector. In this case, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \sinh \Phi \tag{2.16}\\
\tau=\|W\| \cosh \Phi
\end{array} \quad, \quad\|W\|^{2}=\langle W, W\rangle=\tau^{2}-\kappa^{2}\right.
$$

and

$$
\begin{equation*}
C=\cosh \Phi T-\sinh \Phi B \tag{2.17}
\end{equation*}
$$

$\boldsymbol{b})$ If $|\kappa|>|\tau|, W$ is a timelike vector. In this case, we can write

$$
\left\{\begin{array}{l}
\kappa=\|W\| \cosh \Phi \tag{2.18}\\
\tau=\|W\| \sinh \Phi
\end{array} \quad, \quad\|W\|^{2}=-\langle W, W\rangle=-\left(\tau^{2}-\kappa^{2}\right)\right.
$$

and

$$
\begin{equation*}
C=\sinh \Phi T-\cosh \Phi B . \tag{2.19}
\end{equation*}
$$

3.Main Results

Definition 3.1.Let $M_{1}: I \rightarrow I D_{1}^{3} \quad M_{1}=M_{1}(s)$ be the unit speed dual timelike curve and $M_{2}: I \rightarrow I D_{1}^{3} M_{2}=M_{2}(s)$ be the unit speed dual curve. If the tangent vector of curve M_{1} is orthogonal to the tangent vector of M_{2}, M_{1} is called evolute of curve M_{2} and M_{2} is called involute of M_{1}. Thus, the dual involute - evolute curve couple is denoted by $\left(M_{2}, M_{1}\right)$. Since the tangent vector of M_{1} is timelike, the tangent vector of M_{2} must be spacelike vector. So, M_{2} is a spacelike curve and $\left(M_{2}, M_{1}\right)$ is called "spacelike - timelike involute - evolute dual curve couple".

Fig. 2. Involute - evolute curve couple.

Theorem 3.1:Let $\left(M_{2}, M_{1}\right)$ be the spacelike - timelike involute - evolute dual curve couple. Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2}, respectively. The dual distance between M_{1} and M_{2} at the corresponding points is

$$
d\left(M_{1}(s), M_{2}(s)\right)=\left|c_{1}-s\right|-\varepsilon c_{2}, c_{1}, c_{2}=\text { constant }
$$

Proof: If M_{2} is the dual involute of M_{1}, we can write from the Fig. 2

$$
\begin{equation*}
M_{2}(s)=M_{1}(s)+\lambda T(s), \lambda=\lambda_{1}+\varepsilon \lambda_{1}^{*} \in I D \tag{3.1}
\end{equation*}
$$

Differentiating (3.1) with respect to s, we have

$$
V_{1} \frac{d s^{*}}{d s}=\left(1+\lambda^{\prime}\right) T+\lambda \kappa N
$$

where s and s^{*} are arc parameter of M_{1} and M_{2}, respectively. Since the direction of T is orthogonal to the direction of V, we obtain

$$
\lambda^{\prime}=-1
$$

From here, it can be easily seen that

$$
\begin{equation*}
\lambda=\left(c_{1}-s\right)+\varepsilon c_{2} \tag{3.2}
\end{equation*}
$$

Furthermore, the dual distance between the points $M_{1}(s)$ and $M_{2}(s)$

$$
\begin{aligned}
d\left(M_{1}(s), M_{2}(s)\right) & =\sqrt{|\langle\lambda T(s) \lambda T(s)\rangle|} \\
& =\left|\lambda_{1}\right|-\varepsilon \lambda_{1}^{*}
\end{aligned}
$$

Since $\lambda_{1}=\left(c_{1}-s\right), \quad \lambda_{1}^{*}=c_{2}$, we have

$$
\begin{equation*}
d\left(M_{1}(s), M_{2}(s)\right)=\left|c_{1}-s\right|-\varepsilon c_{2} . \tag{3.3}
\end{equation*}
$$

Theorem 3.2. Let (M_{2}, M_{1}) be the spacelike - timelike involute - evolute dual curve couple.
Let $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2}, respectively.
Since the dual curvature of M_{2} is $P=p+\varepsilon p^{*}$, we have

$$
P^{2}=\frac{\mp\left(k_{2}^{2}-k_{1}^{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{2}} \mp \varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{3}}-\frac{2 c_{2}\left(k_{2}^{2}-k_{1}^{2}\right)}{\left(c_{1}-s\right)^{3} k_{1}^{2}}\right] .
$$

Where the dual curvature of M_{1} is $\kappa=k_{1}+\varepsilon k_{1}^{*}$

Proof: Differentiating (3.1) with respect to s, we get

$$
\frac{d M_{2}}{d s^{*}} \frac{d s^{*}}{d s^{?}}=\frac{d M_{1}}{d s}+\frac{d \lambda}{d s} T+\lambda \frac{d T}{d s}
$$

or

$$
V_{1} \frac{d s^{*}}{d s}=T-T+\lambda \kappa N=\lambda \kappa N .
$$

From here, we can write

$$
\begin{equation*}
V_{1}=N \tag{3.4}
\end{equation*}
$$

and

$$
\frac{d s^{*}}{d s}=\lambda \kappa
$$

By differentiating the last equation and using (2.2), we obtain

$$
\frac{d V_{1}}{d s^{*}} \frac{d s^{*}}{d s^{?}}=\frac{d N}{d s}=\kappa T-\tau B
$$

or

$$
P V_{2}=\frac{1}{\lambda \kappa}(\kappa T-\tau B)
$$

From here, we have

$$
\begin{equation*}
P^{2}=\mp \frac{\left(\tau^{2}-\kappa^{2}\right)}{\lambda^{2} \kappa^{2}} \tag{3.5}
\end{equation*}
$$

From the fact that $P=p+\varepsilon p^{*}, \lambda=\lambda_{1}+\varepsilon \lambda_{1}^{*}, \kappa=k_{1}+\varepsilon k_{1}^{*}$ and $\tau=k_{2}+\varepsilon k_{2}^{*}$, we get

$$
\begin{aligned}
P^{2} & =\frac{\mp\left(k_{2}^{2}+2 \varepsilon k_{2} k_{2}^{*}-k_{1}^{2}-2 \varepsilon k_{1} k_{1}^{*}\right)}{\left(\lambda_{1}^{2}+2 \varepsilon \lambda_{1} \lambda_{1}^{*}\right)\left(k_{1}^{2}+2 \varepsilon k_{1} k_{1}^{*}\right)} \\
& =\mp \frac{\left(k_{2}^{2}-k_{1}^{2}\right)}{\lambda_{1}^{2} k_{1}^{2}} \mp \varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\lambda_{1}^{2} k_{1}^{3}}-\frac{2 \lambda_{1}^{*}\left(k_{2}^{2}-k_{1}^{2}\right)}{\lambda_{1}^{3} k_{1}^{2}}\right] .
\end{aligned}
$$

From here, by using $\lambda_{1}=\left(c_{1}-s\right), \quad \lambda_{2}=c_{2}$, we obtain

$$
\begin{equation*}
P^{2}=\mp \frac{\left(k_{2}^{2}-k_{1}^{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{2}} \mp \varepsilon\left[\frac{2 k_{2}\left(k_{1} k_{2}^{*}-k_{1}^{*} k_{2}\right)}{\left(c_{1}-s\right)^{2} k_{1}^{3}}-\frac{2 c_{2}\left(k_{2}^{2}-k_{1}^{2}\right)}{\left(c_{1}-s\right)^{3} k_{1}^{2}}\right] . \tag{3.6}
\end{equation*}
$$

Theorem 3.3. Let $\left(M_{2}, M_{1}\right)$ be the spacelike - timelike involute - evolute dual curve couple and $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be Frenet frames of M_{1} and M_{2}, respectively. The dual torsion $\tau=k_{2}+\varepsilon k_{2}^{*}$ of M_{1} and the dual torsion $Q=q+\varepsilon q^{*}$ of M_{2} is satisfy the following equation:

$$
Q=\frac{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}{\left|k_{1}^{2}-k_{2}^{2}\right| k_{1}\left|c_{1}-s\right|}+\varepsilon\left[\frac{k_{1}\left(k_{1} k_{2}^{* \prime}-k_{1}^{\prime} k_{2}^{*}\right)+k_{2}\left(k_{1}^{*} k_{1}^{\prime}-k_{1}^{* \prime} k_{1}\right)}{\left|k_{1}^{2}-k_{2}^{2}\right|\left|c_{1}-s\right| k_{1}^{2}}\right] .
$$

Proof: By differentiating (3.1) three times with respect to s, we get

$$
\begin{aligned}
& M_{2}^{\prime}=\lambda \kappa N \\
& M_{2}^{\prime \prime}=\lambda \kappa^{2} T+\left(\lambda \kappa^{\prime}-\kappa\right) N-\lambda \kappa \tau B \\
& M_{2}^{\prime \prime \prime}=\left(3 \lambda \kappa \kappa^{\prime}-2 \kappa^{2}\right) T+\left(\lambda \kappa^{3}+\lambda \kappa \tau^{2}-2 \kappa^{\prime}+\lambda \kappa^{\prime \prime}\right) N+\left(2 \kappa \tau-2 \lambda \kappa^{\prime} \tau-\lambda \kappa \tau^{\prime}\right) B
\end{aligned}
$$

The vector product of $M_{2}{ }^{\prime}$ and $M_{2}{ }^{\prime \prime}$ is

$$
\begin{equation*}
M_{2}^{\prime} \wedge M_{2}^{\prime \prime}=-\lambda^{2} \kappa^{2} \tau T+\lambda^{2} \kappa^{3} B=\lambda^{2} \kappa^{2}(-\tau T+\kappa B) \tag{3.7}
\end{equation*}
$$

From here, we obtain

$$
\begin{equation*}
\left\|M_{2}^{\prime} \wedge M_{2}^{\prime \prime}\right\|^{2}=|\lambda|^{4}|\kappa|^{4}\left|\kappa^{2}-\tau^{2}\right| \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}\left(M_{2}^{\prime}, M_{2}^{\prime \prime}, M_{2}^{\prime \prime \prime}\right)=\lambda^{3} \kappa^{3}\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right) \tag{3.9}
\end{equation*}
$$

Substituting by (3.8) and (3.9) values into $Q=\frac{\operatorname{det}\left(M_{2}{ }^{\prime}, M_{2}{ }^{\prime \prime}, M_{2}^{\prime \prime \prime}\right)}{\left\|M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}\right\|^{2}}$, we get

$$
\begin{equation*}
Q=\frac{\left(\kappa \tau^{\prime}-\kappa^{\prime} \tau\right)}{|\lambda| \kappa\left|\kappa^{2}-\tau^{2}\right|} \tag{3.10}
\end{equation*}
$$

and then, substituting $Q=q+\varepsilon q^{*}, \lambda=\lambda_{1}+\varepsilon \lambda_{1}^{*}, \kappa=k_{1}+\varepsilon k_{1}^{*}$ and $\tau=k_{2}+\varepsilon k_{2}^{*}$ into the last equation, we have

$$
Q=\frac{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}{\left|\lambda_{1}\right| k_{1}\left|k_{1}^{2}-k_{2}^{2}\right|}+\varepsilon\left[\frac{k_{1}\left(k_{1} k_{2}^{* \prime}-k_{1}^{\prime} k_{2}^{*}\right)+k_{2}\left(k_{1}^{*} k_{1}^{\prime}-k_{1}^{* \prime} k_{1}\right)}{\left|\lambda_{1}\right| k_{1}^{2}\left|k_{1}^{2}-k_{2}^{2}\right|}\right]
$$

By the fact that $\lambda_{1}=\left(c_{1}-s\right)$, we get

$$
\begin{equation*}
Q=\frac{k_{1} k_{2}^{\prime}-k_{1}^{\prime} k_{2}}{\left|c_{1}-s\right| k_{1}\left|k_{1}^{2}-k_{2}^{2}\right|}+\varepsilon\left[\frac{k_{1}\left(k_{1} k_{2}^{* \prime}-k_{1}^{\prime} k_{2}^{*}\right)+k_{2}\left(k_{1}^{*} k_{1}^{\prime}-k_{1}^{* \prime} k_{1}\right)}{\left|c_{1}-s\right| k_{1}^{2}\left|k_{1}^{2}-k_{2}^{2}\right|}\right] . \tag{3.11}
\end{equation*}
$$

Theorem 3.4.Let $\left(M_{2}, M_{1}\right)$ be the spacelike - timelike involut - evolut dual curve couple, $\{T, N, B\}$ and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the dual Frenet frames of M_{1} and M_{2}, respectively and $\Phi=\varphi+\varepsilon \varphi^{*}$ be the Lorentzian dual timelike angle between binormal vector B and W. For $\left(M_{2}, M_{1}\right)$ dual curve couple, the following equations is obtained:
$1)$ If W is spacelike,

$$
\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cosh \Phi & 0 & \sinh \Phi \\
-\sinh \Phi & 0 & \cosh \Phi
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cosh \varphi & 0 & \sinh \varphi \\
-\sinh \varphi & 0 & \cosh \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
v_{1}^{*} \\
v_{2}^{*} \\
v_{3}^{*}
\end{array}\right]=\varphi^{*}\left[\begin{array}{ccc}
0 & 0 & 0 \\
-\sinh \varphi & 0 & \cosh \varphi \\
-\cosh \varphi & 0 & \sinh \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & 0 \\
-\cosh \varphi & 0 & \sinh \varphi \\
-\sinh \varphi & 0 & \cosh \varphi
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

2) If W is timelike,

$$
\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\sinh \Phi & 0 & -\cosh \Phi \\
-\cos \Phi & 0 & \sinh \Phi
\end{array}\right]\left[\begin{array}{l}
T \\
N \\
B
\end{array}\right]
$$

leaves the real and dual components

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
\sinh \varphi & 0 & -\cosh \varphi \\
-\cosh \varphi & 0 & \sinh \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]} \\
{\left[\begin{array}{l}
v_{1}^{*} \\
v_{2}^{*} \\
v_{3}^{*}
\end{array}\right]=\varphi^{*}\left[\begin{array}{ccc}
0 & 0 & 0 \\
\cosh \varphi & 0 & -\sinh \varphi \\
-\sinh \varphi & 0 & \cosh \varphi
\end{array}\right]\left[\begin{array}{l}
t \\
n \\
b
\end{array}\right]+\left[\begin{array}{ccc}
0 & 1 & 0 \\
\sinh \varphi & 0 & -\cosh \varphi \\
-\cosh \varphi & 0 & \sinh \varphi
\end{array}\right]\left[\begin{array}{l}
t^{*} \\
n^{*} \\
b^{*}
\end{array}\right]}
\end{array}\right.
$$

Proof: 1) From (2.4), (3.4) and (3.8), we have

$$
\begin{equation*}
\left\|M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}\right\|=\lambda^{2} \kappa^{2}\|W\| . \tag{3.12}
\end{equation*}
$$

By using (3.7) and (3.12) and from the fact that $V_{3}=\frac{M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime \prime}}{\left\|M_{2}{ }^{\prime} \wedge M_{2}{ }^{\prime}\right\|}$, we obtain

$$
V_{3}=-\frac{\tau}{\|W\|} T+\frac{\kappa}{\|W\|} B,
$$

Substituting (2.4) into the last equation, we obtain

$$
\begin{equation*}
V_{3}=-\sinh \Phi T+\cosh Ф В . \tag{3.13}
\end{equation*}
$$

Since $V_{2}=V_{3} \wedge V_{1}$, it can be easily seen that

$$
\begin{equation*}
V_{2}=-\cosh \Phi T+\sinh \Phi B . \tag{3.14}
\end{equation*}
$$

Considering (3.4), (3.13) and (3.14) according to dual components, the following equations are obtained:

$$
\left\{\begin{array}{l}
V_{1}=n+\varepsilon n^{*} \tag{3.15}\\
V_{2}=(-\cosh \varphi t+\sinh \varphi b)+\varepsilon\left[\left(-\cosh \varphi t^{*}+\sinh \varphi b^{*}\right)+\varphi^{*}(-\sinh \varphi t+\cosh \varphi b)\right](3 \\
V_{3}=(-\sinh \varphi t+\cosh \varphi b)+\varepsilon\left[\left(-\sinh \varphi t^{*}+\cosh \varphi b^{*}\right)+\varphi^{*}(-\cosh \varphi t+\sinh \varphi b)\right]
\end{array}\right.
$$

Writing (3.15) in matrix form, the proof is completed.
2)From (3.4) , (3.7) and (3.12), we obtain

$$
V_{1}=N
$$

and

$$
V_{3}=-\frac{\tau}{\|W\|} T+\frac{\kappa}{\|W\|} B .
$$

Substituting (2.6) into the last equation, we get

$$
\begin{align*}
& V_{3}=-\cosh \Phi T+\sinh \Phi B, \tag{3.16}\\
& V_{2}=\sinh \Phi T-\cosh \Phi B . \tag{3.17}
\end{align*}
$$

Considering (3.4), (3.16) and (3.17) according to dual components, we obtain following equations:

$$
\left\{\begin{array}{l}
V_{1}=n+\varepsilon n^{*} \tag{3.18}\\
V_{2}=(\sinh \varphi t-\cosh \varphi b)+\varepsilon\left[\left(\sinh \varphi t^{*}-\cosh \varphi b^{*}\right)+\varphi^{*}(\cosh \varphi t-\sinh \varphi b)\right] \\
V_{3}=(-\cosh \varphi t+\sinh \varphi b)+\varepsilon\left[\left(-\cosh \varphi t^{*}+\sinh \varphi b^{*}\right)+\varphi^{*}(-\sinh \varphi t+\cosh \varphi b)\right]
\end{array}\right.
$$

Writing (3.18) in matrix form, the proof is completed.

Theorem 3.5.Let (M_{2}, M_{1}) be the spacelike - timelike involute - evolute dual curve couple and $W=w+\varepsilon w^{*}$ and $\bar{W}=\bar{w}+\varepsilon \bar{w}^{*}$ be the dual Frenet instantaneous rotation vectors of M_{1} and M_{2} respectively. Thus,
1)If W is spacelike,

$$
\bar{W}=\frac{-\varphi^{\prime} n-w}{\left|c_{1}-s\right| k_{1}}+\varepsilon\left(\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n-w^{*}}{\left|c_{1}-s\right| k_{1}}+\frac{k_{1}^{*}\left(\varphi^{\prime} n+w\right)}{\left|c_{1}-s\right| k_{1}^{2}}\right)
$$

2) If W is timelike,

$$
\bar{W}=\frac{-\varphi^{\prime} n+w}{\left|c_{1}-s\right| k_{1}}+\varepsilon\left(\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n+w^{*}}{\left|c_{1}-s\right| k_{1}}+\frac{k_{1}^{*}\left(\varphi^{\prime} n-w\right)}{\left|c_{1}-s\right| k_{1}^{2}}\right)
$$

Proof: 1)From (2.10), we can write

$$
\bar{W}=-Q V_{1}+P V_{3}
$$

using (3.4), (3.5), (3.10) and (3.13) , we have

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\left|\kappa^{2}-\tau^{2}\right|} N+\sqrt{\left|\tau^{2}-\kappa^{2}\right|}(-\sinh \Phi T+\cosh \Phi B)\right) .
$$

Substituting (2.4) into the last equation, we obtain

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\left|\kappa^{2}-\tau^{2}\right|} N-W\right)
$$

and then, we get

$$
\begin{equation*}
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\Phi^{\prime} N-W\right) \tag{3.19}
\end{equation*}
$$

Considering (3.19) according to dual components and substituting $\lambda_{1}=\left(c_{1}-s\right)$ into (3.19), we leaves the real and dual components

$$
\left\{\begin{array}{l}
\bar{w}=\frac{-\varphi^{\prime} n-w}{\left|c_{1}-s\right| k_{1}} \tag{3.20}\\
\overline{w^{*}}=\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n-w^{*}}{\left|c_{1}-s\right| k_{1}}+\frac{k_{1}^{*}\left(\varphi^{\prime} n+w\right)}{\left|c_{1}-s\right| k_{1}^{2}} .
\end{array}\right.
$$

2) From (2.15), the dual Frenet instantaneous rotation vector of M_{2} is

$$
\bar{W}=Q V_{1}-P V_{3}
$$

Using (3.4), (3.5), (3.10) and (3.16), we have

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\left|\kappa^{2}-\tau^{2}\right|} N-\sqrt{\left|\tau^{2}-\kappa^{2}\right|}(-\cosh \Phi T+\sinh \Phi B)\right)
$$

Substituting (2.6) into the last equation, we obtain

$$
\bar{W}=\frac{1}{|\lambda| \kappa}\left(\frac{\kappa \tau^{\prime}-\kappa^{\prime} \tau}{\left|\kappa^{2}-\tau^{2}\right|} N+W\right)
$$

and then, we get

$$
\begin{equation*}
\bar{W}=\frac{1}{|\lambda| \kappa}\left(-\Phi^{\prime} N+W\right) \tag{3.21}
\end{equation*}
$$

Considering (3.21) according to dual components and substituting $\lambda_{1}=\left(c_{1}-s\right)$ into (3.21), we leaves the real and dual components

$$
\left\{\begin{array}{l}
\bar{w}=\frac{-\varphi^{\prime} n+w}{\left|c_{1}-s\right| k_{1}} \tag{3.22}\\
\overline{w^{*}}=\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n+w^{*}}{\left|c_{1}-s\right| k_{1}}+\frac{k_{1}^{*}\left(\varphi^{\prime} n-w\right)}{\left|c_{1}-s\right| k_{1}^{2}}
\end{array}\right.
$$

Theorem 3.6.Let (M_{2}, M_{1}) be the spacelike - timelike involute - evolute dual curve couple and $C=c+\varepsilon c^{*}$ and $\bar{C}=\bar{c}+\varepsilon c^{* *}$ be unit dual vectors of W and \bar{W}, respectively. Thus, i) If W is spacelike,

$$
\bar{C}=\left(\frac{\varphi^{\prime}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} n+\frac{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} c\right)+\varepsilon\left(\frac{\varphi^{\prime} n^{*}+\varphi^{* \prime} n+\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|} c^{*}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}}\right),
$$

ii) If W is timelike,

$$
\bar{C}=\left(-\frac{\varphi^{\prime}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} n+\frac{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} c\right)+\varepsilon\left(\frac{-\left(\varphi^{\prime} n^{*}+\varphi^{* \prime} n\right)+\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right| c^{*}}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}}\right) .
$$

Proof: i) From the fact that the unit dual vector of \bar{W} is $\bar{C}=\frac{\bar{W}}{\|\bar{W}\|}$, we obtain

$$
\bar{C}=\frac{-\Phi^{\prime} N-W}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}}
$$

or

$$
\bar{C}=-\frac{-\Phi^{\prime}}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}} N-\frac{\sqrt{\left|\kappa^{2}-\tau^{2}\right|}}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}} C \text {.(3.24) }
$$

Considering (3.24) according to dual components, we see that

$$
\begin{equation*}
\bar{C}=\left(-\frac{\varphi^{\prime}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} n-\frac{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} c\right)+\varepsilon\left(-\frac{\varphi^{\prime} n^{*}+\varphi^{* \prime} n+\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right| c^{*}}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}}\right) . \tag{3.25}
\end{equation*}
$$

ii)Substituting (3.21) into (3.23), we obtain

$$
\bar{C}=\frac{-\Phi^{\prime} N+W}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}}
$$

or

$$
\begin{equation*}
\bar{C}=-\frac{-\Phi^{\prime}}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}} N+\frac{\sqrt{\left|\kappa^{2}-\tau^{2}\right|}}{\sqrt{\left|\kappa^{2}-\tau^{2}+\Phi^{\prime 2}\right|}} C \tag{3.26}
\end{equation*}
$$

Considering (3.26) according to dual components, we see that

$$
\begin{equation*}
\bar{C}=\left(-\frac{\varphi^{\prime}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} n+\frac{\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}} c\right)+\varepsilon\left(\frac{-\varphi^{\prime} n^{*}-\varphi^{* \prime} n+\sqrt{\left|k_{1}^{2}-k_{2}^{2}\right|} c^{*}}{\sqrt{\left|k_{1}^{2}-k_{2}^{2}+\varphi^{\prime 2}\right|}}\right) . \tag{3.27}
\end{equation*}
$$

REFERENCES

[1] Ayyıldız, N., Çöken, A., C., 2004, On The Dual Darboux Rotation Axis of The Spacelike Dual Space Curve, Demonstratio Mathematica,37(1),2004,197-202
[2] Bilici, M. and Çalışkan, M., On the Involutes of the Spacelike Curve with a Timelike Binormal in Minkowski 3-Space, International Mathematical Forum,4(31),2009,1497-1509.
[3] Birman, G.S. and Nomizu, K., Trigonometry in Lorentzian Geometry, Am. Math. Mont., 91(9),1984, 543549.
[4] Bükcü, B. and Karacan, M.K., On The Involute and Evolute Curves of The Spacelike Curve with a Spacelike Binormal in Minkowski 3-Space, Int. J. Contemp. Math. Sci., 2(5-8), 20072, 21-232.
[5] Bükcü, B. and Karacan, M.K., On The Involute and Evolute Curves of The Timelike Curve in Minkowski 3Space, Demonstratio Math., 40(3), 2007,721-732.
[6] Clifford, W. K. Preliminary sketch of biquatenions, Proceedings of London Math. Soc. 4, 361-395, 1873.
[7] Çalışkan, M., Bilici, M., Some Characterizations for The Pair of Involute-Evolute Curves in Euclidean Space E3 , Bulletin of Pure and Applied Sciences, 21E (2), 2002,289-294.
[8] Fenchel, W., On The Differential Geometry of Closed Space Curves, Bull. Amer. Math. Soc. 57(1),1951.
[9] Hacısalihoğlu, H.H., Differential Geometry, Hacısalihoğlu Publish, Turkey. 2000.
[10] K. Akutagawa, S. Nishikawa, The Gauss Map and Spacelike Surfaces with Prescribed Mean Curvature in Minkowski 3-Space, Tohoku Math. J. 1990,42,67-82.
[11] Millman, R.S., and Parker, G.D. Elements of Differential Geometry, Prentice-Hall Inc., Englewood Cliffs, New Jersey,1977.
[12] O’neill, B., Semi Riemann Geometry, Academic Press, New York, 1983
[13] Ratcliffe, J. G., Foundations of Hyperbolic Manifolds, Springer-Verlag , Inc.,New York,1994.
[14] Struik J. Dirk., Lectures on Classical Differential Geometry, Second Edition Addision Wesley, Dover, 1988.
[15] S.Gür, S.Şenyurt, "On The Dual Spacelike-Spacelike Involute-Evolute Curve Couple On Dual Lorentzian Space $I D_{1}^{3}$ " International Journal of Mathematical Engineering and Science , 1(5),2012,14-29.
[16] S.Senyurt, S.Gür, "Timelike - Spacelike Involute - Evolute Curve Couple On Dual Lorentzian Space", J. Math. Comput. Sci. 2(6), 2012,1808-1823.
[17] Uğurlu, H.H., On The Geometry of Timelike Surfaces, Commun. Fac. Sci. Ank. Series A1(46), 1997, 211223.
[18] Woestijne, V.D.I., Minimal Surfaces of The 3-dimensional Minkowski Space. Proc. Congres "Géométrie différentielle et applications" Word Scientific Publishing. 344-369,Singapore,1988.
[19] Yaylı, Y., Çalı̧̧kan, A. and Uğurlu, H.H., The E. Study mapping of circles on dual hyperbolic an Lorentzian unit speheres H_{0}^{2} and S_{1}^{2}, Mathematical Proceedings of the Royal Irish Academy 102A (1) ,2002, 37-47.
[20] Yücesan, A., Çöken. A. C. and Ayyıldız N., On the dual Darboux Rotation Axis of the Timelike Dual Space Curve, Balkan Journal of Geometry and Its App. 7(2), 137-142,2002.

