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1. Introduction 

     The classical Lotka-Volterra model [4,5] for prey-predator species was developed on the basis 

of chemical principle of mass action, where their responses were assumed to be proportional to 

the product of their densities. These models, though used extensively, suffer from two problems: 

the paradox of enrichment and that of biological control. The ratio dependent predator prey 

models are free of these problems [1]. 

Ariditi and Ginzburg [2] were the first to introduce the “ratio-dependent predation” in which the 

feeding rate of predators (the functional response) depends on the ratio of prey to predator rather 

than on prey density alone (prey-dependent), as is the case in most conventional models. 
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Interestingly, consideration of ratio-dependent models helps understand the paradox of 

enrichment and biological control related problems [1]. In these models the functional response 

depends on the ratio of prey and predator densities emphasizing the fact that the predators must 

share the available prey. It has been observed that while earlier models are more suitable in 

homogeneous situations, the ratio dependent models are more suitable in heterogeneous 

situations. 

Recently, Gakkhar and Naji [3] have given the following three species food chain model: 
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where    is the biomass density of the species in the trophic chain at  th level, the parameter    

defines the effect of intra-species competition for food. The ratio        ⁄  represents the 

carrying capacity in the logistic growth model. The parameter    represents the effect of 

individual in the lower trophic level while    is the impact of individual in upper trophic level on 

the per capita growth of the  th species. In the model (1.1) the feeding relationship among       

and    is such that the prey    is eaten by middle predator    and middle predator    is eaten by 

top predator    and there is no explicit relationship between the prey    and top predator   . 

 

2. Our model 

      We form our model by modifying the model of [3]. It is assumed in this model that the 

middle predator    feeds on    whereas the top predator feeds on both   and  . Under these 

assumptions, our model becomes 
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The system of equations (1.2) has 15 parameters in all. Too many parameters in a model make 

mathematical analysis complex. The model is simplified by considering the interspecies 
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competitions for the topmost prey only i.e.               . To reduce the number of 

parameters in system (1.2) the following non-dimensional variables are introduced: 
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The non-dimensionalized equations are: 
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Here the non-dimensional parameters are defined as: 
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Hence in the non-dimensional form the numbers of parameters are reduced from 15 to 8. 

 

3.   Analysis 

        For the analysis and to study the long-term dynamic behavior of the interacting system (1.4), 

we follow the approach adopted in [3] and divide the system (1.4) into three subsystems. The 

first subsystem is obtained by assuming the absence of third species i.e.     . 
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The second subsystem is obtained when the first species is at non-trivial equilibrium (     
  : 
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The third subsystem is obtained when the second species is at non-trivial equilibrium (     
  : 

        
   

  
 [     

  
 

     
 

  

     
]    

      
    

  
 [     

  

  
    

  

  
]   ,                                                                                              (8)                                  

                                          



1134           COMPLEXITY IN THREE SPECIES RATIO DEPENDENT PREDATOR-PREY MODEL 

It may be noted that while the subsystem (1.6) qualifies as Kolmogorov system the subsystems 

(1.7) and (1.8) are not Kolmogrov systems.    

For studying the behavior of the subsystem (1.6), a substitution        ⁄  is made into it and 

this gives  
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The equilibrium points for subsystem (1.9) are given as: 

1. First equilibrium point for subsystem (1.9) is      (    .  

2. Second equilibrium point for subsystem (1.9) is      (    . 

3. Third equilibrium point for subsystem (1.9) is     (  (       ⁄   such that     . 

4. Fourth nontrivial equilibrium point for subsystem (1.9) is     (  
    

  , where 
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It may be noted that    always exists and is unique. The necessary and sufficient condition for 

the equilibrium point     of subsystem (1.9) to be locally stable is 

        
 ((    ⁄     )

  (    ⁄        
 .                                                                                                          (11) 

Further the subsystem (1.9) will have a limit cycle if 
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                                                                                                        (12) 

System (1.7) can be analyzed on similar lines. The substitution        ⁄  transforms the 

subsystem (1.7) to 
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where   (    ⁄    
   and     (  

   ⁄  . 

The equilibrium points for subsystem (1.13) are given as: 

1. First equilibrium point for subsystem (1.13) is     (    .   

2. Second equilibrium point for subsystem (1.13) is       (    . 
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3. Third equilibrium point for subsystem (1.13) is       (  (        ⁄   such that 

     . 

4. Nontrivial equilibrium points     (  
    

   for subsystem (1.13) are such that   
  is a 

root of                 
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satisfying     
                                                                                                                  (14) 

    and      
     is given by                                                              
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The discriminant for the cubic equation (1.14) is given as 
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 All roots of equation (1.14) are real and distinct if      . 

 Exactly one root of equation (1.14) is real if      . 

Biologically, we will be only interested in positive real roots of (1.14). We focus more on this 

aspect in the following section. 

Lastly we turn to finding the equilibrium solutions of the system (1.8).  For this purpose, we 

substitute        ⁄  and transform subsystem (1.8) into 
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 where      
                  

 ⁄  .  

The equilibrium points for subsystem (1.17) are given as: 

1. First equilibrium point for subsystem (1.17) is       (    .   

2. Second equilibrium point for subsystem (1.17) is       (      (           ⁄   

such that             .  

3. Nontrivial equilibrium points     (  
    

   for subsystem (1.17) are such that   
  is a 

root of  
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   such that 
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It is obvious that the quartic equation (1.18) can only be analyzed numerically for its roots. For 

specific choices of parameters, existence of equilibrium solutions of (1.17) and their stability 

results are given in the following section. 

4.   Discussion 

       The stability of the subsystem (1.9) is shown in Table1.1 when parameters            

    are kept constant and    is varied.  

 

                                                

                                                                       Table 1.1 

                        Behavior of nonlinear subsystem (1.9) for different choices of parameters 

Parameters kept constant                             Parameter varied                    Analytical behavior of             

                                                                                                                        linearized system                    

 

                                                                                                                Stable                                     

                                                                                                              Unstable                                 

                                                                                                                               Stable                                     

  

Similarly, the stability of the subsystem (1.13) is shown in Table 1.2 when parameters    

                                                                are kept constant 

and    is varied.  
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                                                                       Table 1.2 

                        Behavior of nonlinear subsystem (1.13) for different choices of parameters 

Parameters                                              Parameter varied                           Analytical behavior of             

                                                                                                                       linearized system                    

 

      ,      ,                                                                             Stable                                     

                                                                                          Unstable                                 

                                                                                                     Stable                                     

                                                   

                                                                     Table 1.3 

                        Behavior of nonlinear subsystem (1.17) for different choices of parameters 

Parameters kept constant                         Parameter varied                          Analytical behavior of             

                                                                                                                         linearized system                    

 

      ,      ,                                                                               Unstable                                     

                                                                                              Stable                                 

       ,        ,         

                                        

 

Numerical integration is used to investigate the global dynamic behavior of the model system 

(1.4). The objective is to explore the possibility of chaotic behavior. Extensive numerical 

simulations were carried out for various values of parameters and for different sets of initial 

conditions.  

The parameters          have been taken as controlling parameters in the following cases with 

other parameters kept fixed at: 

                                                                          

Case 1:                     

In this case Fig 1.1(a) shows the presence of chaotic attracter.  
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                                                        Fig 1.1(a) 

Case 2:                      

In this case Fig 1.1(b) shows the presence of chaotic attracter. 

                

                                                        Fig 1.1(b)       
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Case 3:                     

In this case Fig 1.1(c) shows the presence of limit cycle. 

               

                                                   Fig 1.1(c) 

Case 4:                      

In this case Fig 1.1(d) shows the presence of limit cycle. 

                   

                                                           Fig 1.1(d) 
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Now we will take        and vary the value of   .  

Case 5:                     

In this case Fig 1.1(e) shows the presence of chaotic attracter. 

                      

                                                               Fig 1.1(e) 

Case 6:                     

In this case Fig 1.1(f) shows the presence of chaotic attracter. 

                        

                                                               Fig 1.1(f) 
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Case 7:                     

In this case Fig 1.1(g) shows the presence of chaotic attracter. 

                     

                                                            Fig 1.1(g) 

Case 8:                    

In this case Fig 1.1(h) shows the presence of limit cycle. 

                         

                                                          Fig 1.1(h) 
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 5.  Conclusions  

        Gakkhar and Naji [3] have shown the existence of chaotic dynamics in three species ratio 

dependent food chain model. They have taken the food chain in such a way that their prey exists 

at the topmost level, a predator at the next level and then a super predator at the lowest level. 

There is no explicit relationship between the prey and the topmost predator and by choosing one 

parameter as the control parameter they have shown chaotic dynamics in their food chain. In a 

modified version of their model we have taken a feeding relationship between the prey and 

topmost predator and by choosing two parameters as the control parameter we have shown that 

complex dynamics in terms of chaotic behavior is also possible in our model.     
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